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SVAZEK 22 (1977) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

APPROXIMATE METHODS FOR SOLVING DIFFERENTIAL 
EQUATIONS ON INFINITE INTERVAL 

TERESA REGINSKA 

(Received December 16, 1975) 

I N T R O D U C T I O N 

We shall consider some approximate methods of solving the differential equation 
on the infinite interval (0, GO) 

( 1 . 1 ) -u"(i) + a(t) u'(t) + b(t) u(t) = f(t) , 

with the conditions 

(1.2) u(0) = 0 , weL^O, GO). 

L^(0, GO) denotes the space of square integrable functions on the interval (0, oo) 
with the weight function rj(t). 

There are several articles dealing with singular boundary value problems [7], [9] 
concerning two-point boundary value problems on a finite interval with a singular 
coefficient. The articles mentioned above include implicitly the solution of our prob
lem only in some particular cases. 

Two approximate methods of solving the problem (1.1), (1-2) will be presented. 
The first method consists in approximating the solution of the problem (1.1), (1.2) 
for r\ = 1 by a sequence of solutions of boundary value problems on finite intervals. 
The second method (for rj = e~') is a modified collocation method. The collocation 
method for problems on finite intervals is discussed in [4], [8], [10]. 

We shall prove existence of a solution of the problem (1.1), (1.2) and convergence 
of the methods presented. 

P A R T I 

The aim of this part is to construct an integral equation that is equivalent to the 
differential problem (VI), (1.2). 



1.1 Auxiliary problem 

It will be convenient to introduce the equation 

(1.3) I u(t) = -u"(t) + k u(t) - v(t) , 0 = t < oo 

where k is a positive constant, 
and the boundary conditions 

(1.4) w(0) = 0 , ueL2(0, oo). 

Lemma 1. The boundary value problem (1.3), (1.4) is selfadjoint in L2(0, oo). 

Proof. If u, v satisfy conditions (V4), and if there exist u\ v\ u", v" and u", v" e 
e L2(0, oo), then 

* 0 0 

[~u"(t) + ku(t)~\ v(t)dt -
J 0 

/•oo 

= lim [u(t) v'(t) - u'(t) v(t)] + u(t) [~v"(t) + k v(t)] dt. 
f-oo J 0 

It suffices to prove 

I.Є., 

lim [u(t) v'(t) - u'(t) v(t)] = O . 

Ve > 0, 3N, VT, S > N Qsx — \U(T) V'(T) - U'(T) V(T) - u(s) v'(s) + u'(s) v(s)\ = e . 

We have 

id 
»s < 

dř 
[u(t)v'(t) - u'(f)ľ(t)] dř = í |u(ř) v"(t) - u"(t) v(t)\ dř 

Using the Schwartz inequality we obtain 

\ 1/2 / f t \ 1/2 

í̂ v < 
\ 1/2 / f t \ l / 2 / |-t \ l / 2 / ^ t \ l / 2 

M(0|2dřj (J KOI 2*) +(JK ( t ) | 2 d ř j (jKi)l 2dt) 
If we recall that for an arbitrary function/ belonging to L2(0, oo) 

lim 
s,т-^ oo 

j2(t)dí = 0 

we can conclude that QSZ -> 0 if s, T -> oo, q.e.d. 
Let Ln mean the differential operator defined by the differential expression lu (1.3) 

and the boundary conditions (1.2). The domain of this operator is the following set: 

r2 /n ~^\ a ^ J2< Qn- {ue L2(0, oo), u" є L2(0, oo) and u(Ö) = 0} . 

Let LІІLt. 
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Lemma 2. The domain of the inverse operator L l is the whole space L2(0, oo). 

In the space L2(0, oo) the operator L_1 is bounded. 

Proof. The proof follows from the following theorem: 

Let us consider the differential expression 

lu = —(p0u')' + pju 

with additional conditions lim pt(t) = p and p0(t) > 0. The selfadjoint operator 
t->00 

in L2(0, oo) generated by the expression lu has on the interval (— oo, p) only a point 

spectrum (cf. [5], § 24). The above theorem together with the fact that X = 0 is not 

an eigenvalue of L proves Lemma 2. 

