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CONVERGENCE OF A FINITE ELEMENT METHOD BASED
ON THE DUAL VARIATIONAL FORMULATION

JAROSLAV HASLINGER and IVAN HLAVACEK

(Received February 7, 1975)

INTRODUCTION

In practice, one often meets problems, when the cogradient of the solution is more
important than the solution itself (e.g. in elastostatics, the stresses are more interesting
than the displacements). There are three possibilities how to calculate the cogradient:

(i) an indirect method, based on the minimum potential energy principle. We have
to find the solution and then to evaluate its cogradient (Compatible models);

(i) to apply the dual variational formulation (principle of minimum complement-
ary energy), which yields the cogradient directly (Equilibrium models);

(iii) to apply a mixed variational principle (of the Hellinger-Reissner type), enabling
to get both the solution and its cogradient simultaneously (Hybrid models).

In the present paper, we study a particular procedure of the class (ii), starting
from a dual variational formulation. A number of articles has been written on the
dual finite element analysis in elastostatics (see e.g. the works [1], [2] by B. Fraeijs
de Veubeke or V. B. Watwood, Jr., B. J. Hartz [3]) and in general potential problems
(B. Fraeijs de Veubeke, M. Hogge [4]). To the authors’ knowledge, however, no
theoretical convergence result has been presented for the problems mentioned above.
This was done only for a special class of problems by J. P. Aubin, H. G. Burchard [5]
and J. Vacek [6], who studied the equations with an “absolute term” (i.e. A(u) +
+ agu = f, a, * 0). The dual (also “conjugate”) method for equations of this
type can be extended to parabolic problems, where the role of the absolute term ayu
is played by the time-derivative du[df (see I. Hlavd¢ek [ 7], H. Gajewski [13]).

We concentrated our effort to the convergence analysis of a simplest finite element
“equilibrium model”, applying the piecewise linear polynomials to the solution
of a mixed boundary value problem for one second order elliptic equation without
the absolute term.
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In Section 1 we employ the method of orthogonal projection to derive the principle
of minimum complementary energy in a “week form” and its finite-dimensional
analogue. In Section 2 a subspace of triangular finite elements is constructed, which
consists of piecewise linear vector-functions such that their divergence vanishes
in the whole domain under consideration in the sense of distributions. The subspace
is applied to the dual variational method in Section 3 with special regard to the
approximation of an inhomogeneous natural boundary condition. As a result, the
procedure is shown to be second order correct in h (the maximal side of all triangles),
provided the exact solution is sufficiently smooth. The last Section 4 contains some
a posteriori extimates, following from the use of both the primal and the dual finite
element method (cf. also F. Grenacher [8], W. Prager, J. L. Synge [9]).

The authors will present analogous results for n-dimensional domains elsewhere

(see [12]).

1. SETTING OF THE PROBLEM

Let Q@ < R, be a bounded polyhedral domain. Consider a differential operator

n Pt 3
0 ou
J&’M = — y - ai' D K
- J
ij=10x; 0x;

7

where
(1.1) a;;€ L,(Q)"), ay(x)=a;(x), i,j=1,...n,
(1.2) Ja = const > 0,

Y ay(x) & z af¢]® VEeE,
ij=1
holds almost everywhere in Q.

Suppose that the boundary I' of Q consists of two disjoint sets I',, I',, which are
either empty or open in I and a set # of zero (n — 1)-dimensional measure

r=r,ur,u#, r,Nl,=0, mes,_,Z=0.

Moreover, let I', be non-empty.?)
We shall solve the following problem

(1.3) Au = f in Q
u=1u on I,
n D
du
a;—mn;=gonly,
ij=1 0x;
1y I.e. a;; are bounded measurable functions on Q.

ij
2y If I, is empty, we have to introduce subspaces V), = V of “normalized” test functions
to obtain uniqueness of solution and the generalized Friedrichs inequality.
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where f € L,(Q), i € W"*(Q) and g € L,(I',) are given functions, n; being the compo-
nents of the unit outward normal to I'.
Let us denote

V={vive W"*(Q), v=0o0nT,}.
A function u e W' *(Q) will be called a weak solution of the problem (1.3) if

(1.4) u—inev,

a(u,v)zjfvdx +j gvdl YoeV,
P r,

2

where

r 0
a(u’u) :\[ Z aijglﬂ dX
ig=1  0x;0x;

From (1.1), (1.2) and the Lax-Milgram theorem the existence and uniqueness of u
follows. Moreover, it holds

