## Aplikace matematiky

## Jan Hurt

On estimation of reliability in the exponential case

Aplikace matematiky, Vol. 21 (1976), No. 4, 263-272

Persistent URL: http://dml.cz/dmlcz/103646

## Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# ON ESTIMATION OF RELIABILITY IN THE EXPONENTIAL CASE 

## Jan Hurt

(Received December 17, 1975)

## 1. INTRODUCTION

Let us consider the family of exponential probability distributions with density functions

$$
\begin{align*}
f(x ; \theta) & =\theta^{-1} \exp \left(-\theta^{-1} x\right), & & \text { for } \quad x>0  \tag{1}\\
& =0 & & \text { otherwise },
\end{align*}
$$

where $\theta$ is an unknown parameter. Let $c$ be a fixed positive number. If the random variable $X$ is distributed according to the density (1), then

$$
\begin{equation*}
P_{\theta}(X>c)=\exp \left(-\theta^{-1} c\right) \tag{2}
\end{equation*}
$$

In terms of reliability theory, $X$ means the time to failure of a system, whereas the quantity (2), called often reliability, means the probability that the system will operate at time $c$.

In this paper, we will study four different estimates of (2) based on a random sample $X_{1}, \ldots, X_{n}$ from the parent population (1). The best unbiased estimator of (2) was derived by Pugh [4]. With the notation $T_{n}=n^{-1} \sum X_{i}$, the best unbiased estimator may be written as

$$
\begin{equation*}
R_{1}=\left(1-\frac{c}{n T_{n}}\right)^{n-1} \quad \text { if } \quad T_{n}>c / n \tag{3}
\end{equation*}
$$

$$
=0 \quad \text { otherwise }
$$

Using the well-known fact that $T_{n}$ is the maximum likelihood estimator of $\theta$, we get the frequently used maximum likelihood estimator of (2),

$$
\begin{equation*}
R_{2}=\exp \left(-c T_{n}^{-1}\right) \tag{4}
\end{equation*}
$$

this estimate is not unbiased, in general.
Suppose now that the parameter $\lambda=\theta^{-1}$ is a random variable with the a priori distribution of the gamma-type with parameters $\alpha$, $p$, i.e., with the density function

$$
\begin{aligned}
g(\lambda) & =\alpha^{p} \lambda^{p-1} e^{-\alpha \lambda} / \Gamma(p) & & \text { if } \lambda>0, \\
& =0 & & \text { otherwise } .
\end{aligned}
$$

Then the a posteriori distribution is also of the gamma-type, with parameters $\alpha+$ $+\sum x_{i}, p+n$, i.e., with the density function

$$
\begin{gathered}
g\left(\lambda \mid x_{1}, \ldots, x_{n}\right)=\left(\alpha+\sum x_{i}\right)^{p+n} \lambda^{p+n-1} \times \\
\times \exp \left[-\lambda\left(\alpha+\sum x_{i}\right)\right] / \Gamma(p+n) \quad \text { if } \quad \lambda>0, \\
=0 \quad \text { otherwise } .
\end{gathered}
$$

The Bayes estimate of (2) can then be obtained as the expectation of $e^{-i c}$ with respect to the a posteriori distribution,

$$
R_{3}=\int_{0}^{\infty} e^{-\lambda c} g\left(\lambda \mid x_{1}, \ldots, x_{n}\right) \mathrm{d} \lambda
$$

After a short calculation we get

$$
\begin{equation*}
R_{3}=\left[1+\frac{c}{n}\left(T_{n}+\frac{\alpha}{n}\right)^{-1}\right]^{-(n+p)} \tag{5}
\end{equation*}
$$

Finally, we can consider a naive estimator of the probability (2), given by the frequency of the event $\left\{X_{i}>c\right\}$. Defining $Z_{1}, \ldots, Z_{n}$ by

$$
\begin{aligned}
Z_{i} & =1 \quad \text { if } \quad X_{i}>c \\
& =0 \quad \text { otherwise },
\end{aligned}
$$

the naive estimator of (2) can be written as

$$
R_{4}=n^{-1} \sum Z_{i}
$$

In the following we shall investigate asymptotic properties of all the estimators, defined above.