Theorem 1. If the weight function rj(t) is continuous and there exist constants 

cl9 c2, c3 that 

1° 0 < rj(t) ( min 17(f))"1 ^ ct < oo , 

2° 3s E [0, y/k) such that 0 < c2 ^ e2st rj(t) ^ c3 < oo , 

then the inverse operator L~ 1 is defined on the whole space L2(0, oo) in the following 

manner: 
/•OO 

(1.5) L~' f(t) = G(t, T)/(T) dT , fe 4 ( 0 , 00) , 

where 

(1-6) G(t, т) = 

Г — e'^k)t sh yЦk) т т < ř 

— e " ^ 1 sh V(fc) t ^ > t 

Corollary 1. FOr example, the assumptions 1°, 2° are satisfied by the functions 

n(t) = Q(t) or rj(t) = e'2mt g(t) 

where the function g(t) is continuous and bounded and m e [0, ^ k ) . 

P r o o f of Theorem 1. 

1. The proof has two parts. The first part consists in showing that the theorem 
is true for the weight function n = 1. 

From Lemma 2 we know that the inverse operator L_1 is bounded and defined 
on the whole space L2(0, oo). In this case we can apply the general theorem about 
the form of the resolvent of differential operators ([1], Part XIII, 3.4). 
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From this theorem we have 

ĽŁ j(t) = ľ " G{t, т) /(т) dт , / є L2(0, 
Jo 

oo) . 

The function G(t, •) belongs to L2(0, GO) for every t e (0, GO) and satisfies the jump 

equations. 

With regard to the fact that the operator L is selfadjoint we can use the general 

theorem about the form of the Green function ([1], Part XIII, 3,10). 

From this it follows that the Green function has the form (1.6). Thus, Theorem 1 

is proved for rj = 1. 

2. If t] E|E 1 then Lemmas 1 and 2 do not hold. We must prove Theorem 1 in 

another way. 

Therefore, in the second part we must show that the function 

(1.7) „(.) = -4-
VM 

-'<*>'Г(shV(fc)т)/( 
Jo 

т) dт + sh y/(k) t ,-V(fc)t ĄrЏ 

satisfies the equation (1.3) and the conditions (1.2). We can easily verify that the 

equation (1.3) and the first condition u(0) = 0 are satisfied. 

Now it is sufficient to prove that if/ e L^(0, oo) then L~ lf belongs to L2(0, oo). 

We shall show that the first as well as the second component in the formula (1.7) 

belongs to the space L^(0, oo). It is convenient to denote these components by wx 

and w2 respectively. Without loss of generality we may assume that / i s non-negative. 

For the function wx we have the following estimate of the norm: 

'Jí „>(o.„, ú cifo
e~2"(k)'[\'(sh V(*)*)VOKt))/(T)dTjd. á 

/•co 

G(t, T) v(r) dT 
L2(0,cю) 

where v(r) = >/(*/(?))/(T), i.e., v e L2(0, oo), and c is a positive constant. 

Now, we consider the norm of the second component w2. From the assumption 2° 

we have evidently 

^2||L„2(0,oo) ; 

•oo <*oo 

n(t) e2ste-2st w\(t) át^cA e'2st w2
2(t) dř , 

o j o 
and 

(e-st sh V(fc) t)2 = sh (V(fc) - s)t + e-^k)~s)' (1 

S2sh2Џ(k)- s) + 2e-2i^k)-s)t . 

') = 

Thus we find 

i ;2||L,,2(0,oo) 2 ^ f | sh (V(/c) - s) t f V<V«-»>« J(n(r))f(r) dxVdt + M . 
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where 

M = 2 
c_i r e-2(.y(*M-.). Í r e-(v**)-.v), ^ ( T ) ) / ( T ) d T y d ř < w 

If we take into account the assumption 2° and the additional condition f(t) ^ 0 
we obtain 

W , r 2 2 | |V(0,oo) = C 

Лoo 

G(ŕ,т)v(i ) d т + M 
L2(0,oo) 

where c is a positive constant, and G(t, T) is defined by the formula (1.6) 

for k = (V(k) - :s)2 > 0 . 