(15) lulw, 2o = €U eaor + alws o + N0l iarp) -

Introducing the functional of potential energy

L(v) = %a(v, v) — jfv dx — J gvdl,
e Iy

we may formulate the minimum potential energy principle
#(u) = min Z(v)
vea+V

where ii + Vdenotes the set of all sums i + v, ve V.
Let H = [ L,(Q)]" with the norm

| 2])? :,:Zl“zi“z :-i J‘Q)‘f dx, 2= Ay )

i=1
Introduce a bilinear form

n

(1.6) AWy =Y j bi(x) Ay jdx, 2eH, peH,
o

ij=

where b;; are the entries of the matrix [a™'] inverse to [a].
Making use of (1.1), (1.2), we can see that (1.6) defines a scalar product on H, and
such constants ¢; > 0, ¢, > 0 exist that

(1.6") oA £ |y £ ei]2] YieH,
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where

1205 = (A An

Hence the space H with the scalar product (1.6) is a Hilbert space.
Let us define

Hl—{ll/leH eV —Za ;”},

= Jj

H, ={A|2€eH, B(3,v) =0 VvoeV},
(L.7) B(2, v) = zjz % g

Lemma 1.1.

1° H, and H, are (closed) subspaces of H,
2° H, 1 Hy;
¥ H=H, ®H,

Proof
1° Let A" e H,, A" — A in H. Then we may write
= zaij%y v, € V,
j=1 7 0x;
(1) I — 2| =f S by — 22) (A — 32) dx =
Qij=1
n n a n 6
= [ pa( o= o) (S =)oz
Q=1 =1 0x; k=1 " 0x;

> on;lgrad (vw — )12 dx = c|vn, — V][R0

where the definition of [b;;], (1.2) and the generalized Friedrichs inequality for
v e V(see [10]) have been used. Hence v, — vin ¥,

n
Ay=Ya;—, A€eH,.

By virtue of (1.6) and the definition (1.7), the set H, is closed. The linearity is
obvious.
2° Let 2 € H{, " € H,. Then we have

2= S b, a,k Jpdx = B(\,v) =0,
Jj

0 =1

using the definition of [b;;] and H,.
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3° Let Hy denote the orthogonal complement of H, in H. From the point 2° it

follows that H, = Hy. Conversely, let z € Hf. Then
n n av
Yobyl Yay—)z;dx =0 YoeV.
oij=1 k=1 0Xy

The properties of [b;;] yield that

'[ > —qujdx=0 YveV,
o

i=1 6xj
Hence z e H,. Q.E.D.
Let us introduce

n

(1.9) ZOEDY a,-j? s AE) = (B0, Aw), ve WHA(Q)
i=1 X;
Ap, = {/Av\)NEH,B(/LU) =j.fvdx + J gvdr, VveV}.
Q Iy

The dual variational formulation is the following

Theorem 1.1. (Principle of minimum complementary energy).

Let B(2, v) and /(v) be defined through (1.7) and (1.9), respectively. Let u € W':*(Q)

be the weak solution of the problem (1.3). Then the functional

F() = -12-.[ Y b2 dx — B(A, i)
Qi,j=1

LI=

attains its minimum on the set 4, , if and only if 1 = A(u).")

Proof. (cf. [11]). Let usset u = it + w, we V. Then A(w) e H, and & — A(u) € H,

forallAe A, .
The functional

J) =14 = @) 5 = (2 = 2w) + (Mu) = 2@)) i =
= 2 = 2)[i + |2w)]&
© attains its minimum on A, iff 2 = A(u).

Rearranging leads to the formula
J0) = @i = 25 — 2% X@)a =

= j Y by, dx — 2B, i) = 2(2),
Qij=1

which yields the assertion of the theorem. Q.E.D.

1) 1t holds that — L (A(n) = L(u) + [ fudx j gu dr.
Q Iy

g
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We obtained a variational problem of a minimum of a quadratic functional on
a closed convex set A, , = H. As usual, the problem can be transformed into a similar
one, but on a linear space Ay o = H,. Let 1€ A, be a fixed vector-function. Then

A, =1+ Ao =1+ H,,

i.e,, every A€ A, , can be written in the form 2 = 1 + y, x € H,. Then

Qij= ij=

SP)=SA+ ) =1 Y b dx +J Y, by dx — B(x, u) + N(4, i),
1 o 1

where N(Z, i) depends only on 1, @i. Let us set

(1.10) P(x)

where

306 0w — F(x)

F(x) = — > b A dx + B(X, i) .

Qi,j=1

Then we may replace the minimum problem of Theorem 1.1 for &(1) by an equi-
valent preblem:

to find y° € H, such that

(1.11) &(x°) = min &(y) .

xeH2

Let he(0,1) and let {V,} be a system of finite-dimensional subspaces of H,.
We define the following procedure:

to find yp € V, such that

(1.12) ®(yy) = min &(x) .

x€Vh

Theorem 1.2. To every he(O, 1> there exists precisely one x €V, satisfying
(1.12). It holds

(1.13) 12 = xillu < inf[2° = ¥ < erinf [|2° = 4]
x€Vn x€Vn

Proof. The element y2, satisfying (1.12), is characterized through the relation
DP(x,7) =0 VreV,,

where D&(y;, ) denotes the value of Gateaux differential of @ at the “point” yp
and in the “direction” y. We have

DO(yy, 1) = (tn» 0 — F(x),
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consequently
(1.14) (n> ) = F(x) VreVy.

