## Aplikace matematiky

Jan Vinař<br>A remark on Jordan elimination

Aplikace matematiky, Vol. 21 (1976), No. 6, 420-423
Persistent URL: http://dml.cz/dmlcz/103665

## Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

## A REMARK ON JORDAN ELIMINATION

Jan Vinař<br>(Received April 5, 1973)

A simplified version of the Jordan elimination algorithm and the modified Jordan elimination algorithm [1], suitable for hand as well as machine computation, is presented.

## INTRODUCTION

In [1], Jordan elimination is defined as follows: consider the system

$$
\begin{equation*}
y_{i}+a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

of $m$ linear forms in $n$ variables $x_{1}, \ldots, x_{n}$. Such a system can be represented by the table

$$
\begin{align*}
& x_{1} x_{2} \quad \ldots x_{s} \ldots x_{n} \\
& y_{1}=a_{1.1} a_{12} \ldots a_{1 s} \ldots a_{1 n}  \tag{2}\\
& y_{2}=a_{21} a_{22} \ldots a_{2 s} \ldots a_{2 n} \\
& y_{r}=a_{r 1} a_{r 2} \ldots a_{r s} \ldots a_{r n} \\
& y_{m}=a_{m 1} a_{m 2} \ldots a_{m s} \ldots a_{m q}
\end{align*}
$$

To perform one step of Jordan elimination with the pivot element $a_{r s}$, $r$-th pivot row and $s$-th pivot column means to find the coefficients $b_{i j} i=1, \ldots, m ; j=1, \ldots, n$ of the system

$$
\begin{gather*}
\begin{array}{cccc}
x_{1} x_{2} & \ldots & y_{r} & \ldots
\end{array} x_{m} \\
y_{1}=b_{1.1} b_{12} \ldots b_{1 r} \ldots b_{1 m}  \tag{3}\\
y_{2}=b_{21} b_{22} \ldots b_{2 r} \ldots b_{2 n} \\
\ldots \ldots b_{2} \ldots \ldots b_{1} \ldots b_{r n} \\
x_{s}=b_{r 1} b_{r 2} \ldots b_{r s} \ldots b_{m} \\
\ldots \ldots \ldots \ldots \ldots \\
y_{m}=b_{m 1} b_{m 2} \ldots b_{m s} \ldots b_{m n}
\end{gather*}
$$

in which $x_{r}$ and $y_{s}$ have exchanged places. It is easy to prove that the following relations hold:

Let $z=a_{r s}$. Then
(4a) for $i \neq r, j \neq s$

$$
b_{i j}=a_{i j}-\frac{u_{i} v_{j}}{z}
$$

where $u_{i}=a_{i s}, v_{j}=a r_{j}$;
(4b) for $j \neq s$

$$
b_{r j}=-a_{r j} / z ;
$$

(4c) for $i \neq r$

$$
\begin{align*}
& b_{i s}=a_{i s} / z \\
& b_{r s}=1 / z \tag{4~d}
\end{align*}
$$

The modified Jordan elimination step, used e.g. in linear programming, is defined as the transition from the system

$$
\begin{align*}
& y_{r}=c_{r 1} \quad \ldots c_{r s} \quad \ldots c_{. n}  \tag{5}\\
& \text {............................. } \\
& y_{m}=c_{m 1} \quad c_{m s} \ldots c_{m n}
\end{align*}
$$

to the system
(6)

$$
y_{1}=\begin{gathered}
-x_{1} \ldots-y_{r} \ldots-x_{n} \\
d_{11}
\end{gathered} \ldots d_{1 s} \ldots d_{1 n}
$$

$$
\begin{gathered}
x_{s}=d_{r 1} \ldots d_{r s} \ldots d_{r n} \\
\ldots \ldots \ldots \ldots \ldots \ldots . \\
y_{m}=d_{m 1} \ldots d_{m s} \ldots d_{m n}
\end{gathered}
$$

Again, the following formulae are easily proved: Let $z=c_{r s}$. Then

$$
\begin{align*}
& \text { for } i \neq r, j \neq s  \tag{7a}\\
& d_{i j}=c_{i j}-\frac{u_{i} v_{j}}{z}
\end{align*}
$$

where $u_{i}=c_{i s}, v_{j}=c_{r j}$;

$$
\begin{align*}
& \text { for } \quad j \neq s  \tag{7b}\\
& d_{r j}=c_{r j} / z
\end{align*}
$$

$$
\begin{gather*}
\text { for } i \neq r  \tag{7c}\\
d_{i s}=-c_{i s} / z \\
d_{r s}=1 / z
\end{gather*}
$$

It is easy to see the only difference between Jordan and modified Jordan elimination is that in the former the sign changes in the pivot row, while in the latter it is in the pivot column.

## ANOTHER ALGORITHM

Two objections can be made to these algorithms:
a) there are "too many cases" to be considered in both machine and hand computation.
b) for hand computation, the basic scheme involves four quantities $a_{i j}, a_{i s}, a_{r j}, a_{r s}$ located in the four corners of a rectangle. Since all possible rectangles must be considered, it is only too possible to make a mistake.

Consider the formulae (4a)-(4d). We see that $u_{r}$ and $v_{s}$ are not used in the computation. Is it possible to define them in such a way that the formula

$$
b_{i j}=a_{i j}-\frac{u_{i} v_{j}}{z}
$$

might then be applicable to any $i$ and $j$ ?
Let us try to find the necessary value for $u_{r}$. To have

$$
b_{r j}=a_{r j}-\frac{u_{r} v_{j}}{z}
$$

for $j \neq s$, we must have

$$
u_{r}=\frac{a_{r j}-b_{r j}}{v_{j}} \cdot z=z+1 .
$$

Similarly $v_{s}=z-1$.
It remains to be seen whether these values yield the correct result if both $i=r$ and $j=s$. We have

$$
b_{r s}=a_{r s}-\frac{u_{r} v_{s}}{z}=z-\frac{(z+1)(z-1)}{z}=\frac{1}{z} .
$$

Thus it is possible to write the following formulae for the Jordan elimination: Let $z=a_{r s}$; then for all $i=1, \ldots, r$ and $j=1, \ldots, s$

$$
\begin{equation*}
b_{i j}=a_{i j}-\frac{u_{i} v_{j}}{z} \tag{8a}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{i}=a_{i s}+\delta_{i r}, \tag{8b}
\end{equation*}
$$

(8c)

$$
v_{j}=a_{r j} \delta_{j s},
$$

and $\quad \delta_{i j}=0$ for $i \neq j$,

$$
\begin{equation*}
1 \text { for } i=j \tag{8d}
\end{equation*}
$$

For the modified Jordan elimination the formulae are quite similar, only the signs to go with the delta - symbols are reversed.

## CONCLUSION

A modified formula for the Jordan elimination has been presented. It should make for simpler programs for machine computation and better organization of hand computation.

## References

[1] С. И. Зуховиикий, ЛГ. И. Авдеева: Линейное и выпуклое програмирование. Наука, Москва 1967.

Souhrn

## POZNÁMKA K JORDANOVĚ ELIMINACI

Jan Vinař

V článku se nâvrhuje zjednodušení vzorcủ pro Jordanovu eliminaci, které umožňuje používat jediný vzorec pro výpočet všech prvků nové matice. To dovoluje a) zjednodušení programů pro strojový výpočet, b) lepší organizaci ručních výpočtů.

Author's addrcss: Jan Vină̈, prom. mat., Výpočtové stredisko Vsl. KNV, Čsl. armády, 04000 Košice.