The results obtained in the first part and the above estimates of the norm wx and 
imply that 

q.e.d. 

H І Í V Ч O ^ ) < oo if fєL2(0, oo), 

1.2. Integral equation 

The equation (1.1) can be written in the following form: 

-u"(t) + k u(t) + \b(t) - k] u(t) + a(t) u(t) = f(t) 

where k is a positive constant for which rj(t) satisfies the assumption 2° of Theorem 
If the conditions of Theorem 1 are satisfied then we can substitute 

L„ u(t) = v(t). 

It is easy to find that the problem (1.1), (1.2) takes an equivalent form 

8G(t, T) 
v(t) + 

ЛGO 

v(т) dт + [b(t) - k] G(t, т) v(т) dт = f(t), 
ôt Jo 

where v e L2(0, oo). 
This equation can be expressed in a shorter form 

(1.8) [1 + K]v=f, 

where I is the identity operator in L2(0, oo) and K is the integral operator with the 
kernel 

(1.9) K ( ? , T ) = [ / , ( t ) - f c ] G ( f , T ) + fl(0
5G^. 

dt 

Under the hypothesis of Theorem 1 and the assumption that the functions 
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a, [&(•) — k] belong to L^(0, oo), the operator K transforms the space L^(0, GO) 
in L2(0, oo). 

Thus we have the integral equation (1.8) in the Hilbert space L^(0, oo). 

PART II 

This part is devoted to the approximation of boundary value problem (VI), (V2) 
by a sequence of boundary value problems on finite intervals. 

We shal consider the problem (1.1), (V2) only for rj = V In this case the conditions 
of Theorem 1 are satisfied for s = 0. According to the results of Part I, the problem 
(1.1), (V2) is equivalent to the integral equation 

(2.1) [I + K]v=f 

in the space L2(0, oo). 

2.1 Projection methods 

Let us consider an equation of the form (2.1) in a Banach space X. We can separate 
a class of approximate methods solving this equation — the so called projection 
methods. 

A projection method is defined if we have a sequence of subspaces {Xn} of the 
space X and a sequence {P„} of continuous projection operators from X onto Xn. 
The approximate equations have the form 

(2.2) [1 + P„K] vn = PJ 

where vn e X„. 

It is well-known [4], [10] that the following theorem holds. 

Theorem 2. Suppose that 

1° the homogeneous equation [I + K] v = 0 has only the trivial solution in the 

space X, 

2° the operators Pn converge strongly to the identity operator I : X -*• X, 

3° the operator K is completely continuous. 

Then for all sufficiently large n there exists a unique solution vn e Xn of the equation 
(2.2). Moreover, vn(t) converge in the norm to v0(t) and the convergence satisfies 

K - Vn\\ ^ C\\PnV0 ~ Vo\\ 

where c is a constant independent of n. 
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2.2 Approximation by boundary value problems on finite intervals 

Let the projection operators Pn be defined in the following way: 

Pn : L2(0, oo) -> L2(0, n) 

and 

(2-3) P / M = f/W ' * " 
" J { ) (0 t>n. 

Defining the subspaces Xn = L2(0, n) and the operators Pn we obtain a projection 

method. 

It turns out that the approximate equation (2.2) for Pn and X„ defined above is 

equivalent to a certain boundary value problem on a finite interval (0, n) as we have 

the following lemma: 

Lemma 3. If a e L2(0, oo) and 3k > 0 [b(-) — k] e L2(0, oo) and if the operators Pn 

are defined by the formula (2.3), then the equation (2.2) is equivalent to the fol

lowing boundary value problem: 

(2.4) -u n ( t ) + a(t) u'n(t) + b(t) un(t) = f(t) , t e (0, n) , 

(2.5) un(0) = 0, ^(k)un(n)= -u'n(n). 

