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SVAZEK 21 (1976) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

ON ESTIMATION OF RELIABILITY IN THE EXPONENTIAL CASE 

JAN HURT 

(Received December 17, 1975) 

1. INTRODUCTION 

Let us consider the family of exponential probability distributions with density 
functions 

(1) f(x;0) = c9" 1 exp(-r?~ 1 x) , for x > 0 

= 0 otherwise, 

where 0 is an unknown parameter. Let c be a fixed positive number. If the random 
variable X is distributed according to the density (1), then 

(2) Pe(X > c) = Qxp(-0~lc). 

In terms of reliability theory, X means the time to failure of a system, whereas the 
quantity (2), called often reliability, means the probability that the system will 
operate at time c. 

In this paper, we will study four different estimates of (2) based on a random 
sample Xl9...,Xn from the parent population (l). The best unbiased estimator 
of (2) was derived by Pugh [4]. With the notation Tn = n~l ^Xj , the best unbiased 
estimator may be written as 

« i = ( l - ~ ) " ~ ' if Tn>cln, 

(3) 
= 0 otherwise. 

Using the well-known fact that Tn is the maximum likelihood estimator of 0, we get 
the frequently used maximum likelihood estimator of (2), 

(4) R 2 = e X p ( - c T ; 1 ) ; 
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this estimate is not unbiased, in general. 

Suppose now that the parameter X = 0~l is a random variable with the a priori 

distribution of the gamma-type with parameters a, p, i.e., with the density function 

g(X) = a ^ ~ V a A / F ( p ) if X > 0 , 

= 0 otherwise . 

Then the a posteriori distribution is also of the gamma-type, with parameters a + 

+ Z A " P + n> * e-' w * t n * n e density function 

^ | x 1 , . . . , x , , ) = (a + ^ f ) P + M ^ + " " 1 x 

x exp [-A(a + IX)]/F(p + w ) i f A > ° > 

= 0 otherwise. 

The Bayes estimate of (2) can then be obtained as the expectation of e~lc with respect 

to the a posteriori distribution, 

/* O0 

Rз = e~kcgЏ\xu...,x,)åX. 

After a short calculation we get 

\~(n + p) 

(5) -K(* + £ Л 
Finally, we can consider a naive estimator of the probability (2), given by the fre­

quency of the event {Xt > c}. Defining Zl9..., Zn by 

Zi = 1 if Xi > c , 

= 0 otherwise, 

the naive estimator of (2) can be written as 

R4 = «- iX z-

In the following we shall investigate asymptotic properties of all the estimators, 

defined above. 

2. ASYMPTOTIC EXPANSIONS OF MOMENTS 

We begin with a theorem which will enable us to find asymptotic expansions 

for expected values, variances, and mean squared errors of the estimates introduced 

in Section 1. This theorem is of practical interest by itself. 
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Theorem 1. Let g = g(t, n) be a function defined on Et x N. Assume that for all 
n, g admits the continuous (q + l)-st derivative, q ^ 1, for t e[9 — 3, 0 + O*] 
where O* > 0 is independent of n. Suppose that g is bounded on Ei x N and all 
the derivatives g', ..., g(q+X) are bounded on [0 — 6,0 + O"]. Let {Tn} be a sequence 
of statistics with finite moments up to the order 2(q + i) such that E\Tn — 0 |2 ( , + 1)-= 
= 0(n~(q+l)). Then 

(6) E[g(Tn, n) - g(0, *)] = £ I ( ^ ^ ) E(Tn - 0)J + 0(n'(q+^), 

and 

(7) var [g(Tn, n) - g(0, n)] = 

1 1 (d*g(t, n)\ (dkg(t, n) 

'I-Í k-ij! k\ \ ôtJ ) , 2,k 

j+k%q+l 

x cov [(T. - 6)\ (Tn - 6f] + 0(n-(" + ^2) . 

Proof . The proof is given in [3]. 

R e m a r k 1. The assumptions of the Theorem are not too limiting. They are fulfilled, 
e.g., for sample moments. This follows, for s even, from [1] p. 346 and for s odd by 
the use the well-known inequality yl

s
/s = yl+\+1) where ys is the s-th absoute moment. 

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATES 

First we prove the asymptotic normality of the proposed estimators. Throughout 
the paper we shall denote x = 0~ lc , ft = 0~l(x . 

Theorem 2. For i = 1, 2, 3 

J(n)(Ri-e-')XN(0,x2e-2*) 

holds. For R4 

V(n) (R4 - e-") X N(0, e~%l - e~*)) . 