## 2. ASYMPTOTIC EXPANSIONS OF MOMENTS

We begin with a theorem which will enable us to find asymptotic expansions for expected values, variances, and mean squared errors of the estimates introduced in Section 1. This theorem is of practical interest by itself.

Theorem 1. Let $g=g(t, n)$ be a function defined on $E_{1} \times N$. Assume that for all $n, g$ admits the continuous $(q+1)$-st derivative, $q \geqq 1$, for $t \in[\theta-\delta, \theta+\delta]$ where $\delta>0$ is independent of $n$. Suppose that $g$ is bounded on $E_{1} \times N$ and all the derivatives $g^{\prime}, \ldots, g^{(q+1)}$ are bounded on $[\theta-\delta, \theta+\delta]$. Let $\left\{T_{n}\right\}$ be a sequence of statistics with finite moments up to the order $2(q+1)$ such that $E\left|T_{n}-\theta\right|^{2(q+1)}=$ $=O\left(n^{-(q+1)}\right)$. Then
(6) $E\left[g\left(T_{n}, n\right)-g(\theta, n)\right]=\sum_{j=1}^{q} \frac{1}{j!}\left(\frac{\partial^{j} g(t, n)}{\partial t^{j}}\right)_{t=\theta} E\left(T_{n}-\theta\right)^{j}+O\left(n^{-(q+1) / 2}\right)$,
and

$$
\begin{gather*}
\operatorname{var}\left[g\left(T_{n}, n\right)-g(\theta, n)\right]=  \tag{7}\\
=\sum_{\substack{j=1 \\
j+k \leqq q+1}}^{q} \sum_{k=1}^{q} \frac{1}{j!} \frac{1}{k!}\left(\frac{\partial^{j} g(t, n)}{\partial t^{j}}\right)_{t=\theta}\left(\frac{\partial^{k} g(t, n)}{\partial t^{k}}\right)_{t=\theta} \times \\
\times \operatorname{cov}\left[\left(T_{n}-\theta\right)^{j},\left(T_{n}-\theta\right)^{k}\right]+O\left(n^{-(q+2) / 2}\right) .
\end{gather*}
$$

Proof. The proof is given in [3].
Remark 1. The assumptions of the Theorem are not too limiting. They are fulfilled, e.g., for sample moments. This follows, for $s$ even, from [1] p. 346 and for $s$ odd by the use the well-known inequality $\gamma_{s}^{1 / s}=\gamma_{s+1}^{1 /(s+1)}$ where $\gamma_{s}$ is the $s$-th absoute moment.

## 3. ASYMPTOTIC PROPERTIES OF THE ESTIMATES

First we prove the asymptotic normality of the proposed estimators. Throughout the paper we shall denote $x=\theta^{-1} c, \beta=\theta^{-1} \alpha$.

Theorem 2. For $i=1,2,3$

$$
\sqrt{ }(n)\left(R_{i}-e^{-x}\right) \xrightarrow{L} N\left(0, \varkappa^{2} e^{-2 \chi}\right)
$$

holds. For $R_{4}$

$$
\sqrt{ }(n)\left(R_{4}-e^{-x}\right) \xrightarrow{L} N\left(0, e^{-x}\left(1-e^{-x}\right)\right) .
$$

Proof. For $t \geqq 0$ define

$$
\begin{array}{rlrl}
g_{1}(t, n) & =\left(1-\frac{c}{t n}\right)^{n-1} & \text { if } \quad t>c / n  \tag{8}\\
& =0 & & \text { otherwise },
\end{array}
$$

$$
\begin{equation*}
g_{2}(t, n)=\exp \left(-c t^{-1}\right), \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
g_{3}(t, n)=\left[1+\frac{c}{n}\left(t+\frac{\alpha}{n}\right)^{-1}\right]^{-(n+p)} \tag{10}
\end{equation*}
$$