Proof. We show that if vn is a solution of the equation (2.2), then un = L~1vn is 

a solution of the problem (2.4), (2.5). For t < n 

f(t) = PJ(t) = [/ + PnK] v„ = [/ + X ] p. . 

This means that un = I7lvn satisfies the equation (2.4) for t < n because the hypo

theses of Theorem 1 are satisfied. The function un satisfies also the condition at the 

point 0. With regard to the equality 

vn(t) = 0 for t > n 

we have 

«„« = ^-k \
e~"ik)t f ( s h ^ T ) v " ^ d T + sh V(fc) vtt(т) dт 

and 

u'„(t) = -e~^' Г(sh V(fe) т) г„(т) dт + ch V(fc) ř J Y ^ v„(т) dт . 

thus for t = n 

«n(w) = - V ( f c ) M " ( w ) 
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Now it suffices to prove that on the interval (0, oo) there exists an extension un 

of the solution un of the problem (2.4), (2.5), such that un e L2(0, oo) and vn = Lun 

is a solution of (2.2). 

Let for t > n 

(2.6) u„{t) = un{n)e^^k. 

Then it is easy to find that for t > n 

- u"(t) + k iln(t) = 0 . 

Hence vn = Lu„ is a solution of (2.2). q.e.d. 

2.3 Convergence 

The convergence of the method defined in 2.2 follows from the general Theorem 2. 

Thus it suffices to show when the hypotheses of Theorem 2 are satisfied. 

Lemma 4. Let us suppose that a e L2(0, oo) and that there exists a positive con

stant k such that [b(-) - k ] e L2(0, oo). 

Then the operator K is completely continuous. 

Proof. First we shall prove the following estimate: 

(2.7) K\t, т) dт dř < oo . 

The Schwartz inequality permits us to obtain 

/•oo /»oo r~ / /*oo \ 1/2 

K2(t,x)dxát ^\ \b(t)-k\í\ G\t, T)dTJ + 

«<í:mчъ 
It is easy to find that 

Jo 

1 
G2(t, т)dт=: — l^г - ( 2 t + 4 -

V 4k(Vk V V* 
" 2 Л f c ) í 

and 

Hence 
JK dт = + Í-L -2t)e-2^' 

4 yic \jk 

/•oo /•oo /*oo 

K2(t, T) dT dt ^ c\ {\b(t) - k| + |a(t)|}2 dt < oo 
Jo J o Jo 
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This implies the complete continuity of K because, as is well-known [1], every 

integral operator in L2(0, oo) with a kernel satisfying the estimate (2.7) is completely 

continuous, q.e.d. 

It remains to prove that the operators Pn defined by the formula (2.3) satisfy the 

condition 2° of Theorem 2. 

We have evidently 
M2 

\\f - P f\ 
\\J * nJ 

L2(0,oc) -ІM 
and if n -> oo then for any f e L2(0, oo) 

lim 
П~* 00 

f oo 
2 f\t) dí = 0 . 

Thus if we assume that the homogeneous equation (2.1) has only the trivial solution 
in L2(0, oo) and that the hypotheses of Lemma 4 are satisfied, then we obtain con
vergence in the norm of L2(0, oo)of the sequence {vn} to a solution of the equation (2.1). 

Returning to the differential form of the problem (2.1) we obtain the following 
theorem: 

Theorem 3. Let un be the extension of un defined by the formula (2.6). Suppose 
that a e L2(0, oo) and 3k > 0, [b(#) — k] e L2(0, oo). Also suppose that the homo
geneous problem (1.1), (1-2) for rj = 1 has a unique solution. 

Then for any f e L2(0, oo) there exists a solution u0 of the problem (IT), (1.2) and 

|| K - "o||L2(0,oo) „^ 0 0
> 0 

and there exist constants independent of n and f such that 

1/2 

sup \ul(í) - 4(í) | ž cj (-u'ó + ku0)
2dt 

xr<oo \ J „ 
i = 0, 1 . 

0 < ř < oo 

Proof. This theorem is an easy consequence of Theorem 2. 

