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S V A Z E K 22 (1977) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

ON TWO-DIMENSIONAL AND THREE DIMENSIONAL 
AXIALLY-SYMMETRIC ROTATIONAL FLOWS OF AN IDEAL 

INCOMPRESSIBLE FLUID 

MlLOSLAV FEISTAUER 

(Received July 26, 1976) 

In the investigation of flows of an ideal (i.e. non-viscous) fluid the assumption 
that the flow is irrotational plays an important role because it simplifies considerably 
the fundamental system of equations. A large series of papers has been devoted 
to the solution of irrotational stream fields but the study of rotational flows of an ideal 
fluid has been neglected. 

As the demands of praxis have become more and more complex, the necessity 
to consider more complicated models, among others the models which take into 
account the vorticity of stream fields, has gradually proved obvious. 

In this paper, we shall deal with the solvability of equations describing stationary 
two-dimensional and three-dimensional axially-symmetric rotational flows of an 
ideal incompressible fluid with respect to problems of inner hydrodynamics. Partially 
we follow the works [2, 3], but here we study a more general situation. 

1. FUNDAMENTAL CONCEPTS 

Let E„ denote the Euclidean ri-dimensional space. I f M c En, then by M we denote 
the closure of the set M in En. The Cartesian coordinates in the space E2 will be 
denoted by x, y. 

Let Q c E2 be r -f- 1-multiply connected bounded domain (r = 0), whose bound
ary dQ has r -f 1 components C 0 , ..., C r. Let us suppose that Ct <= Int C 0 (i = 
= 1, ..., r), C 0 is a positively oriented Jordan curve, C} (i = 1, ..., r) are negatively 
oriented Jordan curves, C 0 , ..., C r have finite lengths. 

In the case of a two-dimensional flow the set Q2 = Q represents the region filled by 
the fluid. As an example we can consider the flow round profiles Int Ct(i = 1, ..., r), 
situated in the space Int C 0 . . 
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If we want to consider three-dimensional axially-symmetric flows, then let x, y, </> 
be the cylindrical coordinates, and let x be the axis of symmetry of a stream field. 
The region in E3 filled by the fluid is in cylindrical coordinates given as 

Q3 = {(x, y, (p); (x, y) e Q, (p e < 0, 27c)} . 

We get this set by rotating the domain Q round the axis of symmetry x. In this paper, 
we shall assume that the axis x and the domain Q3 are disjoint, and thus 

(1.1) y>0 for all points (x,y)eQ. 

If we consider a two-dimensional or a three-dimensional flow, we put k = 2 or 
k = 3 respectively. 

Let the set <5Q be devided into three parts <5QM, <5Qr and K: 

(1.2) cQ = dQn u dQt\jK. , 

where the union at the right hand side is disjoint, the set K is finite and the components 
of the sets dQn n Ct and dQt n Ch which we shall denote by Nj> (j = 1, ..., nt) 
and T\ (j = 1, ..., tt) respectively, are open arcs in Ct with the same orientation as 
Ct (i = 0, ..., r). Let C, n dQn ^ 9 for I = 0 , . . . , r. 

The initial point and the terminal point of an arbitrary curve F will be denoted 
by i.p. F and t.p. F respectively. 

Let i.p. C/eK(i = 0, ..., r). 
The stationary flow of an ideal incompressible fluid is described by the following 

system of equations: 

(1.3) d i v V = 0 , 

(1.4) V x rot V = g radH , 

where V is the velocity vector of the fluid (for k = 2, V = (vx, vy) and for k = 3 
we have in the cylindrical coordinates V = (vx, vr v^)), H is the so-called generalized 
enthalpy, 

(1.5) H = I + IV2 + II, 
Q 

p denotes pressure, O density, V the absolute value of velocity and U the potential 
of the exterior volume force. Let us remark that (1.3) is the continuity equation and 
(1.4) represents the Euler equations of motion written in the so-called energetic 
form. 