It is readily seen that (1.14) is equivalent with a system of linear equations with a
positive definite matrix. Therefore precisely one yp € V, exists, satisfying (1.14).

Similarly, by virtue of (1.11), it holds
(1.15) (% 1) = F(x) VxeH,.
Substracting (1.14) from (1.15) yields that
(0 =t u =0 VyeV,
Next let y € V}, be an arbitrary element. Then we may write
=== a2 = 0a + & = xox — ) =

= = ® = 0u = =l 2° — xla

Dividing by |[° — X’?HH and taking the infimum of the right-hand side leads to
(1.13), if we use also (1.6"). Q.E.D.

2. THE SUBSPACES 47,

We shall restrict ourselves to the plane case (n = 2). Let K be a triangle with
vertices a,, a,, a; and set a, = a,. We introduce the following notation:

W= [T = (u = (upus), e WHK), 1= 1),
C = [C(K)]* with the norm

Jule = max [u ()]

C*(K) = [C*(K)]? with the seminorm

2
H"HCZ(K) = max %(_x)}
ijk=1,2 E)xj gxk|
xeK :

n is the outward unit normal to 0K; thus n = n(x, y) = n® € R, is constant on the
side a;a;,4, (i = 1,2, 3) of the triangle K.
For ue W we define the outward flux

(2.1) Tu=u

i — i — i i ) (i)
aigi+y * n(l) = uln(ll) + “2”(2')a n(’) = (nl > M2 )’

where ii; are the traces of u; on a;a;,;.
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By Pk(M), with k a non-negative integer, we denote the set of polynomials of the
order at most k, defined on the set M < R,.

Definition 2.1. We say that A", %, (i = 1, 2, 3), are basic linear functions of the
side a;a;yq, if

MWePaa,) (k=1,2)

WW(a) =1, K aie) =0,
$a) =0, W azeq) =1.
From the definition it follows immediately that
(22) A0+ 29 =1 on aja;,,
(2.3) j ADds =31, k=1,2,

where [; denotes the length of a;a;, ;.

Henceforth we shall use the notation
j‘ u.vdl = [u,v];, u,ve Ly(a;a;,,)
aiai+

Lemma 2.1. Let y;, 6,€ Ry, (i = 1,2, 3) be given. Then precisely one u € [P,(K)]?
exists such that

(2-4) T; ”(ai) =7;, T; ”(ai+1) =0;, (i =1,2, 3) .

Proof. Denote u = (uy, u,), u; € P,(K). It is sufficient to prove that the six values
{uj(a;)}}-1,j = 1,2 are determined uniquely by (2.4). Let e.g. i = 1. Then

T, u(a,) = u(a,) . n'V =y,
T; u(a;) = u(a;).n® = 5;.

As nV_ n® are linearly independent vectors, u(a, ) is uniquely determined. The same
holds at the remaining vertices. Q.E.D.

Theorem 2.1. Let u e W. Then the equations
§) [T, u, 2] = a4, 477 + B, A0)e, k=12
(i) Mu(a).n® o,
Mu(a;y,).n =B,

with i = 1,2,3, define an operator ITe Z(W; [Py(K)]* N 2(C; [P(K)]*).")
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Proof. The numbers a;, f8; are determined uniquely by the system (j). Indeed,
the (Gramm’s) matrix A® = ([, 2"]), j, k = 1,2 is regular. The lemma 2.1
yields the existence and uniqueness of w € [ P,(K)]? such that

Tiw(a;) = o, Tiw(a;,) = p;.

Let us set [Tu = w. The mapping I7 is obviously linear. Let u, - u in W and denote
by of, B7 and o;, B; the solutions of (j) with the left-hand sides [ Tu,, A" ]; and [ T, 4],
respectively. Using the trace theorem and the Cramer’s rule, we obtain that o} — «;,
Bi — Bi. The rest of the proof is obvious as well as the fact that IT € £(C; [P,(K)]?).
Q.E.D.

By virtue of Theorem 2.1 there exists a ¢ > 0 such that

|Tulc = cufc.

In the following we present an estimate for c.

Theorem 2.2. Let IT be defined through (j), (jj). Then

/2

@) ale < 852 .,

holds for all u e C, where « is the minimal interior angle of K.
Proof. A direct calculation yields that
det AV = 317, oo = 3JQ@) ulle, 8] =3V Jule.
Next from (jj) it follows e.g. for IT u(az) = (wy(a,), wa(ay))
[
|
l

because the det (n", n®) is equal to the sinus of the angle between n® and n‘®.
Similar estimates hold for the remaining values of w at the vertices. Q.E.D.