Without loss of generality we may assume that $\theta>c / n$ so that the function $g_{1}(t, n)$ admits continuous derivatives in some neighbourhood of the point $\theta$. By the symbols $g_{i}^{\prime}, g_{i}^{\prime \prime}, \ldots$ we shall mean the corresponding derivatives with respect to $t$. After differentiating of (8), (9), (10) we obtain

$$
\begin{align*}
& g_{1}^{\prime}(t, n)=c t^{-2}(1-1 / n)\left(1-c t^{-1} / n\right)^{n-2}  \tag{11}\\
& g_{2}^{\prime}(t, n)=c t^{-2} \exp \left(-c t^{-1}\right)  \tag{12}\\
& g_{3}^{\prime}(t, n)=c\left(t+\frac{\alpha}{n}\right)^{-2}\left(1+\frac{p}{n}\right)\left[1+\frac{c}{n}\left(t+\frac{\alpha}{n}\right)^{-1}\right]^{-(n+p+1)} \tag{13}
\end{align*}
$$

From these formulas it follows that for fixed $t$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{i}(t, n)=c t^{-2} \exp \left(-c t^{-1}\right) \text { for } i=1,2,3 \tag{14}
\end{equation*}
$$

We have var $T_{n}=\theta^{2} / n$. From the central limit theorem we deduce

$$
\begin{equation*}
\sqrt{ }(n)\left(T_{n}-\theta\right) \xrightarrow{L} N\left(0, \theta^{2}\right) . \tag{15}
\end{equation*}
$$

Now, we utilize (6a. 2.5) in [5] and obtain

$$
\sqrt{ }(n)\left[g_{2}\left(T_{n}, n\right)-g_{2}(\theta, n)\right] \xrightarrow{L} N\left(0, \chi^{2} e^{-2 x}\right) .
$$

It is easy to show

$$
\left(1-c t^{-1}\right)^{n-2}=\exp \left(-c t^{-1}\right)\left[1+O\left(n^{-1}\right)\right]
$$

hence

$$
\sqrt{ }(n)\left[g_{1}(t, n)-\exp \left(-c t^{-1}\right)\right] \rightarrow 0
$$

for $n \rightarrow \infty$. A similar result is true for $g_{3}$, and therefore by using (x), (b) in [5], p. 122 we get the assertion of the theorem. The case of $R_{4}$ is straightforward. Q.E.D.

Remark 3. It follows from Theorem 2 that the estimators $R_{2}, R_{3}$ are weakly asymptotically efficient, i.e. the variances of their asymptotic distributions are the same as the variance of the asymptotic distribution of the best unbiased estimator.

Remark 4. The estimator $R_{4}$ is not weakly asymptotically efficient because of the fact

$$
\frac{x^{2} e^{-2 x}}{e^{-x}\left(1-e^{-x}\right)}<1
$$

if $x>0$. The last inequality is equivalent to the inequality $e^{x}-\left(1+x^{2}\right)>0, x>0$, which may be easily verified.

Theorem 3. For the expected values, variances, and expected squared errors of the estimators $R_{1}, R_{2}, R_{3}$, we have

$$
\begin{gathered}
E R_{1}=e^{-x}, \\
E R_{2}=e^{-x}\left[1+\frac{\varkappa}{2 n}(x-2)\right]+O\left(n^{-2}\right), \\
E R_{3}=e^{-x}\left[1+\frac{\varkappa}{n}(\beta+x-p-1)\right]+O\left(n^{-2}\right), \\
\operatorname{var} R_{1}=\frac{\varkappa^{2}}{n} e^{-2 x}\left[1+\frac{1}{2 n}(x-2)^{2}\right]+O\left(n^{-5 / 2}\right), \\
\operatorname{var} R_{2}=\frac{\varkappa^{2}}{n} e^{-2 x}\left\{1+\frac{1}{2 n}\left[3(\varkappa-2)^{2}-4\right]\right\}+O\left(n^{-5 / 2}\right), \\
\operatorname{var} R_{3}=\frac{\varkappa^{2}}{n} e^{-2 x}\left\{1+\frac{1}{2 n}\left[5(\varkappa-2)^{2}+4(p-3)-\right.\right. \\
\quad-4 x(p-1)+4 \beta(x-2)]\}+O\left(n^{-5 / 2}\right), \\
E\left(R_{1}-e^{-x}\right)^{2}=\operatorname{var} R_{1}, \\
E\left(R_{2}-e^{-x}\right)^{2}=\frac{x^{2}}{n} e^{-2 x}\left\{1+\frac{1}{2 n}\left[\frac{7}{2}(x-2)^{2}-4\right]\right\}+O\left(n^{-5 / 2}\right), \\
E\left(R_{3}-e^{-x}\right)^{2}=\frac{\varkappa^{2}}{n} e^{-2 x}\left\{1+\frac{1}{2 n}\left[5(x-2)^{2}+4(p-3)-\right.\right. \\
\left.\left.-4 x(p-1)+4 \beta(\varkappa-2)+2(x+\beta-p-1)^{2}\right]\right\}+O\left(n^{-5 / 2}\right) .
\end{gathered}
$$