In the case k = 3 it follows from the assumption of axial symmetry that all quanti
ties characterizing the stream field depend only on the coordinates x, y, and thus 
djdcp = 0. This means that the solution of the three-dimensional axially-symmetric 
flow can be reduced to a two dimensional problem on the domain Q. 
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R e m a r k 1. So far we have not intentionally specified the smoothness of the 
functions V, H, the boundary dQ and the curves or surfaces we shall speak about. 
If nothing else is explicitly stated, we shall assume tacitly that the functions, curves 
and surfaces mentioned are "smooth enough" and that the Green theorem holds 
(see e.g. [5, 6]): 

(1.6) div Váa = í V.NdS 
дa 

for an arbitrary domain o c Qk, with a "sufficiently smooth" boundary do. N is 
the unit vector of the outer normal to do. The integrals can be taken as Lebesgue 
integrals. 

The symbol jV fdS will denote the curvilinear or surface integral, if Sf is a curve 
or surface, respectively. In all cases it will be evident which integral is meant so that 
no confusion may arise. 

Now, let us rewrite the system of equations (1.3), (1.4) in the coordinates x, y or 
x, y, cp and for k = 3 let us take into account the assumption of axial symmetry: 

(1.7) ±{/~2Vx) + ±{/-2Vy) = 0 

ox dy 

Let us put 

(1.8) 

Then, for k = 2, we have 

(1.92) 

and for k = 3 

(l-93) 

дvy õvx 

дx дy 

O7I 
5 

ÕX 

дH 

Jy 

дЛ_A^ Õ(УV«Y 
ôx 2y2 дx 

,2 

dy 2y2 By 

dx dy 

To the system (1.7), (1.8) and (1.9) we shall add boundary value conditions, which 

are divided into three groups. 
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1) Let n denote the unit vector of the outer normal to dQ, let t be the tangential 
vector to dQ oriented in the same sense as the respective curve Cr The vector n = 
= (nx, ny) exists at a given point of the set dQ if and only if the vector t exists at this 
point and t = ( — ny, nx). We shall denote 

K = (vx, vy) . n , 

Vt = (vx, vy).t. 

Let two functions cpn : dQn -» E{ and cpt : dQt -» E1 be given. The term fundamental 
boundary value conditions will be used for the conditions 

(-.10) VH\dQn = <pny 

Vt | dQt = (pt . 

2) Further, let a set Jf c dO (it may be Jf7 = 0) and a function h : j f -> Et 

(for k = 3, moreover, v : 3? —> E<) be given. The conditions 

(1.11) H| J f = h for k = 2 , 

H | tf == ft , v^ | Jf7 = v for k = 3 

will be called auxiliary boundary value conditions. 

The conditions (1.11) determine the vorticity of the stream field. Under some 
assumptions it is possible to prove that it is equivalent to prescribe either H I J^ 
or co | Jf. 

3) Here the question arises whether the conditions introduced above are, at least 
in some cases (e.g. for irrorational flows), complete in the sense of the unique de
termination of the solution of the system (1.7) —(1.9). It appears that it is not so and 
it is necessary to add some further conditions. 

It follows from the equations (1.3) and (1.6) that 

V.NdS = 0, 
in* 

which is thus a necessary condition for solvability of the system (1.3), (1.4). In this 
paper we shall consider a stronger condition 

Í V . N dS = 0 

fulfilled for every component £f of the boundary dQk. This condition, which is 
satisfied e.g. if the boundary dQk consists of fixed, impermeable walls, can be in our 
case written in the form 

(1.12) j / ~ 2 V „ d 5 = 0 , i = 0, ..., r 
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However, if dQt =t= 0, it is impossible to verify this condition in advance. 
To every arc T\, let us assign a real number Q\ and let us consider conditions 

(1.13) ! yk~2VndS= Q\, j=\,...,ti, i = 0 , . . . , r . 
JTiJ 

It is evident that the quantity (2n)k~2 Q\ represents the flow through the part of the 
boundary dQk given by the arc TJ. With respect to (1.13), the conditions (1.12) are 
equivalent to the relations 

(1.14) I /~ 2 V n dS - fXei = 0, i = 0, . . . ,r. 
j = 1 J NtJ J=1 

Further, we shall have to give the data which are equivalent to the determination 
of the "flow between separate components of the set dQk". Let qi (i = 1, ..., r) be real 
numbers, T{ (i = 1, ..., r) arcs with i.p. F- = i.p. C0 and t.p. I\ = i.p. Ct. Let the 
interior points of the arc Ff lie in the domain Q. 

