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SVAZEK 23 (1978) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

ON SIMULTANEOUS INFERENCE IN MULTIDIMENSIONAL 
CONTINGENCY TABLES 

TOMAS HAVRANEK 

(Received October 15, 1976) 

Investigating the GUHA-methods (cf. [4], [6] and [7]) we meet an interesting 
method of treatment of multidimensional contingency tables (an up-to-date detailed 
description of these methods can be found in [7]). In fact, in such methods the 
computer processes a set of 2 x 2 tables derived from the original 2 x 2 x . . . x 2 
table and on each such 2 x 2 table the hypothesis of independence is tested. It is 
clear that we face here the problem of simultaneous inference. As was shown by 
Andel [1] the interaction test has good properties in such situations. In the present 
note we prove a theorem showing the properties of this test for the set of tables 
derived in a particular manner. These derived tables cannot be obtained via inter
actions or generalized interactions, hence our Theorem 1.8 covers situations distinct 
from those of AndeTs Theorem 3. 

I. DERIVED CONTINGENCY TABLES 

1.1. Consider the following examples: We have a 2 x 2 x 2 contingency table 
with the frequencies 

Wltl> w101 J "no> "too 
woti.» "ooi 9 "oio? nooo ? 

such a table refers to three properties (w1 0 1 is the frequency of objects possessing 
the first and the third property, but not the second). We can ask whether the first 
property Pt is associated with the conjunction of the second and the third property 
(P2 and P3). Then we must consider the following derived 2 x 2 table: 

w u i » w to i + " n o + "TOO 

" o n > "ooi + "oto + "ooo 

and test an appropriate hypothesis of dependence. 
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Such a way of deriving contingency tables is characteristic for the present GUHA-
methods; even rather complicated cases described by means of prepositional calculus 
can occur (cf. also [9], with applications in sociology). 

1.2. R e m a r k . The usage of logical means is not incidental, it has a rather deep 
reason: 

If we consider a model theory of finite dichotomously valued (i.e. finite classical) 
monadic models of a finite type t and we restrict ourselves to facts invariant with 
respect to the isomorphisms of models, we see that all such models can be represented 
by finite dimensional (t-dimensional) contingency tables. If M is such a model, it 
can be represented by a table (or vector) 

n(M) = <n0,...,o>--->ni,...,i> ; 

nii,...,it is l n e frequency of objects having the value <i1? ..., ir>. Thus the logical 
apparatus of the model theory can be (and is) a good formal means for investigating 
contingency tables. 

1.3. Suppose we observe some random properties (i.e. alternative random variables) 
on a set of objects M; let Pl9 ..., Pt be the names of the properties. Random proper
ties observed on objects form a sequence of t-dimensional random variables. We shall 
assume that this is a sequence of independently and identically distributed variables. 
Hence the distributional properties are described by a vector of probabilities 

P = <P0,...,0> P0,...,0,1,> • • •>P i , . . . , i> > 

where Piu...,it is the probability that the first property assumes the value il9 the 
value i2 etc. We shall suppose here piu,„tit > 0 for each <i1? ..., it} e {0, l} f . The 
vector of the observed frequencies n is multinomially distributed with a parameter p. 

1.4. Consider composite properties named by elementary conjunctions, i.e. 
consistent conjunctions of literals. (Literals are atomic formulas P, and negated 
atomic formulas "lP/9 a conjunction of literals is consistent if each predicate Pj 
occurs in it at most once. Examples of elementary conjunctions: P2 & ~1P4, Pi, 
I P i & P2 & "1P4; example of an inconsistent conjunction of literals: Pi & "IPi & 
& P4.) The meaning of a statement "an object possesses the property named by an 
elementary conjunction" is obvious (e.g. an object possesses P2 & "1P4 iff it pos
sesses P2 and does not possess P4). If we have now two disjoint conjunctions <pl9 cp2 

(i.e. (pl9 cp2 have no common predicates) we can ask whether they are associated (not 
independent). 