Proof. The asymptotic expansions will be deduced from Theorem 1 if we put $q=3$. For this purpose we need derivatives of $g_{i}$, moments $E\left(T_{n}-\theta\right)^{s}$, and $\operatorname{cov}\left[\left(T_{n}-\theta\right)^{j},\left(T_{n}-\theta\right)^{k}\right]$ which are listed bellow (for the first derivatives see (11), (12), (13)):

$$
\begin{aligned}
g_{1}^{\prime \prime}(t, n)= & c t^{-3}(1-1 / n)\left(1-c t^{-1} / n\right)^{n-3}\left(c t^{-1}-2\right) \\
g_{1}^{\prime \prime \prime}(t, n)= & c t^{-4}(1-1 / n)\left(1-c t^{-1} / n\right)^{n-4}\left[\left(c t^{-1}-2\right)\left(c t^{-1}-3\right)+\right. \\
& \left.+c t^{-1}\left(c t^{-1} / n-1\right)\right] \\
g_{2}^{\prime \prime}(t, n)= & c t^{-3} \exp \left(-c t^{-1}\right)\left(c t^{-1}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& g_{2}^{\prime \prime \prime}(t, n)= c t^{-4} \exp \left(-c t^{-1}\right)\left[\left(c t^{-1}-2\right)\left(c t^{-1}-3\right)-c t^{-1}\right] \\
& g_{3}^{\prime \prime}(t, n)= c(t+\alpha / n)^{-3}(1+p / n)\left[1+c n^{-1}(t+\alpha / n)^{-1}\right]^{-(n+p+2)} \times \\
& \times\left[c(t+\alpha / n)^{-1}(1+(p-1) / n)-2\right] \\
& g_{3}^{\prime \prime \prime}(t, n)= c(t+\alpha / n)^{-4}(1+p / n)\left[1+c n^{-1}(t+\alpha / n)^{-1}\right]^{-(n+p+3)} \times \\
& \times\left\{\left[c(t+\alpha / n)^{-1}(1+(p-1) / n)-2\right] \times\right. \\
& \times\left[c(t+\alpha / n)^{-1}(1+(p-1) / n)-3\right]-c(t+\alpha / n)^{-1} \times \\
&\left.\times(1+(p-1) / n)\left[1+c n^{-1}(t+\alpha / n)^{-1}\right]\right\} \\
& E\left(T_{n}-\theta\right)^{2}=\theta^{2} n^{-1} \\
& E\left(T_{n}-\theta\right)^{3}=2 \theta^{3} n^{-2} \\
& E\left(T_{n}-\theta\right)^{4}=3 \theta^{4} n^{-2}(1+2 / n) \\
& \operatorname{cov}\left[\left(T_{n}-\theta\right),\left(T_{n}-\theta\right)\right]=\theta^{2} n^{-1} \\
& \operatorname{cov}\left[\left(T_{n}-\theta\right),\left(T_{n}-\theta\right)^{2}\right]=2 \theta^{3} n^{-2} \\
& \operatorname{cov}\left[\left(T_{n}-\theta\right),\left(T_{n}-\theta\right)^{3}\right]=3 \theta^{4} n^{-2}(1+2 / n) \\
& \operatorname{cov}\left[\left(T_{n}-\theta\right)^{2},\left(T_{n}-\theta\right)^{2}\right]=2 \theta^{4} n^{-2}(1+3 / n) .
\end{aligned}
$$