Proof. For t Si 0 define 

(8) a1(f,«) = ( l - - Y if t> c\n, 

= 0 otherwise, 

(9) g2(t, n) = e x p ( - c r 1 ) , 

(io) g3(t'n)=[i+i{t+tf1Y+P)' 
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]-|-(л + p + l ) 
1 + ' 

Without loss of generality we may assume that 9 > cjn so that the function # x(t, n) 

admits continuous derivatives in some neighbourhood of the point 9. By the symbols 

g'h g-\ ... we shall mean the corresponding derivatives with respect to t. After differen­

tiating of (8), (9), (10) we obtain 

(11) g\{U n) = ct~2{i - l/n)(l - cr'in)"-2 , 

(12) 9i{Un) = c t - 2 e x p ( - c t - 1 ) , 

n\ n) \ 

From these formulas it follows that for fixed t 

(14) limg f(t, n) = r t - 2 exp ( - c t - 1 ) for / = 1,2,3. 
n~* oo 

We have var T„ = <92/ri. From the central limit theorem we deduce 

(15) J(n)(Tn-0)-^N(0,e2). 

Now, we utilize (6a. 2.5) in [5] and obtain 

V(n) [g2(Tn, n) - g2(0, «)] ^+ N(0, x 2

e - 2 " ) . 

It is easy to show 

(1 - c t - 1 ) " - 2 = e x p ( - c t - 1 ) [ l + O ^ - 1 ) ] , 

hence 

v

/ ( n ) [ ^ 1 ( t , n ) - e x p ( - c t - 1 ) ] - > 0 

for n -• oo. A similar result is true for ^ 3 , and therefore by using (x), (b) in [5], 

p. 122 we get the assertion of the theorem. The case of R4 is straightforward. Q.E.D. 

R e m a r k 3. It follows from Theorem 2 that the estimators R2, R3 are weakly 

asymptotically efficient, i.e. the variances of their asymptotic distributions are the 

same as the variance of the asymptotic distribution of the best unbiased estimator. 

R e m a r k 4. The estimator R4 is not weakly asymptotically efficient because of the 

fact 

V 2 0 ~ 2 * 

< 1 
e~x{ì - e~x) 

if x > 0. The last inequality is equivalent to the inequality ex — (1 + x2) > 0, x > 0, 
which may be easily verified. 
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var 

v a r K j — 

Theorem 3. For the expected values, variances, and expected squared errors 
of the estimators R,, R2, R3, we have 

£R , = c"x , 

£R2 = e~* |"l + — (x - 2)1 + 0(n-2), 

£R3 = e-* f"l + - (fi + x - p - 1)1 + 0(n~2) , 

R2= ^e-
2"\\+~ [3(x - 2)2 - 4]1 + 0(n-5/2) , 

n I 2n j 

var R3 = — r2x \l + — [5(x - 2)2 + 4(p - 3) -
n ( 2n 

-4x(p - 1) + 4£(x - 2) ] | + 0(n~5/2), 

£(R, - e-*)2 = varR! , 

E(R2 - e-*)2 = ^ e - | l + - ^ | j ( x " 2)2 ~ 4 + 0 ( „ - " 2 ) , 

£(R3 - c-")2 = - c-2* J l + - 1 [5(x - 2)2 + 4(p - 3) -
n I In 

- 4x(p - 1) + 4p(x - 2) + 2(x + fi - p - 1)2]J + O(tT5/2) . 

Proof. The asymptotic expansions will be deduced from Theorem 1 if we put 
q = 3. For this purpose we need derivatives of gh moments E(Tn - 6)s, and 
cov[(T„ - 0)K (Tn - 0)k~\ which are listed bellow (for the first derivatives see (11), 
(12), (13)): 

g'i(t,n) = c r 3 ( l - l/n)(l - cr'/n)"-3 (ct'1 - 2) 

g";(t, n) = c r 4 ( l - l/n)(l - ct'1 jn)n-A[(crx - 2) (cr x - 3) + 

+ cr^cr^n - l)] 

gl(t,n) = c / - 3 e x p ( - c r 1 ) ( c r 1 - 2) 

