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SVAZEK 21 (1976) APLIKACE MATEMATIKY CisLO 1

ON A PROBABILITY INEQUALITY
FOR MULTIVARIATE NORMAL DISTRIBUTION

SoMEsH DAs GupTa*

(Received May 13, 1974)

1. Iatroduction. Let P, denote the p-variate normal distribution N (i, Z,), where

K1\ Py Zyy /1212] P4
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() ! <#2> 53 * [/1221 222] P2
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pr+p,=p, 01 =1, and X, is positive-definite. Let C; = R”', C, = R” be
convex symmetric (about the respective origins) sets. Define

() (1) = P,[Cy x C,].
Das Gupta et al. [1] have shown that
() (0) = (1)

under the following assumptions: There exist vectors b, € R?!, b, € R”* and a scalar
¢ such that
() gy =cb,i=12
(i) Z;, = byb)
(iii) Z;; — b;b; (i = 1, 2) is positive definite.
The inequality (3) was proved by Khatri [2] when p = 0. In this note, we shall
show that

@ (2) = (1)

for 0 £ 2 < 2* £ 1 when the above assumptions (i)—(iii) hold. For motivations
and applications of the inequalities (3) and (4), one may see Das Gupta et al. [1]



and Khatri [2]. The inequality (4) was proved by Sidék [3] under the following
stronger assumptions:

@mun =0
(b) R;; = bb; + diag[I — bb]],i = 1,2
Ry, = blblZ

where b, : p; x 1,b, :p, x 1,
[Rll RIZ]
R21 R22
is the correlation matrix corresponding to X, and for a square matrix A, diag (4)
is defined to be the diagonal matrix obtained from A by replacing all the off-diagonal
elements of A by 0.
Our proof essentially uses the inequality (3) and some suitable prior distributions

of the parameters. It can also be seen that Siddk’s [3] proof may be modified, in-
corporating the assumptions in this note, to obtain (4).

2. Proof of the inequality (4) Consider b, : p; x 1, b, : p, x 1 and ¢ satisfying
the assumptions (i)—(iii). Let X, : p; x 1, X, : p, x 1 and 6 be distributed as the
(p + 1)-variate normal distribution, such that conditional joint distribution of X,

and X,, given 0, is
0 b,
o[ 5)- 7]

and 8 ~ N(c, 2), (A being the variance of 6). Then the unconditional joint distribution

of X;and X, is
¢ b, b,b, b,b)
Ny [(c b2>’ r+ l(bzb’l b,b, ) |

It can be seen that the joint distribution of X, and X, id P,. or P,, according as

F oo (Fn— b (- 2)bib;
TIENOF = 2) boby 2y, — Abyby )

_ _ X1 — Abyb 0
F_F“( 0 Iy, — 2byby)°

where 0 < 2 < A* < 1. Applying the inequality (3) of Das Gupta et. al. [1] after
verifying their assumptions, we get

(5) P[X,eC,, X,€C,|0, 7 =T,]2P[X,eC,, X,€C,|0, I =T,].
Taking expectations of both sides of the above inequality (5) with respect to 6, we get

n()L*) > n(l) .



Note 1. If y, = 0, fy = 0, rank (}:12) = 1, there exist vectors b,, b, satisfying
(if) and (iii). To satisfy (i), take ¢ = 0. To see this, note that there exist nonsingular
matrices A; and A4, such that

AlEllA’l =Ipl’ AZZZZAIZ =Ip1’

and
00...0
, 00...
A 24, = . -] P1 X P2,
00...0

where 0 < o < 1.

Define
by = A7 [()0...0] :pi x 1, i=12.

Note 2. Suppose f; + 0, p, + 0. Assume the following: There exists a positive
scalar k such that

(ii') 2y = kpp;
(iii") k™' > max (11213 hes 12225 o).

We shall show that there exist by, b, and c satisfying (i) — (iii). There exist orthogonal
matrices L; and L, such that

wp=(8,0...0) LZ}/*, i=12
where

8 = (Zi )" .
Define

c=k™V2 by=ple, i=12.

Note 3. When Z;; (i = 1,2) is p. d., rank (£,,) = 1, but X is p.s.d., the above
proof is also valid for showing

(1) < =n(A%),
where 0 < 4 < A* < 1. In that case we need the following assumption:
(iiia) Ty~ A*bb; (i=1,2)is pd.

instead of the assumption (iii). Correspondingly the assumption (jii’) in Note 2 can be
changed. However the proof is no longer tenable for showing n(4) < n(1),0 < 1 < 1
when X is p.s.d. subject to the assumptions made in the beginning of Note 3. This
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may apparently follow from the result of Das Gupta et. al. 1] who claimed to prove

(3) under the assumption: £;; — b;b; is p.s.d. (i = 1,2), instead of (iii); however
their proof is not complete.
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Souhrn

O JEDNE NEROVNOSTI PRO PRAVDEPODOBNOSTI
V MNOHOROZMERNEM NORMALNiM ROZLOZENI{

SoMEsH DAs GUPTA

Necht P, oznaduje p-rozmérné normalni rozloZeni N (g, Z,), kde

5 =[ Iy AZU}
* )'221 222
je rozdé€lena na bloky s py, p, fadky a sloupci, pfiemz p; + p, = p,0 <1 < 1,a 2,
je positivné definitni. BudteZ C, = RP', C, = R”* konvexni symetrické mnozZiny.

V ¢lanku je za urcitych pfedpokladd o p a ¥ dokdzéno, Ze pro 0 < A < J* < 1 je

P,[C, x C,] £ P,.[C, x C,], coZ zobeciiuje diiv&jsi vysledky Das Gupty aj. [1],
Khatriho [2] a Sidéaka [3].
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