Let us consider the conditions 

(1.15) f yk-2(vx,vy).(t„-tx)dS = qi, i = ! , . . . , - , 

where t = (tx, ty) is the unit tangential vector to the arc F{ oriented in the same 
sense as Tt. The quantity (2n)k~2 qt is the flow through the arc Tt (k = 2) or the 
flow through the surface obtained by the rotation of F, round the axis x (k = 3). 
From the relation (1.6) and the equation (1.3) it follows that qA does not depend 
on the arc Tt, but only on i.p. Tt and t.p. F,. 

The conditions (1.13) and (1.15) will be called the complementary conditions. 
As an example let us consider an irrotational stream field in an annulus given by a po
tential vortex. This field will be determined uniquely, if we give the intensity of this 
vortex, which is equivalent to the determination of the flow between the circles 
that form the boundary of the region filled by the fluid. 

On the basis of the preceding considerations let us formulate the problem. 

Problem (A). Let functions cpn : dQn -> El9 cpt : dQt -> El and real numbers 
Q\ (j = 1, ..., tt, i = 0, ..., r), qt (i = 1, ..., r) be given and let the equalities (1.14) 
with Vn = <pn be satisfied. For k = 2 or k = 3, functions vx, vy, H or vx, vy, v9, H 
respectively are called classical solution of Problem (A) if they are "sufficiently 
smooth" in the set Q and satisfy the system of equations (1.7), (1.8) and (1.9) in Q 
and the conditions (1.10), (1.11), (1.13) and (1A5). 

R e m a r k 2. The concept "sufficiently smooth" is not specified, in accordance 
with Remark 1. It is possible e.g. to take the functions vx, vy, i; , H as elements 
of the space C(Q) n CJ(.Q). However, this assumption is too strong in most cases. 
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In weaker formulations, it is reasonable to assume from the physical point of view 
that the total kinetic energy of the fluid and the potential energy of the pressure and 
the volume force are finite and thus 

(1.16, a) - J yk~'2(v2
x + v2 + (k - 2) v2

p) dQ < +oo , 
2 Q 

(1.16, b) - c o < j yk~2HdQ < + oo . 
JQ 

In virtue of the boundedness of the domain Q and the assumption (1.1), the inequality 
(1.16, a) is fulfilled if and only if 

(1.17, a) J {v2
x + v2)dQ < + o o , 

(1.17, b) | v\ dQ < +co (only for k = 3) . 
J Q 

2. STREAM FUNCTION 

If we confine ourselves to the case of irrotational flows, then to = 0, H = const, 
and for k = 3 also yv^ = const, in Q. The system of equations (1.7) and co = 0 
can be solved among others with help of the theory of analytic or generalized analytic 
functions (see e.g. [8]). For the investigation of rotational stream fields it is con
venient to introduce the so called stream function \J/, which satisfies the relations 

(2.i) T = yk-2v*> r--f-2°>-
dy ox 

If the functions vx, vy e C(Q) n C1^) satisfy the relations (2.1), then they obviously 
fulfil the equations (1.7) and (1.12). Conversely, the equation (1.7) and the assumptions 
(1.12) imply that to the functions vx, vy e C(Q) n Cl(Q) there exists a stream function 
which is unique up to an additive constant. 

Under the assumption that there exist functions A, B e C^Fi) such that 

(2.2) H = A o \j/ for k = 2 , 

H = A o i/> , yv^ = B o \j/ for k = 3 , 

it is possible to transform our problem to the equation 

(2.3) i{^^ + l{a^^fy) = f^ 
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where 

(2.4) 

and 

(2.5) f(y9xli) = A'(xjj) for fc = 2 , 

f(y, *A) = yA'(ip) - -1- C'(i» with C = B2 for fc = 3 . 
2y 

The equation (2.3) was in the case fc = 3 derived in [2], for fc = 2 we can proceed 

quite analogously. 