Now we are in the position to utilize formula (6). For the maximum likelihood estimator $R_{2}$ we have

$$
\begin{aligned}
E R_{2}= & e^{-x}+\frac{1}{2} c \theta^{-3} e^{-x}(x-2) \theta^{2} / n+O\left(n^{-2}\right)= \\
& =e^{-x}\left[1+\frac{x}{2 n}(x-2)\right]+O\left(n^{-2}\right) .
\end{aligned}
$$

Further,

$$
\left[1+c n^{-1}(\theta+\alpha / n)^{-1}\right]^{-n}=e^{-x}\left[1+\frac{\chi}{2 n}(\varkappa+\beta)\right]+O\left(n^{-2}\right)
$$

so that

$$
\begin{aligned}
E R_{3}= & {\left[1+c n^{-1}(\theta+\alpha / n)^{-1}\right]^{-(n+p)}+\frac{1}{2} c(\theta+\alpha / n)^{-3}(1+p / n) \times } \\
& \times\left[1+c n^{-1}(\theta+\alpha / n)^{-1}\right]^{-(n+p+2)} \times \\
& \times\left[c(\theta+\alpha / n)^{-1}(1+(p-1) / n)-2\right] \theta^{2} / n+O\left(n^{-2}\right)= \\
& =e^{-x}\left[1+\frac{\chi}{n}(\beta+\chi-p-1)\right]+O\left(n^{-2}\right)
\end{aligned}
$$

We continue by deriving the expansions for variances. For var $R_{1}$ by using $(1-x / n)^{2 n}=e^{-2 x}\left[1-x^{2} / n+O\left(n^{-2}\right)\right]$ we have

$$
\begin{aligned}
& \operatorname{var} R_{1}=\frac{\varkappa^{2}}{n} e^{-2 x}(1-2 / n)\left(1-\varkappa^{2} / n\right)(1+4 x / n)+ \\
& +\frac{2 \chi^{2}}{n^{2}} e^{-2 x}(x-2)+\frac{\varkappa^{2}}{n^{2}} e^{-2 x}[(x-2)(x-3)-x]+ \\
& +\frac{x^{2}}{2 n^{2}} e^{-2 x}(x-2)^{2}=\frac{x^{2}}{n} e^{-2 x}\left[1+\frac{1}{2 n}(x-2)^{2}\right]+O\left(n^{-5 / 2}\right) .
\end{aligned}
$$

From the last expression the assertion of Theorem easily follows. The calculation of var $R_{2}$ is straightforward and therefore may be omitted. During the calculation of var $R_{3}$ we frequently use the fact

$$
\left[1+c n^{-1}(t+\alpha / n)^{-1}\right]^{-(n+k)}=e^{-x}\left[1+\varkappa n^{-1}(\beta+\chi / 2-k)\right]+O\left(n^{-2}\right) .
$$

We have

$$
\begin{gathered}
\text { var } R_{3}=\frac{x^{2}}{n} e^{-2 x}(1-4 \beta / n)(1+2 p / n) \times \\
\times\left[1+x n^{-1}(2 \beta+x)\right][1-2(p+1) x / n]+ \\
+\frac{2 x^{2}}{n^{2}} e^{-2 x}(x-2)+\frac{x^{2}}{n^{2}} e^{-2 x}[(x-2)(x-3)-x]+ \\
+\frac{x^{2}}{2 n^{2}} e^{-2 x}(x-2)^{2}+O\left(n^{-5 / 2}\right) .
\end{gathered}
$$

Now the expression given in Theorem can be directly obtained.
The basic observation required for the calculation of the expected squared errors $s$ the identity

$$
\begin{equation*}
E\left[g\left(T_{n}, n\right)-w(\theta)\right]^{2}=\operatorname{var}\left[g\left(T_{n}, n\right)-g(\theta, n)\right]+\left[E g\left(T_{n}, n\right)-w(\theta)\right]^{2} \tag{16}
\end{equation*}
$$

Expansions for the expected squared errors of $R_{i}$ follow immediately after substituting $E R_{i}$ and var $R_{i}$ to (16).
Q. E. D.