267 



ffj(í,it) = cr4exp(-cr1)[(cr1 - 2)(cr' - 3) - crl] 

g'3(t, n) = c(t + ajn)-3 (1 + p\n) [1 + cn~l(t + a / n ) - 1 ] - ( n + p + 2 ) x 

x [c(í + «/»)-' (1 + (p - l)/n) - 2] 

g'Z(t, n) = c(ř + a / n ) " 4 ( l + p/n) [ l + c n _ , ( í + a / n ) - ' ] - ( n + p + 3 ) x 

x {[c(< + a / n ) - 1 ( l + ( p - l ) / n ) - 2 ] x 

x [c(í + a/n)" 1 (1 + (p - l)/n) - 3] - c(t + ajn)'1 x 

x (1 + (p - l)/n) [1 + cn~l(t + ajn)'1]} 

E(T„-Of = 0 2 n - 1 

E(T„ - 0)3 = 2 0 3 n " 2 

E(Tn - 0) 4 = 30 4 n" 2 ( l + 2/n) 

c o v [ ( T „ - 0 ) , ( T „ - 0 ) ] = 0 2 n - 1 

c o v [ ( T „ - 0 ) , (T„ - 0) 2] = 2 0 3 n - 2 

cov [(7; - 0), (T„ - 0) 3] = 3 0 4 n " 2 ( l + 2/n) 

cov [(T„ - 0)2, (T„ - 0) 2] = 20 4 n- 2 ( l + 3/n) . 

Now we are in the position to utilize formula (6). For the maximum likelihood 
estimator R2 we have 

ER2 = e~x + i c0~ 3 e-"(x - 2) 02/n + 0(n'2) = 

= c-x|"l + — ( x - 2 ) l + 0(n'2). 

Further, 

[1 + cn-\e + a / n ) - 1 ] - " = e~x l~l + — (x + /?)! + 0(n~2) 

so that 

ER3 = [1 + cn-\9 + a / n ) - , ] - ( n + p ) + \c(0 + a/nY3 (1 + pjn) x 

x [1 + cn-\d + a / n ) - , ] - ( n + p + 2 ) x 

x [c(0 + a / n ) ' 1 (1 + (p - l)/n) - 2] 02/n + 0(n'2) = 

= c - x [ l + - ( / ? + x - p - 1)] + 0(n'2). 
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We continue by deriving the expansions for variances. For var Rt by using 
(1 - x\n)2n = e~2x[l - x2\n + 0(n~2)] we have 

x2 

var Ri = — e~2x(\ - 2\n) (1 - x2/n) (1 + 4x\n) + 
n 

+ - * - e"2*(x - 2) + ~ e~2x[(x -2)(x~3)~x] + 
n" n2 

+ — e~2x(x - 2)2 = — e-2x[l + — (x - 2)2] + O(n-5/2) . 
2n2 n 2n 

From the last expression the assertion of Theorem easily follows. The calculation 
of var R2 is straightforward and therefore may be omitted. During the calculation 
of var R3 we frequently use the fact 

[1 + cn~\t + a/n)" 1]" ("+* ) = e~x[l + xn~\p + x\2 - k)] + 0(n~2) . 

We have 

%2 

varK3 = — e~2*(l - 4p\n)(l + 2p\n) x 
n 

x [1 + xn~\2p + *)] [1 - 2(p + 1) x/n] + 

+
 lyt e-2«(x _ 2 ) + ~ e~2*[(x - 2) (x - 3) - x] + 

n2 n2 

+ ^-e-
2x(x-2)2 + 0 ( n - 5 / 2 ) . 

2w2 

Now the expression given in Theorem can be directly obtained. 
The basic observation required for the calculation of the expected squared errors 

s the identity 

(16) E[g(Tn, n) - w(0)]2 = var [g(Tn, n) - g(9, n)] + [Eg(Tn, n) - w(0)]2 . 

Expansions for the expected squared errors of Rt follow immediately after substituting 
ERi and v a r / ^ to (16). Q. E. D. 

4. DEFICIENCY 

Given the asymptotic expansions for expected squared errors, one can see that all 
the estimators Rl9 K2, and K3 are (strongly) asymptotically efficient. For a more 
detailed comparison of the above estimators we use deficiency (see [2]). 
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Assume that the expected squared error of the estimator A based on n observa­
tions is VA

9 that of B is V*. Then the deficiency of B with respect to A is the number 
d„ for which 

yB - yA 

vn + dtl
 v n ' 

Roughly speaking, d„ means the number of additional observations which must be 
performed to obtain the same value of the expected squared error for both estimators. 
Usually the asymptotic deficiency for w —> oo is considered. In loc. cit. the authors 
have shown that if 

|/? = - + -T7 +o(n-<'+1>) 
nr nr+1 ' 

and 

KB-1
r + -+ì+o(n-^^) 
n n 

then the asymptotic deficiency of B with respect to A is 

(17) dB , = ^ . 
yr 

For our purposes, let us denote the asymptotic deficiency of Rt with respect to 
Rj by dij9 ij = 1,2, 3. Given these preliminaries, the following theorem may be 
proved. 