Let us define

n(ll) n(zl)i
(

1|

i

2) <2)\ [
|

{ 6./2
'nl n;

— e,

sin o

|W1(az)|

II/\

M(K) = {v = (vy,0,), v;€ P{(K), j = 1,2,divv = 0} .
It is easy to see that dim A#(K) = 5,
= {(o) () () () ()
(2-6) vel(K)<=v = (y, + 72% + 730, 0, + d2x — 1,)).
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Lemma 2.2.

ve./{(K)@ve[P,(K')]z&J. v.ndl =0,

oK

Proof. Let v e #(K). Then
divv =0 on K=>f v.ndl'=0
oK

by virtue of the Green’s theorem.
Letv = ()’1 + 92X + y3y, 01 + Orx + 53)’) and

(2.7 f v.ndF:fdivvdxdy=0.
oK K

Then div v = y, + J; and (2.7) yields
(y2 + 03)mesK = 0=y, = —5,.

Using also (2.6) we obtain that v € .#(K). Q.E.D.

Lemma 2.3.

veM(K) = ve[PRIF &S (o + )1, = 0,

where o; = T;v(a;), B; = T;v(a;sy). -
Proof. We may write

Tw = Tiv(a) 27 + Tivl(ai) 45 = o2 + BiiS°

3
f v.ndl=Y
K i

3
Tvdr =¥ (i + )}
i=1

i=1 Jaia;+,

Consequently,
3
'[ v.ndl' =0<Y (a4, + )1, =0
oK i=1

and from Lemma 2.2 the assertion follows. Q.E.D.
Let us set

(2.8) U={veW, divv =0

Theorem 2.3. Let the mapping I be defined through the relations (j), (ij), as
in Theorem 2.1. Then II € #(U; #(K)) and

(2.9) v =v VYve[P(K)]*.
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Proof. Adding the equations (j) for k = 1, 2 yields, by virtue of (2.2):

J‘ Tuds = [Ti”, A+ /1(2'.)]; = O‘i[)~(1“~ 1]i + ﬁi['l(zﬂ, 1]; = %li(“i + B,
Qidi+1

i=1Jaja;i+,

3 3
ueU:O:J u.ndl =Y, Tudll =31y (0; + By)1;.
oK i=1

Hence u € #(K) follows from Lemma 2.3. The mapping IT is linear and continuous,
being the restriction of W onto U.

Letv e [P(K)]?. A direct calculation from (j) implies o; = T; v(a;), B; = T; ¥(a, ).
Then using (jj) and Lemma 2.1 we obtain ITv = v. Q.E.D.

Theorem 2.4. Let u e C*(K). Then
(2.10) lu - uc < 4(1 ; 6—,*13> W uereey
sin o

where h = diam K and « is the minimal interior angle of K.
Proof. Let x4, € K be an arbitrary point. Taylor’s theorem implies for x € K
(2.11) u(x) = u(x,) + D u(x,) (x — x,) + D> u(@) (x — x,)?,

where O € x,x.
Applying IT to (2.11), using its linearity and (2.9), we obtain

IT u(x) = IT u(x,) + II(D u(x,) (x — x,)) + 1I(D* u(@) (x — x,)*) =
= u(x,) + D u(x,)(x — xo) + II(D* u(®) (x — x,)?) .
Consequently, we have by virtue of (2.5)

|lu — Mufc < [ D? u(6) (x — xo)*|c +
+ |ID? u(©) (x — x)?||c < 4 (1 + %?f) h?|u]|c2x - QE.D.

Let Qe R, be a bounded polygonal domain, he(0,1),.7, a triangulation of
Q, satisfying the usual requirements concerning the mutual position of two triangles.
Suppose that

h = maxdiam K VKeJ,.

Denote by IT the mapping, defined on K € .7, by the conditions (j), (jj) of Theorem
2.1. Let K,K' € 7, be two adjacent triangles, with a common side a;a;;; and ve
e [W"*(K U K')]?. The function Ty, defined by (2.1) with respect to the triangle K
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(or K') will be denoted by T; kv (or T; v, respectively). We say that the condition
(R) is satisfied on the common side a;a;, , if

(2.12) Tixv+ Tixv=0 on aa;.,.

Let us define
U(Q) = {ve [W"Z(Q)]2 , divvy = 0} S

N Q) = {v, v|x e #(K) VK € T, (R) is satisfied on each common side of any pair
K, K’ of adjacent triangles of 7 ,}.
For v € U(Q) we define a mapping r, by the relations

(2.13) rvlx =y YKeZ,.