## 4. DEFICIENCY

Given the asymptotic expansions for expected squared errors, one can see that all the estimators $R_{1}, R_{2}$, and $R_{3}$ are (strongly) asymptotically efficient. For a more detailed comparison of the above estimators we use deficiency (see [2]).

Assume that the expected squared error of the estimator $A$ based on $n$ observations is $V_{n}^{A}$, that of $B$ is $V_{n}^{B}$. Then the deficiency of $B$ with respect to $A$ is the number $\mathrm{d}_{n}$ for which

$$
V_{n+\mathrm{d}_{n}}^{B}=V_{n}^{A} .
$$

Roughly speaking, $\mathrm{d}_{n}$ means the number of additional observations which must be performed to obtain the same value of the expected squared error for both estimators. Usually the asymptotic deficiency for $n \rightarrow \infty$ is considered. In loc. cit. the authors have shown that if

$$
V_{n}^{A}=\frac{\gamma}{n^{r}}+\frac{a}{n^{r+1}}+o\left(n^{-(r+1)}\right)
$$

and

$$
V_{n}^{B}=\frac{\gamma}{n^{r}}+\frac{b}{n^{r+1}}+o\left(n^{-(r+1)}\right)
$$

then the asymptotic deficiency of $B$ with respect to $A$ is

$$
\begin{equation*}
\mathrm{d}_{B A}=\frac{b-a}{\gamma r} \tag{17}
\end{equation*}
$$

For our purposes, let us denote the asymptotic deficiency of $R_{i}$ with respect to $R_{j}$ by $\mathrm{d}_{i j}, i, j=1,2,3$. Given these preliminaries, the following theorem may be proved.

Theorem 4. The deficiencies satisfy

$$
\begin{aligned}
& \mathrm{d}_{21}=\frac{5}{4}(\varkappa-2)^{2}-2 \\
& \mathrm{~d}_{31}=2(\varkappa-2)^{2}+2(p-3)-2 \varkappa(p-1)+2 \beta(\varkappa-2)+(\varkappa+\beta-p-1)^{2} \\
& \mathrm{~d}_{32}=\frac{3}{4}(\varkappa-2)^{2}+2(p-2)-2 \chi(p-1)+2 \beta(\varkappa-2)+(\varkappa+\beta-p-1)^{2} .
\end{aligned}
$$

Proof. We derive only $\mathrm{d}_{21}$ because the calculation of the remaining deficiencies is quite analogous. We have $r=1, \gamma=x^{2} e^{-2 x}, b=\frac{1}{2} \gamma\left[\frac{7}{2}(x-2)^{2}-4\right], a=$ $=\frac{1}{2} \gamma(\varkappa-2)^{2}$ so that $\mathrm{d}_{21}=\frac{5}{4}(\varkappa-2)^{2}-2 . \quad$ Q.E.D.

## 5. CONCLUSIONS

First we examine the bias of $R_{2}, R_{3}$. Theorem 3 implies that both of the estimators $R_{2}, R_{3}$, are biased, in general. For maximum likelihood estimator (MLE) $R_{2}$ the bias increases with increasing $x$. The only case when $R_{2}$ offers an "almost" un-
biased estimate (up to the order $O\left(n^{-2}\right)$ ) is if $\varkappa=2$. The bias of $R_{3}$ depends substantially on the expression $\beta+x-p-1$ which may be of any sign and of any magnitude. If the a priori choice of $\alpha, p$ is successful then the bias of $R_{3}$ is approximately $x n^{-1}(x-1)$. Thus the bias increases again if $x$ increases.