Theorem 4* The deficiencies satisfy 

d21 = l-(x - 2)2 - 2 

d31 -= 2(x - 2)2 + 2(p - 3) - 2x(p - 1) + 2fi(x - 2) + (x + fi - p - 1)2 

d32 = i(x - 2)2 + 2(p - 2) - 2x(p - 1) + 2p(x - 2) + (x + JS - p - l )2 . 

Proof . We derive only d21 because the calculation of the remaining deficiencies 
is quite analogous. We have r = 1, y = x2e~2x

9 b = %y[j(x — 2)2 — 4], a = 
= iy(x - 2)2 so that d21 = | ( x - 2)2 - 2. Q. E. D. 

5. CONCLUSIONS 

First we examine the bias of K2, R3. Theorem 3 implies that both of the estimators 
K2, R3, are biased, in general. For maximum likelihood estimator (MLE) R2 the 
bias increases with increasing x. The only case when R2 offers an "almost" un-
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biased estimate (up to the order 0(n" 2 ) ) is if x = 2. The bias of R3 depends su bstan-

tially on the expression [H + x — p — 1 which may be of any sign and of any magni­

tude. If the a priori choice of a, p is successful then the bias of R3 is approximately 

xn~ *(x — 1). Thus the bias increases again if x increases. 

From the formulas for deficiencies we can see that MLE R2 is a little bit better 

than best unbiased estimator (BUE) R{ for x close to 2. This is the case when we 

estimate P(X > c) for c comparable with the double of the expected time to failure 

9, i.e. x = cjO « 2. For large x, however, BUE is superior. The comparison of the 

Bayes estimator R3 and BUE Rj is not quite simple because d 3 1 dependens on three 

parameters, x, />, and p. After denoting A = p — p, let us express 

d 3 1 = 3x2 + 4x(A - 2) + A(A - 6) - 2p + 3 . 

The difference A = a((9_1 — p/a) represents the difference between the actual value 

0~l and the mean pjcc of the a priori distribution. The first insight may be that for 

large p the deficiency is favourable for the Bayes estimator. This is true only when 

p/a is chosen sufficiently close to theoretical 0~K In the opposite case for large p 

and a of the moderate size, IAI « a « p so that d 3 I « p2. Hence we must be careful 

if handling the a priori parameters a and p. For illustration, some d 3 1 ' s for different 

values x, A are given in Table 1. For the comparison of R3 and R2, similar conclusions 

remain true as for the comparison of R3 and Rj. 

TABLE 1 

Quantities d*j d3 1 + 2/; 

Л 

0-25 

!" 
І — 5 
í 

51-19 

— 2 1 0 1 

- 2-81 

2 

- 4 - 8 1 

5 

1-19 0-25 

!" 
І — 5 
í 

51-19 1519 7-19 119 

1 

- 2-81 

2 

- 4 - 8 1 

5 

1-19 

0-50 1 44-75 11-75 4-75 - 0-25 - 3 - 2 5 - 4 - 2 5 4-75 

1 0 0 І 33-00 6 0 0 100 - 2 0 0 - 3 00 - 2 0 0 13-00 

2-00 1400 - 1 00 - 2 0 0 - 1 0 0 2 0 0 7 0 0 3 4 0 0 

3-00 1-00 2 0 0 100 6-00 13-00 22-00 61-00 

From the above discussion, we can conclude that BUE is generally recommendable. 

Comparing BUE with MLE, the loss of 2 observations in the worst case is not 

substantial. Comparing BUE with the Bayes estimator, the regions of preferencies 

of one or another are rather complex sets in the space of parameters x, /?, p. 
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S o u h r n 

O ODHADECH SPOLEHLIVOSTI V EXPONENCIÁLNÍM PŘÍPADĚ 
JAN HURT 

V článku jsou studovány čtyři odhady spolehlivosti v exponenciálním rozdělení, 
a to nejlepší nestranný, maximálně věrohodný, bayesovský a tzv. naivní. Je dokázána 
jejich asymptotická normalita a odvozeny asymptotické rozvoje střední hodnoty 
a střední čtvercové odchylky odhadů. Tři efíicientní odhady (nejlepší nestranný, 
maximálně věrohodný a bayerovský) jsou studovány z hlediska deficience. 
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