We say that a family {7}, h € (0, 1 ) of triangulations of Q is regular, if there
exists a constant o, > 0 independent of h and such that all interior angles of the
triangles of 7, € {7} are not less than .

Theorem 2.5. Let {7}, he(0, 1) be a regular family of triangulations of Q.
Then
(2.14) rne2UQ); A(Q),
(2.15) lu = riufisop = ch*ufcrqye Yue[CHQ)],
where ¢ does not depend on h, u.

Proof. With regard to Theorems 2.1, 2.3, (2.14) will follow, if the condition (R)
(2.12) is verified. Let K, K'€.7,, KNK' = a,a;,,. As T, ((ITxu), T; (g, u)€
€ Py(a;a;;,), it suffices to show that

T, (ITxu) (a;) + T, x(Hxu)(a)) =0 for j=1i, i+1.

The latter equation, however, is an immediate consequence of (j), (jj), because
ny = —n, T,yu = —T, xu and
G )
Myu(a).n =a;, Mgu(a).nd = —o,
Hyu(a;e,).nd =B, Mg u(a;,).n = —p;.

As the estimate (2.15) is concerned, we obtain, making use of Theorem 2.4
Ju = rulfer = 2 llu = ruffae = 2 Ju — Teulfwe <
KeT p KeTn

< Y mesK.C?h*. |u|d. k) < C*h* mes Q. |uic, @)y »
KeT

where C = 4 (1 + Lﬁ) .Q.E.D.

sin o
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Remark 2.1 Any function v euV,,(Q) satisfies the equation divv = 0 on Q in the
sense of distributions.

Indeed, let us take @ € 2(Q) (i.e., infinitely differentiable function with compact
support in Q). Then

(divy, > = —J.v.grad(pdxdy= -y J‘v.gradqodxdy=0,
o K

KeT n

if we use integration by parts and the definition of #7,(Q) (condition (R)).

3. APPLICATION OF SUBSPACES 4 ,(22) TO THE DUAL VARIATIONAL
FORMULATION

Consider a polygonal domain Q€ R,. Let {7}, he(0, 1), be a regular family
of triangulations of ©, satisfying moreover the following requirement: if a part of I',
belongs to a side of K € 77, then I', covers the whole side.

Define
Vi=AWQNH, ={vet,(Q), v.n=0 on I,}.

Let ¥° € H, be such that

(3.!) d)(xo) = min d>(x)

xeH>
and y) € V, such that

®(xp) = min &(y) .
xeVn
Theorem 3.1.") Let x° € [C*(Q)]*. Then for any regular family of triangulations
(7} it holds
1 = wlla = h?[ 2 cx@ne »
where ¢ is independent of h, °.

Proof. We shall verify that r,x° € V,.

2
P e[CHRQPNH, = prﬁdx=0 Yoe V<

i
Qi=1 X

<divy’=0 in @, . n=0 on I,.

Hence ° € U(Q) and Theorem 2.5 yields that r,° € #7,(Q). Consequently, it suffices
to prove (r,x°).n =0 on I',. Let a,a;,, = I', be a side of a boundary triangle

') Using the Bramble-Hilbert Lemma, one can prove that ]]zo — 0y = Chzlxolz,n if
2% e (w3 2(@)1%, where | . |2, denotes the seminorm of second derivatives.
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KeZ, Asy°.n” =0onaa,;,,, from(j)a; = p; = 0 follows and (jj) results in
My x%(a;). n® = Iy x°(a;,) .0 =0.

Consequently, (Ixx°) . n® = 0 on a;a;,; and r,x° € V}. Using Theorem 1.2 and 2.5,
we obtain

[2° = 2l = eul® = rix’]| = b2 - QED.
Corollary. Let the suppositions of Theorem 3.1 hold. Then for J° = 1 + ¥°,
i =1+ xy we have
12° = 2w = 0(h?).
Proof. Obviously, we have
e PR VR

and we make use of Theorem 3.1. Q.E.D.

Let us recall once more the transformation of the problem #(1) = min. on the
set A, , into the problem (3.1). We supposed that an element 1€ A, , is available.
In praxis, however, difficulties may occur in finding this function. Therefore, let
us suppose that we are able to construct a 1 € A, ,, where y is close to g in some sense.
Let us solve the problem
(32) ,(xy) = min ,(x)

xeH2
where

D(x) = 4]z + _Zlbijzilj dx — B(y, u) .

Qi,j=
Let us set
(3.3) W =71+
(3.4) A =1+

and seek an estimate for [2° — A7

H-

Theorem 3.2. Let g, y € L,(T',). Then

|H = CHQ - VHLz(r,.,) .