With regard to the continuity of the operator L~l we obtain the convergence of un 

to w0
 i n t n e norm of L2(0, oo). 

The estimate of the term sup |t^(t) — t/0(t)| follows from the following inequalities: 
0<ř<oo 

, !/2 
/ /*°o \ 1/2 

|ww(ř) - u0(t)\ á í G\t, T)dT j . |v/ř - v0||L
2(o,oo) , 

\ V n VO\\L2(0,K) 

\ J o \ vi J J 
and from the fact that 

1/2 
\»n - ^ o | | L 2 ( 0 , o o ) ú C . \\PnV0 - v0 Ыt))2 dř 

The proof is complete. 
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PART III 

Let us consider the equation 

(3.1) [ 1 + K ] v = f 

in the space L^(0, co) for r](t) = e~f. The operators I and K are defined in V2. 

From the Theorem 1 it follows that the equation (3A) is equivalent to the dif
ferential problem (VI), (V2) if the constant k from the formula (V9) satisfies k > i . 

3.1 Description of collocation method 

It is possible to define such subspaces Xn and projection operators Pn so that the 
method obtained is simple and has direct numerical applications. 

Let C[0, oo] mean the space of continuous functions on [0, GO) which have finite 
limits in infinity. 

Suppose a partition nn on the interval (0, oo) is given: 

(3.2) TT„ : 0 <f0 < < " , < . . . <fn. 

Let t" = —In x", / = 0, ..., n,where x" are zeros of orthogonal polynomials on the 
interval [0, 1] with a positive and continuous weight function O(x). Define Pn as the 
projection operator from C[0, oo] onto the space Xn which is generated by the basis 

( l , e - , . . . , * - " ' ) . 
More precisely, 

P„v = vn = cc0 + (xxe~f + ... + ccne~nt, 

where the coefficients a0, ..., a„ are such that 

effl = vjtf) , i = 0....,«. 

According to the definition of a projection method (point 2.1) we have an approximate 
equation in the form: 

(3.3) [l + PnK]vn = PJ. 

Let us return to the differential problem (1.1), (1.2) for r\(t) = e~f. 

It is clear that the equalities 

Pnf(i"i)= P„g('n^ « = 0 . . . . ,n 

for / , g e C[0, oo] imply that 

PJ = P„9 • 
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Thus the equation (3.3) is equivalent to the system of equations 

Vn(t1)+Kv(t1)=f(t1), / = 0, . . . ,n 

which with regard to Theorem 1 can be written as 

(3.4) -u'n(t1) + a(t1) u'„(t1) + b(tf) u„(t1) = /(<-), i = 0,..., n 

where 

(3.5) un(i) 

Since 

G(t, т) vn(т) âт 

Í: G(t, т) e~" dт = ! — [e~st - e-"ik)'] for 5 * Jk 

and 
3 1 

G(t, T) e~sx dT = e~^k)tt for s = Jk , 
V 2 V k 

the method defined above (3.3) is the so-called collocation method which consists 
in finding a function of the form 

(3.6) un(t) = tpWi 
i = 0 

where 

<pfc) = e~lt - e~^k)t if i # V k and cpf(t) = e~£rt if i = Vk , 

which satisfies the differential equation (l . l) exactly at the collocation points, i.e., 
at t", / = 0, . . . , n. 

3.2 Properties of operators Pn and K 

Lemma 5. For each function v e [0, oo] the sequence {Pnv} converges to v in the 

norm of the space L^(0, oo). 

Proof. We shall base our proof on the Erdos-Turan theorem [6] about a conver
gence of interpolation polynomials. 