The boundary value conditions (1.10) imposed on the components of the velocity 

vx9 vy can be transformed into the conditions for the stream function: 

(2.6, a) ^ = _ / - 2 F ( , 
on 

(2.6, b) dA = y*-2Vn. 
ct 

djdn and djdt denote here the derivatives in the direction n and t respectively. Hence, 

the function \jj satisfies the Neumann boundary value condition on the set dQt: 

(2.7) a f 
дn 

2-kдФ ôQt = y 
дn 

ôQt = — ęt 

On the part dQn of the boundary the values of if/ can be determined by integration. 
It is evident that the function \jj is given by (2.6, b) on every component N\ of the 
set dQn up to an additive constant. Nevertheless, with respect to the complementary 
conditions, the function \jj can be determined uniquely on the set dQn. Let us put 
q0 = 0 and consider condition 

(2.8) \j/ | dQn = \j/ , 

where 

(2.9) $\dQHc\Cl = ilri(%) = qi+[ yfc-2V„dS, i = 0 , . . . , r . 
JGi(t) 

Here C((T) is a curve which is part of Ci9 oriented in the same sense as Ci9 with i.p. 
C.(T) = i.p. C. and t.p. Ct(T) = T G dQn n Ct. Further, Vn | dQn n Ct = cpn \ dQn n 
n Ct. Moreover, we substitute the values Q\ into (2.9) instead of the integrals over the 
components T{ of the set dQt n Ct where q>„ is not given. 

If the functions A and (for fc = 3 also) B are known, then we obtain the problem 
(2.3), (2.7), (2.8) which we shall call the problem for the stream function and denote 
it as 
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Problem (B). Let functions cpn : dQn -» Eu <pt : dQt -> Fx and A, B e C1(El) be gi

ven. We shall call a function \j/, the classical solution of Problem (B), if it is "smooth 

enough" in Q and satisfies the equation (2.3) in Q and the conditions (2.1), (2.8) 

on the boundary dQ. 

R e m a r k 3. The solution \j/ can be considered "smooth enough" if e.g. \j/ e 

e CX(Q) n C2(Q). In weaker formulations let us assume (see (1.17, a)) that 

(2.10) jj (Щ2 dü < + oo 

(we use the notation V\jj = grad \j/ = (dxl/jdx, dif/jdy)). 

Now, let us consider the connection between Problems (A) and (B). 

Theorem 1. Let if/ be a classical solution of the problem for the stream function. 

Then the functions 

(2.11) H = Aoф , 

2-k дф 
vx =У2 k-~, 

дy 

2-k дф 
vy = -y2 к — 9 

дx 

vę = - (B o ф) (only if к = 
y 

= 3) 

form a classical solution of Problem (A) if and only if 

(2.12) (A o xj/) | X = h , 

-(Boxj/)\ jf = v (only ifk = 3) . 
y 

R e m a r k 4. If jf c dQn, then with respect to (2.8) and (2.9) the conditions (2.12) 

can be verified immediately, without determining the solution of Problem (B). The 

conditions (2.12) are evidently equivalent to the relations 

(2.13) (A o xj/.) | jf n Ct = h \ Jf n Ct, i = 0, ..., r 

- (B o ij,.) I tf n C^ = v I ̂  n C,, i = 0, ..., r (only if k = 3) . 
y 

Proof of Theorem 1. First, it is evident that the vector (vx, vy) satisfies the boundary 

value conditions (1.10) — see the relations (2.6). Further, since d2\l/jdx dy = d2ij/jdy dx, 

the equation (1.7) is satisfied. 
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Now, let us put the functions (2.11) into the equations (V9). Let us consider the 
case k = 3, for k = 2 the situation is still simpler. We obtain 