12° = %5

Proof. The principle of minimum complementary energy (Theorem 1.1) implies
that A° = A(u), where A(u) is defined by (1.8) and u is the weak solution of the primal
problem (1.3). Similarly, 2° = A(u,), where u, is the weak solution of the modified
problem (1.3) with g replaced by y on I',. From (1.4) and (1.5) it follows

H“ - “v“W“(ﬂ) = "”g - V“Lz(m'
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Finally, we have
122 = 20w = [ = w)ln = efu = wwize, £ ¢lg = ey QED.

Let I'; = \J a;a;, . Suppose that we have found A" € H such that div A" = —f,
j=1
(note that this problem is easy to solve by integration) and set

i o= (1)
g=g—A".n on I,

Let § be such that the values §(a;) are well defined for j = 1,2,..., m + 1 and find
a function A® € .#,(Q) such that at all vertices a; e T,

p(a;)= (A% .n)(a)) = g(a;), j=1,2,3,...m+ 1.

In other words, the function ¢(x) = (1®).n)(x) represents the Lagrange linear
interpolate of the function § onevery a;a;,, € I',.
If we set 1 = A1V 4+ A then

led;,, y=0¢+ i n,
because

B(A™W + 4@, v) ='[fv dx +J‘ yodl' YoeV
Q

9

follows from the definition of A", A®, integrating by parts.

Remark 3.1. The problem to find A®, satisfying the conditions mentioned above,
is a problem of linear algebra. If «;, f; have the sense of Lemma 2.3, ie. o; =
= T;2®(a;), B; = T;A¥(a;,,) on the side a;a;, , of a triangle K € 7, then we have
to solve the system:

M

(#; + B)1; =0 VKT,

I

i=1

Moreover, to satisfy also the condition (R), we choose the values «;, #; on the common
side of any two adjacent triangles such that (2.12) holds, i.e., the corresponding
parameters differ by the sign only. Finally, at the vertices on I'y, the values a;, f;
must equal to the values of §.

Let us derive an estimate for ]]y - g”Lz(,g). We have
Ir = 9lisrn = lo + 271 =4l =
j=
=Yg — AGY .n) + 20 . n = g}, 00 S
i=1 ;

=23 (19 = lLanen + 470 = AED )L,
f=

where ITv denotes the linear Lagrange interpolate of v on the segment a;a;, ;.
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Ife.g.g, AV .ne W*¥I,), where I',, is any side of the polygon I',, then Theorem
3.2 yields

35) 2 = Hlu £ elg = Yy = P (E lglweaay + 2127 nllwaa,) -
Let 19, €V, be such that
(3.6) (1) = min @,(x)
X€V R
and let us set
/l(y),,, =i+ x(y)_,,.
Then we have the following error estimate
Theorem 3.3. If g, 2 .ne W>*(I',)) for any side I, of I'y and ) € [C*(2)]*,")
then for any regular family of triangulations
12° = Zalu = Ch2,

where the constant C is independent of h.

Proof. We may write
12 = Balla < 12° = Bl + 127 = 2ala

where A) was introduced by (3.4). Using (3.5) and Corollary to Theorem 3.1 (applied

to the modified problems (3.2), (3.6)), we obtain the bounds for both terms of the
right-hand side. Q.E.D.

4. A POSTERIORI ERROR ESTIMATES, THE HYPERCIRCLE METHOD

Suppose that, besides A° = 1 + x2, we have also found a Ritz-Galerkin approxim-
ate solution uj. of the primal problem (1.3), i.e. up. € ¥7,,, such that

(4.1) ZL(up) = min ZL(u)

ueu+Vp*

and 77,. < Vis a finite-dimensional subspace of finite elements.
Then we obtain the following a posteriori estimates of errors.

Lemma 4.1. Let u and uj,, be the solutions of the problem (1.3) and (4.1), respectively.
Let Ay = 1 + i, where e A, , and ¥ is the solution of the problem (1.12). Define
Mv) for any ve W"(Q) by the relation (1.9). Then it holds

(@2) [0, = v < CLAGE) - 2
(@3) 12 — )] = Claw) - 2]

1y 1t is also sufficient if x?, € [W2()]? only.

)
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Proof. As A(up, — u) = A(uy,) — A(u)e H, and A(u) — A} € H,, by virtue of

Lemma 1.1 we may write
(44) [2) = 200G = 120w = w) + 2w) =BG =
= A, = W)l + M) = 2]
Hence (4.3) follows from (4.4) and (1.6"). An analogue of (1.8) yields that
12(upe — w)[ir = efuie = ullir0)
and (4.2) follows, making use of (4.4) and (1.6’). Q.E.D.
Lemma 4.2. (Hypercircle). Let the assumptions of Lemma 4.1 hold. Then
(4.5) (30 ue) + 42) = M) = $]2045) = 23]u
Proof. We may write, using Lemma 1.1 and (4.4), that
[A(un.) + 22 — 22(u)||f = |Auge — u) + 23 — Au)|f =
= [up) = 2l + 1) = 203 = 1) = 53 . QED.