Let us consider a function f continuous on the interval [0, 1]. Suppose that L„f 
is its interpolation polynomial of degree n based on nodes x0> •••> x" which are the 
zeros of orthogonal polynomials with a continuous weight function Q(X) > 0. 
The Erdos-Turan theorem implies that 

lim ľ Q(x)[Lnf(x) -f(x)]2áx = 0 . 
n->oo J o 
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Let us substitute x = e '. On account of 

L„f(e->) = P„ v(t) where v(t)^f(e~') 

we obtain 
1*1 Л00 

Q(X) [L„f(x) - f(x)Y dx= e~> в(e-') [Pn v(t) - v(t)]2 dt. 
Jo Jo 

It follows that 

q.e.d. 

lim e-~'[P„v(i) - v(t)]2dt = 0 , 
и̂ oo J 0 

Lemma 6. Suppose that 

1° a, b e C[0, oo], 

2° 3k > i lim (b(t) - k) et/2 - 0, 
t->oo 

3° lim a(t) e'12 = 0. 
t->oo 

Then the operator K maps the space L^(0, oo) into C[0, oo]. 

Proof. By the definition of K (1.9), 

K v(t) = (b(t) - k) [*G(t, T) v(T) dr + a(t) ^ ^ - T i viz) dT 
Jo V Jo dt 

It is obvious that Kv is a continuous function on the interval [0, oo). 

It remains to prove that the function K v(t) has a finite limit in infinity. 

The function Kv may also be written as 

K v(t) = (b(t) - k) et/2(w{ + w2) + V(k) a(i) et/2(w2 - w,) + 

iyk 
(b(t) -k)- a(t) -л*) ' , - # ) • У(T) dт . 

where 

1 g-(V(*)+1/2)1 Г ^ ( * > . _ e-V(*)т) tø ^^ ^ 

V ̂  J 0 

2V^ 
Л Ш - i / i з t V(*)т v(т) dт . 

By the Schwartz inequality it is easy to find that 

(3-7) KCOI ^ ^1^1^2(0,00), 

(3-8) |W2(0| -S «2|H|v(0.oo)> 

where a 1 ? a 2 are independent of t. 

The above fact together with the asumptions 1° — 3° implies Lemma 6. 
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Lemma 7. Under the hypotheses of Lemma 6 the operator K : L2(0, oo) -+ C[0, oo] 
is completely continuous. 

Proof. As we know from the Arzela theorem we must prove that the operator K 
maps the unit sphere from L2

n(0, oo) into a set of equicontinuous and uniformly 
bounded functions from C[0, oo]. 

From the proof of Lemmas 6 and 7 it evidently follows that K maps the unit 
sphere into a set of uniformly bounded functions. The definition of a set P of equi
continuous functions in the space C[0, oo] is as follows: 

For every a > 0 there exist open sets Qu ..., Qn such that 

n 

[0, co] = U Qj and Vtt, t2 e Q-, j = 1, ..., n , \f(tx) - f(t2)\ < s 
1=i 

for an arbitrary function belonging to P. 

We may assume without loss of generality that t2 > t v We shall prove that for 
every e > 0 there exist <5 and y such that if t 2 — tx < 3 or tx > y then for every 

K v(tj) - K V(t2)\ < 8 . 
i|V(0,oo) = 1) 

Let us denote 

We have 

where 

c ± (í) = b(ř) - fc ± 7(fc)a(0-

|/_ o(í.) - K t>(í2)| < A + B , 

A = 
V/c c_ /, e Л*)d (sh V(fc) т) t)(т) dт 

Ь c _ ( ť 2 ) Є - ^ > « ł Г ( s h V ( f c ) т ) i < т ) d 
/* Jo 

2fc 

V/c 

[c+(ť.) eV ( f c ) t | + c_(ř2) e ^ ) ( l ] e - ^ ^ t ) dt -

- [c + ( í 2 ) e v w ' 2 + c_(í2) eV (*"2] . e'Лk)r v(x) dt 

To A we apply the Schwartz inequality and the estimate (3.7) which give 

A_«,|etl/2 <•_(/ , )-e t l / 2 c_(ŕ 2 ) | + 
jk -Ы (sh V(fc) т)2 dt 

1/2 

Likewise, by using the estimation (3.8) and denoting 

oc3 = sup \c+(t)\ — e 
0 < ŕ < co 2 k 

- ( V ( Л ) + l / 2 ) -V(fc)t v(т) dт , 
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we obtain 