- — co = );(A o iA) — - — (C o tfr) — , 
Ox Ox 2y Ox 

-d±(0 = y(A'^)d±--L(Co^, 
dy dy 2y dy 

0 = ^ ( B ' o ^ ^ _ ^ ( B ' o ^ ) ^ . 
dy dx dx dy 

The validity of the last equation is evident immediately, the first two equations are 
satisfied in view of (1.8) and (2.3)-(2.5): 

dx \y dx) dy \y dy J 2y 

Finally, it remains to verify that the conditions (1.13), (1.15) and (1.11) are ful
filled. It follows from the relation (2.9) that ^(i.p. Ct) = q{ (i = 0, ..., r), where 
of course q0 = 0. If Ft is an arc whose inner points lie in the domain Q, i.p. rt = 
= i.p. C0, t.p. F, = i.p. Ch then by (2A) we have 

^ y(vx, vy). (ty, - tx) dS = f (& , - 8£). (ty, - tx) dS = 

Í. ^ dS = «Ht.p. rf) - # . P . r ř) = qt - qo - qt 

r. dt 

Similarly, if we use the formula (2.6, b), we conclude 

r yV„ dS = r ^ dS=iHt.p. T{) - ^o.p. T{) . 
jTtJ jTtJ dt 

From the comments to the relation (2.9) it follows that i^(t.p. TJ) - \j/(i.p. Tj) = g j , 
Now, it is evident that the conditions (1.11) will be valid if and only if the conditions 
(2A2) are valid. 

R e m a r k 5. In paper [2] the following assertion was proved: Let vx, vy, v^, 
HeCx(Q) and a function \// satisfy the relations (2A) in Q. Further, let A,Be C 1 ^ ) 
and A 0\j/ = H, B 0 ijj = yv^. If (vx, vy) 4= 0 in Q and vx, vy, v^, H is a solution of the 
system (1.7), (1.8) and (1.93), then ^ is a solution of the equation (2.3). The assumption 
(vx, vy) =j= 0 can be weakened, if we admit that the set of elements of Q where (vx, vy) = 
= 0 is isolated. 
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It follows from the preceding considerations that the functions A and B must be 
necessarily known if we want to solve Problem (A) with help of the stream function. 
It is evident that these functions depend on the auxiliary boundary value conditions. 
If J f = 0 (the auxiliary conditions vanish), then it is natural to choose the functions 
A, B as convenient and simple as possible — e.g. A = const., B = const., which 
corresponds to an irrotational flow (rot V = 0). 

Quite a different situation arises if some auxiliary conditions are given. Then the 
complete problem must be formulated as follows: 

Problem (C). We look for functions A, B : EL -> Ex and \\i : Q -> EL such that 
(2.3), (2.7), (2.8) and (2.12) hold. 

Under the assumption that Problem (B) has solutions for all functions A, B from 
a wide enough class, the solution of Problem (C) (and thus also of Problem (A)) is 
reduced to the investigation of the possibility to determine these functions. In this 
paper we shall deal with the solution of the above mentioned problem in the case 

(2.14) JPczdQn. 

Let us determine \jt | dQn by (2.9) and denote 

(2.15) M = ij/(j^). 

The necessary and sufficient condition for the existence of functions A and B with 
properties (2.12) is the implication 

zu z2eJt?, il/(zt) = \l/(z2) => h(zt) = h(z2) , (yv) (zx) = (yv) (z2) . 

In other words, this condition is valid if h(\j/__ x(t)) and (yv) (i//_ x(t)) are one-point sets 
for every t e M. Then we can put A(t) = hfa-^t)), B(t) = (yv) (\J/-l(t)) for every 
t e M. For a wide class of practical cases it is possible to extend these functions 
to the set Ex so that A, B e C1(El) and moreover, to satisfy some further demands 
concerning the behaviour of these functions which follow from physical considera
tions (see e.g. (1A6)). We cannot go into details. The situation is quite clear, if 2tf 
is an arc, Vn | J f is a continuous bounded function whose sign does not change, and 
the functions h and v have a continuous derivative along the arc 2tf. The case when 
the condition (2.14) is not valid, remains open. 

