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SOME LIMIT PROPERTIES OF THE BEST DETERMINED TERMS
METHOD

Jiki NEUBERG

(Received February 28, 1974)

A very effective method for solving Fredholm integral equations of the first kind
is so called method of the best determined terms. It was proposed by R. J. Hanson
[2] and further ellaborated for a certain type of problems by J. M. Varah [3]. The
effectivity of the method in a natural way depends on the criteria for the choice for
the approximate solutions. However appropriate criteria are still needed for appli-
cability of the method. In this contribution we propose a general criterion for the
choice of approximate solutions, analyse its properties and present some estimates
of the errors for the corresponding approximate solutions. Some other criteria for
the choice of approximate solutions are presented in [4, ] whereina stochastic approach
is used.

Let us consider the following linear system
(1.1) Kf=g,

where fe R", g € R" and K is a fixed m X n matrix with real elements. In practical
calculations it is quite standard that right hand side in (1.1) is not known exactly;
we are given a vector g + dg, such that ”()g” < 4, where 4 is an a priori given bound
and " . ” is a suitable norm in R™ .We also assume that the matrix K is non well con-
ditioned, it may be singular if m = n.

According to [1, p. 5] there exist unitary matrices U and V and a “diagonal”
matrix D = (dj) such that

K=UTDV,
where dj, = 0if j + kand d;; =0, 20,j = 1,...,r = min (m, n). With no loss in
generality we assume that

6y =...20,.
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Let us set

Then the system (1.1) can be written as

(1.2) Du=g¢.

2.

First, we study the system (1.2). Let us denote by 9 the set of all solutions of this
system. Let M be non empty M =+ 0. It is easy to see that M is closed and convex.
This justifies the correctness of the following

Definition. A vector u, € M is called normal solution to (1.2) if
ol = min {0}

Remark. If the norm in R" is uniformly convex, then the normal solution is de-
termined uniquely. This is the case of the euclidean norm.

In what follows the norm ” . H means the euclidean norm in both spaces R” and R™.

An explite form of the normal solution is given by

u0=D+(p)

where D* denotes the generalized inverse matrix to D (see [6, p. 1]).

Let 4 > 0 be a fixed positive number and let 5g € R™ be such that |5g| < 4.
We consider now the system

Kf =g +dg,
or else
(2.1) Du = ¢ + ¢,
where d¢p = U dg.
Defining
0 if 0;=0
oF
J —if ;>0
9
and

k
uf =y oj(p; + 00;) 8,

Jj=1

where @ = (@4, ..., @), 00 = (60, ..., 5¢,),
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we let
N={u®:k=1,..,r},
where
u® = w®, .., ul).

3.

Our aim is to show some limit properties and error estimates for [u, — u®],
k=1,..,r.
Since

r
. +
ug = ). 0j pjej
i=t

and
k
u® =Y oi(p; + 00)) ¢,

=1
where ¢; = (0, ..., 1, ..., 0), we easily derive that
k r
(3.1) luo — u®@|? =¥ (7 60))* + 3 (o7 0,)*.
j=1 j=k+1
Lemma 1. Let T > 0 and 4 € (0, T].
Then |ug — u®|* < 47 2 (6;)* and, consequently,
i=1
lim u® = u,,
A4-0

where s is such that g # 0, while ¢,y = ... = @,y =

It

Proof. Since U is unitary, we have that [[d¢||
Then (3.1) implies that

Jog] = 4.

IIA

s
luo — u®|? = ¥ (o] d9,)
=1

¥ (o})
j=1
One, however, meets the situation, where
min {{lug — u®| 1k =1,..,r} = |lu—u?|,

with some [ essentially smaller than r, as usual.

Because of our assumption concerning the sequence o; the first summand in the
right hand side in (3.1) is an nondecreasing function of k and the second one —
a nonincreasing function of k respectively. Another weakness of the approximations
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u® is that this approximation is unadequate if the admissible error bound is relatively
large. Thus, some other way has to be found how to get more suitable approximation
to the normal solution.

Let o(k) = Huo-— u®|, k =1,...,r. As we already mentioned, this function as-
sumes its minimal value at certain positive integer I, the determining of it is a difficult
problem, because the vectors ¢ and d¢ are unknown in general. To avoiding this
difficulty we proceed as follows.

We define y as a function of a discrete variable k = 1, ..., r + 1 as

. 7(K) = [Du® = (¢ + o)
if k=1,...,rand
Wr + 1) = [ Dug — (@ + 30)| .

Lemma 2. The function y is a nonincreasing function for k =1, ...,r and
v(r + 1) = [dg].

Proof. Let | £k <r — 1. Then
yk + 1) = [ Du®+D — ¢ — S| =
= [DD*" (¢ + 00) — (¢ + d9)| =

< [DD®(g + 59) — (¢ + d0)|| = y(k),

where the n x m matrix D® = (d'%) defined as follows:

d}",‘:o for j#tand j=1t>k
and
({;‘?:()’; for j=1,..., k.