B £ ~ (a2 + a3) \c+(tl) e'^ - c + (t2) e'»2\ + I \c + {t2) e ~ ^ 
2k 2k 

r f2 \ i / 2 

-Ы 
»V(*)Í2І 

Є - 2 Л к , t dт 

With regard to the hypotheses of Lemma 7 it follows that if |f, - t2\ -> 0 or t, -> GO 
then A -> 0 and B —• 0. g.e.d 

3.3 Convergence 

Theorem 4. Suppose that 

1° a, beC[0, GO], 

2° 3k > J lim [b(t) - k] e'/ 2 = 0, 
t~+ 00 

3° lim a(t) e"2 = 0, 
t-»co 

4° the homogeneous problem [1 + K] v = 0 has only the trivial solution in the 

space L^(0, GO). 

Then for every / belonging to L2(0, GO) there exists a unique solution v0 e L2(0, GO) 

of the equation (3.1) and for all sufficiently large n there exists a unique solution of 

the equation (3.3) which satisfies 

| | i ; 0 ~" ^ | | L , 7

2 ( 0 , o o ) = C • \\PnV0 _ y O | | L l |

2 ( 0 , o o ) 

where c is a positive constant independent of n. 

Proof. This proof is a certain modification of the proof of Theorem 2. For the 

sake of clarity we will quote it in its full form. 

A convergent sequence in C[0, GO] converges also in the norm of the space L2(0, GO) 

because the weight function rj is integrable. Thus, taking into account Lemma 7, 

we can state that the operator K is completely continuous also as the operator 

from L2(0, oo) into L2(0, oo). On the other hand, the following general theorem [2] 

is known: 

If X is a Banach space and T=I + K:X->Xis the sum of the identity operator I 

and a completely continuous operator K and the equation Tx = 0 has only the 

trivial solution in X, then 

T(X) = X . 

Applying the Banach theorem about the inverse operator to the operator / -f K : 

: L^(0, oo) —> L^(0, oo) where K is defined in 1.2 we obtain that (1 + K)"1 is con

tinuous on L^(0, GO), i.e., 

(3.9) 3m > 0 , l Vv e L2(0, oo) ||(I + K) v||L,72(0.oo) = H N L ^ o o ) ' 
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From Lemmas 5 and 7 it follows by contradiction that 

\\P„K - KL 2_L 2 — ^ 0 , 
II n W^n Ln n-»oa 

i.e., 

ii ii m 

(3.10) 3«0 > 0 , V« > n0 ||R„K - K\w^w < - . 
The estimates (3.9) and (3.10) imply 

ii m 
| |[/ + P„K] v|| = | |[/ + K] v + [PnK - K] v|| ^ — . 

This means that there exists a continuous inverse operator [/ + P^K]"1. 

For each function v e L2
n(0, GO) we have 

YYi 

||„|| = ||(/ + PnK)(I + P„Ky> v\\ ^ - \\(I + Pr.K)-1 v\\ . 

Thus 

|[(/ + P„Kyl ~|| £ — \\v\\ , 
m 

i.e., the norms of the operators (/ + P„K) l are uniformly bounded. 

We have the following equalities: 

(/ + P„K) v = PJ + (I - Pn) v , 

(I + P,K)(vo-vJ = ( / - P J v 0 . 

Taking into account the above proved properties of the operators (/ + PnK) we can 
state that 

2 
IK - "o|K-co.oo) -S ||(7 + PnK) II I I ^ o - "o|| -S — \\P„Vo - *>o 

m 
q.e.d. 

Corollary 1. If the solution v0 of the equation (3.1) belongs to the space C[0, oo], 
then with regard to Lemma 5 vn -> v0 //? £he rzOrm Of t/ze space L^(0, oo). 