Remark 4.1. The equation (4.5) has the following geometrical sense: the solution
Mu) € H lies on a hypercircle, the center of which is at the point 4(A(u;) + ;) and

the diameter equals the distance |A(up.) — A7) 4

Note that if the center of the hypercircle is taken for an approximation of A(u),
then the error measured in H is equal to the radius of the hypercircle, whereas the
errors of both 1) and /l(u,?.) can only be estimated from above by the diameter, as an

immediate consequence of (4.4).

APPENDIX

Let us consider the following mixed boundary value problem, including the Newton

" condition:

(A1) Hdu=f in Q

u=u on I,

z 0
u
Y aj—n;=g on I,,
ij=1 = 0x;
" du
Y ay—n;+au=y on Iy,
ij=1  0x;

J
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where the boundary I' consists of at most four disjoint parts

r=r,Ur,uryua,

I'y # @ openin ', mes,_; # = 0, I, and I', are either empty or open in I’,
feLyQ), ge Ly(I',), ve Ly(Iy), ue W' Q).

a;; satisfy (1.1), (1.2) and

ae L,(Iy), ofx)=ag>0
almost everywhere on I'y.
Define again

V={vjpe W*Q), v=0o0nTI,}
a(u, v) = Y aija—ugy—dx+ auv dI.
gij=1 0x;0x I'n
The weak solution of the problem (A 1) is a function u € W'-*(Q), satisfying

u—uev,
au, v) = J;ﬁ; dx + jr gvdr +j; yodl' Yve V.

It is well known, that a unique weak solution of the problem (A.1) exists and that
it minimizes the functional

L(v) = La(v, v) — Jﬂfv dx — j.r gvdl — j‘r yv dI’

onthesetu @ V.

Definition Al. Let ve WY/**(I'), v = O on I',. Denote Zv = we V an arbitrary

extension of v into Q (see e.g. [10], p. 103 for the extension). Let M, , = [ L,(?)]" be

the set of vector-functions 1, such that the operator 9 (1), defined through the
relation

G, (A), ) = J. (2 grad w — fw)dx —J‘ gv drl,

Ty

maps M, ,into W~122(\) 1.
Remark 1. From Definition Al it follows that

[<Z 12g(A), 03] < €A) [ollwrz2rny
and the values of ¢, (1) do not depend on the extension Z.

D) W_I/Z'Z(fN) denotes the space of linear continuous functionals on W”Z'Z(FN)
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Remark 2. Consider ¢ € W'?*(I') such that ¢ =0 on I',J I'y, and denote
Z¢ = . According to Definition A1 we have

(A2) G 1 (A), 0> = JL)(A .grad ¢ — fy)dx — Jr godl =0

Consequently, Ae M, , satisfies the following conditions

divi+f=0 in Q
Y Ami=g on I,,
j=1
in a weak sense. In fact, integrating by parts in (A2) formally, we obtain
G, 2, 0> = —J-Q(diV/l + )y dx + J; (X An;—g)edl =0.
g J=1

Definition A2. Let A; , « M, , be the set of all L€ M , such that
G, (A) e Ly(Ty).
Ay, will be called the set of admissible functions.

Next let f and g vary all over the space Ly(Q) and L,(T,), respectively. Denote

(A3) M= U 4,,.
SeL2(92)
geLa(l'g)

Then to every A € M there exists a pair {f(4), g(A)} (f = —divi, g = An;on T,
in a weak sense) such that

G(A) = % y,9(2) € Lo(I'y) -

It is readily seen that M is a linear manifold and G is linear on M.

Let us define a bilinear form

(A4) (2 pu =f Y by dx + J‘ a~ ' G(A) G(p)dr
Q=1

I'y

on M x M, where b;; are the entries of the matrix [a™'] inverse to [a]. Introducing
the norm of graph

1413 =i§1 LA? dx + LN [G()]?dr
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and using the properties of the coefficients a;;, , we are led to the inequalities
(A3) Cilllhe = (3 D = a5 -

The bilinear form is symmetric, continuous and positive definite, hence it represents
a scalar product. The manifold M with the scalar product (A4) will be denoted by H.
Let us define

H, = {llleM,HveV:i,-zZa,-jﬁ(i: 1,2,...,n),
=1 7 0x;

av + G(A) = 0 on I'y},
H, = Ay .
Then we prove the following

Lemma Al.

a) H, and H, are closed subspaces of M.
B) H, L H,.