Let us add that if Ct n dQn = 0 for some i e {1, ..., r), then we do not prescribe 
qh i/> fulfills (2.7) on Ct and all our results remain valid. 

3. SOLUTION OF THE PROBLEM FOR THE STREAM FUNCTION 

In this section we shall study the solvability of Problem (B) under the assumption 
that the functions A and B are known. We emphasize that we shall confine ourselves 
to the investigation of the so-called weak solutions. 
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We shall start with the recapitulation of some concepts already mentioned which 
can be considered here in a weaker sense, and introduce some new essential concepts 
and notation. 

Let the integral and measure considered be the Lebesgue integral and measure. 
Let Q cz E2 be a bounded domain with a Lipschitz boundary dQ. The set dQ is 
a disjoint union 

(3.1) dQ = dQn u dQt u K 

of sets measurable with respect to one-dimensional measure fit defined on dQ> 

where 

(3.2) A*i(X) = 0 , fi1(dQn)>0. 

Let us denote 

Kj = inf [y; 3x(x, y) e Q} , R2 = sup {y; 3x(x, y) e Q} . 

We suppose that Rx > 0 for k = 3 (see (VI)). 
Let W\(Q) be the well-known Sobolev space of all (equivalent classes of) functions 

u e L2(Q) whose first generalized derivatives dujdx, dujdy e L2(Q). The space W\(Q) 
is equipped with the norm 

MH-(f.e+^+e))«r-(f^+(^-)". 
We define the subspace of W\(Q) 

(3.4) V = {u e W\(Q) ; u \ dQn = 0} 

(the relation u j dQn = 0 is considered in the sense of traces — see [5, 6]). W\(Q) 
and Vare Hilbert spaces. 

Let \jj0 e W\(Q) denote a function such that 

(3.5) i//0 | dQn = {j} , 

where $ is the function from the boundary value condition (2.8). Further, let the 
function cpt from the condition (2.7) be an element of the space L2(dQt). If we put 
g | dQt = — q>t and g | dQ — dQt = 0, then g e L2(dQ). 

We shall solve our problem in the space W\(Q). Then the condition (2.10) will be 
fulfilled. Let us suppose that the functions A and B have continuous and bounded 
derivatives in E1. From here it follows that the function / i s continuous in the set 
<_Rl9 K2>

 x -&1 a r jd 

(3.6) | / | ^ c, in <K1? K2> x E, . 

(Symbols cx,c2, ... denote constants.) Let us remark that the function a defined 
in (2.4) satisfies the inequalities 

(3.7) 0 < c2 = a ^ c3 in Q . 
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Now, let us introduce the following definition: We shall say that i/J e WJ(^) 
is a weak solution of Problem (B), if it holds: 

(3.8, a) <A - 4f0 E V, 

(3.8, b) (aVф . v + /(. , ф) v) ÚQ = ì gv áS Vv є V. 
Q J ÕQ 

It is evident that both integrals in (3.8, b) are convergent. By using the Green theorem 
we can easily find out that a classical solution of Problem (B) satisfies (3.8) and con
versely, a sufficiently smooth weak solution is a classical solution. 

The problem (3.8) is obviously equivalent to the equation 

(3.9) J (aV(i/>0 + u). Vv + / ( . , il/0 + u) v)dQ - \ gv dS Vv e V 
J Q J dQ 

for the unknown u e V (see (3.5)). In the following paragraphs we shall deal with 
the solvability of the problem (3.9). For this purpose let us introduce several concepts. 

If V is a real Banach space, then V* will denote its dual, i.e. the Banach space 
of all real continuous linear functionals defined on the space V, with the norm 

[|/|| = sup | < / »>| 
veV 

IMI«-
for every fe V*. The symbol </, v> denotes the value of a functional / at a point 
veV. 

Let Vbe the Hilbert space defined in (3.4) (Vis a reflexive Banach space). Let us 
define the operator T : V-> V*: 

(3A0) <T(u), v> = f (aV(i//0 + u). Vv + / ( . , i//0 + u) v) dQ (u, veV). 