Corollary 2. If v0 belongs to the space C[0, oo] then there exists a constant a > 0 
such that the following estimate holds 

IK - ^||L^(o,ao) ^ ainf {||vo - »|c[o,oo]} • 
t)ex„ 

This follows directly from the Banach-Steinhaus theorem in viritue of the fact 
that for any function veXn 

\\PnV0 - ^ o | | v ( 0 , o o ) = \\Pn{Vo - V) - (vo - *0||L„2(o,oo) -S 

< 7 P Li ii I 
— II ~~ "II II ° y H C [ 0 , o o ] 

106 



Let us return to the differential problem (1.1), (1.2) for n(t) = e r. Theorem 4 
implies the following theorem about convergence of the collocation method. 

Theorem 5. Suppose that 

1° a, b e C[0, oo], 

2° lim et/2 a(t) = 0, 3k > ± lim (b(t) - k) et/2 = 0, 
t->oo r->oo 

3° the homogeneous problem (1.1), (1.2) has Or/ly the trivial solution, 

4° the solution u0 of the problem (1.1), (1.2) belongs to C2[0, oo]. 

I/ V —3° then for every f e L?„(0, oo) there exists a unique solution of the problem 

(1.1),(1.2). 

If 1° —4° theu there exists n0 such that for n > n0 the approximate solution un 

defined by (3.4), (3.5) is unique and the sequence {un} converges to u0 in the supre-

mum norm on any finite interval [0, £]; more exactly 

y^ < CfD , S U p \ul
n(t) - u0(l)| S C^j2\vn - v0||L,72(0.oo) • 

where i = 0, 1. 

Proof. By Theorem 4 there exists n0 such that for n > n0 there exists a uniquely 
defined solution of the equation (3.3). From (3.5) it follows that un is also well defined 
for n > n0. 

Using the Schwartz inequality we can estimate the difference between un and u0, 
i = 0, 1 in the following way: 

k(t)-«0(t)U(J^G2Md 

\u'„(t) - u'0(í)\ á 

1/2 

II f„ - V, 0||L;;2(0,oo) 

1 /gGfr т}\ 

o Ф) \ ðt 
à* I \\v„ - t?0||Lf|2(0,oo) • 

On the other hand, it holds 

1 , 2 

Í é G2(t, т) dт = — . — 1 — e< + — ± - - e - 2 ^ > ' 
V^ 4fc-1 4fe - ' 

1 1 

Vlc 2 V(fc) - 1 

dт = _ _ _ _ _ e ' + — Г _ _ e - 2 V ( t ) ' + 
4fc — 1 4k - í 

2 y/(k) - 1 
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i.e., there exist constants c0, cx independent of t such that 

/•OO 

ex G2(t, T) d i S c0e
f 

and 

H *Äi)ydт<Ci£, 

Hence, Theorem 4 yields 

SUp | ^ ( t ) - « o ( 0 l = Cie*,2\\Vn - y o | v ( 0 , o o ) ^ 0 

o ^ t ^ £ 

where / = 0, 1. 

Corollary 3. If the function v0 = — w0 + ku0 has derivatives up to the order r 
(r §; 0), vle C[0, oo] (/ = 0, ..., r) and v satisfies the Lipschitz condition with an 
exponent a then 

sup \ul
n(t) - u0(t)\ g Me^2n~r"a i = 0, 1 , 

o ^ t ^ ^ 

where M is a constant independent of £ and n. 

This follows from Corollary 2 and from the Jackson theorem about the rate of 
approximation of a continuous function on the interval [0, 1] by polynomials [3]. 
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S o u h r n 

PŘIBLIŽNÉ METODY ŘEŠENÍ DIFERENCIÁLNÍCH ROVNIC 
NA NEKONEČNÉM INTERVALU 

TERESA REGINSKA 

Autorka uvádí dvě metody přibližného řešení jistého okrajového problému na 
nekonečném intervalu. Prvá metoda spočívá v aproximaci řešení posloupností řešení 
jistých okrajových úloh na konečných intervalech. Druhá metoda je modifikovaná 
kolokační metoda. Dokazuje se existence řešení a konvergence uvedených metod. 

Authoťs address: Dr . Teresa Reginska, Instytut Matematyczny Polskiej Akademii N a u k , 
Šniadeckich 8, Warszawa. 
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