From the formulas for deficiencies we can see that MLE $R_{2}$ is a little bit better than best unbiased estimator (BUE) $R_{1}$ for $\varkappa$ close to 2 . This is the case when we estimate $P(X>c)$ for $c$ comparable with the double of the expected time to failure $\theta$. i.e. $x=c \mid \theta \approx 2$. For large $x$, however, BUE is superior. The comparison of the Bayes estimator $R_{3}$ and BUE $R_{1}$ is not quite simple because $\mathrm{d}_{31}$ dependens on three parameters, $\chi, \beta$, and $p$. After denoting $\Delta=\beta-p$, let us express

$$
d_{31}=3 \chi^{2}+4 x(\Delta-2)+\Delta(4-6)-2 p+3 .
$$

The difference $\Delta=\alpha\left(\theta^{-1}-p \mid \alpha\right)$ represents the difference between the actual value $\theta^{-1}$ and the mean $p / \alpha$ of the a priori distribution. The first insight may be that for large $p$ the deficiency is favourable for the Bayes estimator. This is true only when $p / \alpha$ is chosen sufficiently close to theoretical $\theta^{-1}$. In the opposite case for large $p$ and $\alpha$ of the moderate size, $|\Delta| \approx \alpha \approx p$ so that $\mathrm{d}_{31} \approx p^{2}$. Hence we must be careful if handling the a priori parameters $\alpha$ and $p$. For illustration, some $\mathrm{d}_{31}$ 's for different values $x, \Delta$ are given in Table 1. For the comparison of $R_{3}$ and $R_{2}$, similar conclusions remain true as for the comparison of $R_{3}$ and $R_{1}$.

1


| $x$ | -5 | -2 | -1 | 0 | 1 | 2 | 5 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | -2 |  |  |  |  |  |
| 0.25 | 51.19 | 15.19 | 7.19 | 1.19 | -2.81 | -4.81 | 1.19 |
| 0.50 | 44.75 | 1.75 | 4.75 | -0.25 | -3.25 | -4.25 | 4.75 |
| 1.00 | 33.00 | 6.00 | 1.00 | -2.00 | -3.00 | -2.00 | 13.00 |
| 2.00 | 14.00 | -1.00 | -2.00 | -1.00 | 2.00 | 7.00 | 34.00 |
| 3.00 | 1.00 | -2.00 | 1.00 | 6.00 | 13.00 | 22.00 | 61.00 |
|  |  |  |  |  |  |  |  |

From the above discussion, we can conclude that BUE is generally recommendable. Comparing BUE with MLE, the loss of 2 observations in the worst case is not substantial. Comparing BUE with the Bayes estimator, the regions of preferencies of one or another are rather complex sets in the space of parameters $\chi, \beta, p$.

## References

[1] Cramér, H.: Mathematical methods of statistics. Princeton Univ. Press, Princeton 1946.
[2] Hodges, jr., J. L. and Lehmann, E. L.: Deficiency, Ann. Math. Statist. 41 (1970), 783-801.
[3] Hurt, J.: Asymptotic expansions of functions of statistics, to appear in Apl. Mat.
[4] Pugh, E. L.: The best estimate of reliability in the exponential case. Oper. Res. 11/17 (1963), 57-61.
[5] Rao, C. R.: Linear statistical inference and its applications, 2nd ed., Wiley, New York 1973.

## Souhrn

## O ODHADECH SPOLEHLIVOSTI V EXPONENCIÁLNÍM PŘíPADĚ Jan Hurt

V článku jsou studovány čtyři odhady spolehlivosti v exponenciálním rozdělení, a to nejlepší nestranný, maximálně věrohodný, bayesovský a tzv. naivní. Je dokázána jejich asymptotická normalita a odvozeny asymptotické rozvoje střední hodnoty a střední čtvercové odchylky odhadů. Tři efficientní odhady (nejlepší nestranný, maximálně věrohodný a bayerovský) jsou studovány z hlediska deficience.

[^0]
[^0]:    Author's address: RNDr. Jan Hurt, Matematicko-fysikální fakulta KU, Sokolovská 83, 18600 Praha 8.