In virtue of the theorem on traces, the mapping "v —> §dQ gv dS" is a continuous 
linear functional defined on V. If we denote it by / then </, v> = j d a gv dS. Hence, 
the problem (3.9) is equivalent to the solution of the equation 

(3.11) < T ( u ) , v > = < / v > VveV , 

with respect to u e V, or 

(3.12) T(u) = f. 

We shall use the monotone operators method for the solution of the equation 
(3.12) (see e.g. [1, 7]). If we define operators M, N : V -> V* by the relations 

(3.13) <M(u), v> = f aV(iA0 + u) . Vv dQ , 
JQ 

<N(u), v> = - f / ( . , xjj0 + u)v dQ (i/5 v e V) , 
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then T = M — N. It follows from general results in the monographs [1, 7] that the 

operator T is hemicontinuous and the operator N is continuous from the weak 

topology of Vto the strong topology of V*. Thus, it will suffice to prove that (see 

e.g. Theorem 6,3 from [1]) 

(314, a) <M(ul) - M(w2), wx - w2> _ 0 Vul5 w2 e V 

(M is monotone) and 

(3.14, b) lim 
<T(u),u> _ + < 

мєV !1 І! 

(Tis coercive). 

For the following considerations we shall need the assertion known as the Fridrichs 

inequality ([6]). 

Theorem 2. Let V be the space defined in (3.4) and lei dQn satisfy the assumption 

(3.2). Then there exists a constant c 4 > 0 such that 

(3.15) Í" 2 d ß < c. (Vu)2dO VweV . 

From here it follows at once that the norms (3.3) and 

(3.16) п\y = (J uľ d ß 
1/2 

are equivalent on the space V. It means that there exist constants c5, c 6 > 0 such 
that 

(3.17) c5||w|| S \\u\\v _ c6\\u\\ V M G F -

Let us show now that the operators M and Tsatisfy the conditions (3A4). It holds 

<M(u t) - M(w2), W l - u2> = j a(V(u t - u 2 )) 2 dQ ^ 

^ c 2 | |ui - u2\\v -S c 2 Cs|K - w 2 | 2 . 

Hence, (3.14, a) is valid and the operator M is even strongly monotone. Further, 

<T(w), w> = f [aV(^ 0 -f- w) . Vu - / ( . , î o + u) u] dO ^ 

> C (Vu)2 áQ - cъ j Vф0 • Vw dQ - cAÏ u dQ 
Jß IJß I IJ Í2 
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By using the Cauchy inequality we get 

<T(u), u> ^ c2||u||V -c*(( i^o)2 dQ\ | |II||K - cx fi(Q) ||u|| 

(/L(.Q) denotes the measure of the set Q), so that, in view of (3.17), 

<T(u), u> :> c2c2||u||2 - c71II|| , c7 = c3c6 f f (ViAo)2 do\ + cx fi(Q), 

which implies immediately the relation (3 A4, b). We have proved the following 
theorem: 

Theorem 3. Let A, B e CX(EX), the functions a and f be given by the formulae 
(2.4), (2.5) and let (3.2), (3.6) and (3.1) hold. Then the problem (3.9) has at least one 
solution. Hence, the problem for the stream function has at least one weak solution. 

The problem of the uniqueness of the solution remains open. The uniqueness of the 
solution of Problem (B) is guaranteed e.g. if the function f(y, t) is for every y e 
e<jRl5JR2> a nondecreasing function of the argument t. This assumption implies 
that the operator T is strictly monotone. However, it is difficult to interpret this 
assumption from the physical point fo view. E.g., for k = 2 it means that the vorticity 
co is nonincreasing in dependence on the magnitude of the flow. In the report [4], 
an example of a "reasonable" stream field was studied, for which this assumption 
is not satisfied. 

The second possibility is that the function / satisfies the condition 

(3-18) \f(y, tx) - f(y, t2)\ S K\tx - t2\ 

Vye(Rx,R2y, Vtx,t2eEx, 

with a sufficiently small constant K. The detailed calculation shows that it is sufficient 
if 

(3.19) 0 ^ K < c 2 c 2 . 