Proof. Let " € H,, A" — A 1in H. Then we may write (cf. the proof of Lemma 1.1)
[Am = 27|% = ocJL)lgrad (0m — )| dx + o J; (v — v,)2 AT = ¢|v, — v, H1.20)

using the generalized Friedrichs inequality (see [10]). Hence v, — v in ¥, and from
(A5) it follows that

/li=2a,-j—avu—, G(1) = —av, Ae€eH,.
=1 7 0x;
Definitions Al and A2 yield
(A6) (G o(A"), v = J. G(A")vdlN = J A" grad wdx
ry )

forallve WY2XIy),w = ZveV, "€ Ag 0.

If )" - Ain H, by virtue of (A5) 2" — Ain [ L,(Q)]", G(A") » A in L,(I'y). Therefore
(A6) holds even for 4, i.e., L€ Ay o = H,.

Let Ae Hy, p e H,. Then we obtain

(l,u)H:Ju.gradvdx —J
(2]

r

v G(u)dl =0,
as G(u) = Y o(1).

Theorem Al. (Principle of minimum complementary energy). Let u be the weak
solution of (A1). Suppose that A1) € M, and G(A(i)) = y — «il.
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Then the functional
L(A) = A Dy — (4, A(@))y

attains its minimum on the set A; , of admissible functions, if and only if A = /l(u).

Movreover it holds
(A7) —F(Mu)) = L(u) + j fu dx +f gudl' + }f a y?dr.
0 Iy I'n

Proof. First we show that A(u)e A, ,. In fact, from the definition of a weak

solution it follows

(A8) f u) grad v dx +f auv dI’ = ffv dx +J’ gvdr +f yodI’
0 I'n o r, I'n

Vv e V. Consequently, we have

J'()L(u)gradv—fu)dx—f gud]":j (y —aw)vdll =

= (G (M), 03, Gy (Mu) = G(w)) = v — au e Ly(T'y) ,

hence A(u) e A, .
Denote u = it + w, w € V. Then

(A9) Mw)eH, .
Indeed, insert A(u) = A(#@) + A(w) into (A8), and denote by (i) = f(A(i)), g(a) =
= g(A(@)) the functions, corresponding with A(ii) € M (see Definition A2). Thus we

have

(A10) fg(,l(a)) grad v 4 A(i1) grad v) dx + J; av(it + w)dl' =

=ffvdx +J gvdl’ +f yodrI .
2 Iy Iy

and Definition of G(A(#)) yields that

L,l(a) grad vdx = (G(A(i)), v + f Qf(a) vdx +f vg(a)dr.

Iq

Substituting into (A10), we obtain
f [Aw)grad v — (f — f(i1) v] dx —f [g — g(@)]vdlr +
2 Iy

+ (G(A@)), vy =f (y — ait —aw)vdl, VoeV.

I'n
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As G(A(i)) = y — ait € Ly(I'y) we deduce

(@) = ¥y, 5(Aw)) = 0w,

where
f1 =f—f('7)’ g1 =4 -—g(ﬁ).

Consequently, A(w) belongs to H,.
Next let A€ A ,. Then

(A11) 2 - Mu)eH, .

In fact, subtracting the relations of Definition Al for A and /l(u), we come to the
following equation

j (1= ) grad wdx = < 0) = T (i) 0> = (Doofh — M) 0>

Consequently, %, o(A — A(u)) € Ly(Iy),, 4 — Mu)e Ay, .

The rest of the proof is the same as that of Theorem 1.1. being based on (A9),
(A11) and the orthogonality (8) of Lemma Al. Q.E.D.

Following the line of thought of Section 1, we can introduce an equivalent varia-
tional problem (1.11) and establish an analogue of Theorem 1.2. The only change is
that the norms ”/1” should be replaced by ”AHM Using the subspaces /V,,(Q), we set
again V, = {X|Xe./V,,(Q),x.n =0onTl,}, he(0,1).

Then V, € H, and an exact analogue of Theorem 3.1 holds, as

P e[C(Q)PPNH,= Gy’ = x°.neC¥aja;,,), Vaja;,,ely,
[ = () 0 sy = h?[1% 2@

can be proved easily.

Acknowledgments. The authors are indebted to Doc. J. Necas, DrSc. for some
valuable advices concerning the approach used in this Appendix.
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Souhrn

KONVERGENCE METODY KONECNYCH PRVKU ZALOZENE
NA DUALNI VARIACNI FORMULACI

JAROSLAV HASLINGER, IVAN HLAVACEK

Je studovan ,,rovnovazny‘‘ model metody koneénych prvka pfi aplikaci po Castech
(trojuhelnicich) linearnich polynomu na fe$eni kombinované okrajové ulohy v roving
pro eliptickou diferencidlni rovnici druhého fadu. Dokazuje se, Ze je-li feSeni dost
hladké, pfibliznd feSeni konverguji s rychlosti h?.
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