The remaining part of the lemma is an immediate consequence of the relation
Duy = ¢. The lemma is completely prooved.

Since an upper bound for [[d¢| is available (|d¢| < 4) and since the equality
y(r + 1) = 4 cannot be excluded in general, it is quite suitable to choose an index
k(4)e{1,....r} such that p(k(4)) < 4 and such that y(p) < 4, p + k(4), pe
€{l,..., r}, implies that p > k(4).

Definition. The vector u*“) where k(4) is defined above, is called the solution
of the first kind with respect to the system (2.1).
An important property of the solution of the first kind is described in the following.

Theorem 1. Let u, be the normal solution to (1.2) and u®®’ the solution of the

first kind to (2.1), then the following limit relation holds:

lim u®*@ =y, .
40+
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Proof. Obviously, y(k(4)) = | Dutkw)» _

o — o0l and thus,

| Du™®” — Dug| = [(Du*n _ ¢ — 59) — (Dug — ¢ — d9)| <

=4+ H(S(p” <24.
Further,
Du*® — Duy = (jkan _ 1) + 1% 50,

where the elements i;, of the m X m matrix I*40) are defined as follows:

iy=0 for j*1,j1t=1, wym, and j=1> k(4),
and
=1 for j=1, . ., k4).
It follows that

(32) [ = 1%} o] < | Du» — py | + 1050 < 34.

Let us set ky = lim inf k(4), and k* = lim sup k(4). Let se{1,...,r} fulfil the
A-0+ A-0 4 :

conditions ¢, # 0, and ¢, = ... = ¢, = (. Then we have that

(3.3) ke =5 = |*.

To prove (3.3) we assume that the contrary holds. Thus, let ky #+ s. As first, let
ks < s. The quantity R(3) = inf {k(4): 0 < 4 < &) has the property that

l(1 = x5

the last result being implied by (3.2). Thus,

A

30,

lim ||(I — 1O | = 0.
-0+

Since, obviously, lim R(é) = k, and according to our assumption

620+
[ —1%) o],

we obtain a contradiction. Thus, k, = s. Further, it follows that

lIA

0 < [l

lim ”Du(” — q)“ = lim ” D[DW¢] — (p'[ =0
4-0+ 4-0+

because of the solvability of the system. Consequently, k, < s, and finally k, = s.
In the same manner, one can show the validity of the relation k* = s. It follows that
there exist the limit lim k(4) and

4-0 +

lim k(4) = 5.

420+
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This implies that
lim u®*@) = lim u®
4-0+ A0+

and according to lemma |, the validity of the assertion in our Theorem. This com-
pletes the proof.

W e shall derive some error estimates for the solution of the first kind.

Theorem 2. For the normal solution u, and the solution of the first kind u®“»
the following relations hold:

r
[u® @ — ug|* < max {@?:j=1,...m} Y (of) +
J=k(@+1
k(A)
'
i
f=

Proof. The validity of the relation shown is a consequence of (3.1).
This estimate is worth while whenever the data concerning the vector ¢ are avail-
ables. In the opposite case we have to accept the following less satisfactory result.

Theorem 3. With the same notation as in Theorem 2 we have

(3.4) o = u¥ | < (5 (o7 (o, + b))% +

j=k(2)+1

+ 43 (0 ).

Proof. We easily verify that

r
”u(k(A)) _ “o“ - Hu(k(zm -y o—;“ dpje; — ug + io‘fé(pjej“ =
i=1 i=t

= X 1“;(% +0¢;) e + ”,21‘7;5‘1’1'91“ ,
5

J=k(4) +

and thus, (3.4).

Remark. Since f = VTu, where V is a unitary matrix, similar results as those
shown for the systems (1.2) and (2.1), are valid for systems (1.1) and

(3.5 Kf =g + 6g

as well, it one modifies the definitions of the concept of a normal solution and a
solution of the first kind to (1.1) and (3.5).

The proposed criterion has already been tested on some examples of certain inverse
problems of the Spectroscopic diagnostics of thin plane sources. The results will be
published elsewhere, see [5].
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Souhrn

NEKTERE LIMITNI VLASTNOSTI METODY
NEJLEPE URCENYCH TERMU

Jiki NEUBERG

Tento Cldnek se zabyvd vlastnostmi jednoho vyb&rového kritéria pro metodu nej-
1épe uréenych termi (BDT). ReSeni tlohy Kx = y + ¢ kde K je matice m x n
m
(3patné podminénd), x € R", y, ¢ € R™, pficemz Y & < 4%, kde 4 > 0 je dand kon-
i=1
stanta, jest obtizné. Metodou BDT stanovime posloupnost vektorfi x(), ..., x(™ntmm,
z nichZ pak ndsledujicim vyb&rovym kritériem ur¢ime aproximaci normdiniho feSeni
soustavy Kx = y. Tato aproximace x**’ jest definovdna:

() [Kx® = +)]* = 42

(ii) Je-li |[KxY' — (y + ¢)[|* = 4% pak j = k.
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