This assumption can be interpreted physically in such a way that the vorticity varies 
only little in dependence on the magnitude of the flow. It does not mean, of course, 
that the vorticity is small! 

Thus, we can formulate a uniqueness theorem of the solution of Problem (B). 

Theorem 4. Let the assumptions of Theorem 3 hold and let either for every y e 
e(Rx, K2>, f(y, t) be a nondecreasing function of t, or (3.18) and (3.19) be valid. 
Then the problem for the stream function has exactly one solution. 

Nevertheless, the problem of the uniqueness of the solution of Problem (A) is 
not solved since it depends on the extension of the functions A and B from the set M 
(see (2.15)) to the whole set Ex. When \//(Q) = M for every ^ which we get as a solu-
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tion of Problem (B) with arbitrary extensions of the functions A, B from M to El 

(satisfying the conditions introduced above), the uniqueness of the solution of Pro
blem (A) in the class of stream fields satisfying the assumption (2.2) is equivalent 
to the uniqueness of the solution of Problem (B). Here the question arises whether 
it is possible to accept the hypothesis that every well-founded stream field satisfies 
the assumption (2.2). It would be useful to carry out a series of experiments and to com
pare their results with the calculations based on this theory. 

For irrotational flows we have / = 0. The functions A and B are constant on M 
and the only possibility is to extend them to E1 by the same constants. In this case, 
the solution of Problem (B) is unique. Under some assumptions on regularity of the 
solutions of Problem (A) which guarantee the existence of the stream function, 
we get the uniqueness of the solution of Problem (A). This implies that the boundary 
value conditions considered in the formulation of Problem (A) are in fact complete 
in the mentioned sense (see Section 1). 

In conclusion, let us show in which sense the functions (2.11), given by a weak 
solution \jj of Problem (B), satisfy the system of equations (1.3) and (1.4). First, 
let us notice that the functions (2.11) are elements of the space L2(Q). The vorticity co 
and the equations (1.7), (1.8) must be considered in the sense of distributions. It is 
evident that dH\dx9 dH\dy e L2(Q) and for k = 3 also d(yv(p)\dx, d(yv(p)\dy e L2(Q). 
The third equation (1.93) is thus fulfilled almost everywhere in Q9 as can be found 
by substitution. The equation (3.8, b) implies that the distribution co can be identi
fied with the function f(y9 \\J(X9 y))9 which is measurable and bounded in Q. Thus, the 
system (1.9) is (after this identification) satisfied almost everywhere in Q. Let us add 
that on the basis of the theorem on traces, the boundary value conditions (2.8) can 
be interpreted as a given flow through the curves Ct(x) (i = 0 , . . . , r) defined in the 
comments to the relation (2.9). 
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S o u h r n 

DVOUROZMĚRNÉ A TŘÍROZMĚRNÉ OSOVĚ SYMETRICKÉ 
ZAVÍŘENÉ PROUDĚNÍ IDEÁLNÍ NESTLAČITELNÉ TEKUTINY 

MILOSLAV FEISTAUER 

V článku je vyšetřován obecný problém dvourozměrného a třírozměrného osově 
symetrického stacionárního zavířeného proudění ideální nestlačitelné tekutiny 
v omezené oblasti. Soustava diferenciálních rovnic sestávající z rovnice kontinuity 
a pohybových rovnic zapsaných v energetické formě byla doplněna třemi druhy 
okrajových podmínek, které jsou úplné v tom smyslu, že pro nevířivé proudění 
zaručují jednoznačnost řešení. Tato úloha pak byla po zavedení proudové funkce 
přetransformována na okrajovou úlohu pro kvazilineární parciální diferenciální 
rovnici druhého řádu se smíšenými okrajovými podmínkami, jejíž řešitelnost 
byla vyšetřena pomocí teorie monotónních a pseudomonotonních operátorů. 
Nakonec byla diskutována jednoznačnost řešení a otázka, v jakém smyslu splňují 
zmíněnou soustavu rovnic funkce dané slabým řešením úlohy pro proudovou funkci. 
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