1.5. Example . In the example from 1.1 we speak about the association of Pi 
and P2 & P3. If we consider the association of Pi and P2 & "1P3, we have to use the 
table 

w l 10 > "l,00 + H i n + H i d 

Hoio 9 H 0 0 0 + Ji0 i i + n001 . 
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Similarly for four properties Pl9 P2, P3, P4 (say sex, treatment, symptom A, symptom 
B) one can construct a table corresponding to the relation between Pi & ?i and 

P3&HP4. 
The above presented tables are constructed using the following rule: Suppose we 

want to construct the table corresponding to elementary conjunctions <Pu Vi- The 
boolean functions corresponding to <p^ and <p2 are used. Denote them by (<Pi)*> (^2)* 
respectively. In each cell of the 2 x 2 table we place the sum of frequencies with 
indices for which the boolean functions give values in the corresponding cell of the 
following pattern: 

VI, 1,0 

0, 1 , 0, 0 
In our example: 

indices boolean functions (or 

h> Һ>h (Pi)* (P2 & P3(* (Pl)* (Pг & П P 3 ) 

0 0 0 0 0 (0 0) 

0 0 1 0 0 (0 0) 

0 1 0 0 0 (0 1) 

0 1 1 0 г (0 0) 

1 0 0 1 0 (1 0) 

! 0 1 1 0 (1 0) 

l 1 0 1 0 (1 1) 

1 1 1 T f (1 0) . 

Now the reader can easily construct a table for the relation between Px & P2 and 
P3 & "IP4 (here 1110 corresponds to 1, V etc.) Note that we could use other forms 
of open formulae in the same way. 

V6. If n is a t-dimensional table and <p, x// two disjoint composite properties 
(without any common atomic property), then the following derived table is relevant 
for the association of <p and \JJ: 

I [<p, if/, n) = 
£oi(<rS^M)> £0o(<?>>*M)-

Here 

£,/<?, <M) = £ nh.....h-
{<ii...,it>;(<p)*(ii,...,it)=i,(^)*du...,it)^j\ 

Clearly, we can apply a test of independence in 2 x 2 contingency tables to our 
derived table T(<p, \jj, n). 

1.1. If we consider a set S of pairs of disjoint composite properties, we face 
a simultaneous inference problem. Particularly, we can ask what is the probability 
that, when testing the independence of pairs from S in a tables n, one or more er-
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roneous inferences occur under the assumption of the total independence; i.e. the 
probability of the global error of the first kind. 

We know that the interaction test has good simultaneous test properties (cf, [1]). 
Hence we apply this test here. 

Consider a 2 x 2 table ( ' 1. By the interaction test we reject the hypothesis 

of independence if 
(\ \ \ \\~i/2 

log {ad/be) ( - + + - + - ^jf 
\a b c dj 

where JCa/2
 ls the (l — a/2)-quantile of the normalized normal distribution. We can 

apply this test to the set S of pairs of composite properties. For S = {<<Pi, iKX ••• 
•••- <<?*> lh}} we use some significance levels a1? . . . ,a f c and apply the interaction 

test to the i-th pair as follows: put ( ' J = T{cph \j/h n) and a = at and use the 

above described decision rule. Then we can prove the following theorem: 

1.8. Theorem Let n be a contingency table and let S = {<<pl5 i/^>, . . . , <<pfc, \j/k}} 
k 

be a set of disjoint pairs of composite properties. Put as -= 1 — Y\ (1 — a,)' Then the 
i = i 

probability of the global error of the first kind is asymptotically (in the cardinality 
of samples) less than or equal to as. 

II. PROOFS 

2.1. We have now to introduce some further notation. Having a pair <<pf, ?//(> 
we put 

(1) 9i{n) = log £ l t(<p f, <Af, n) - log Y.oi{<ph «Af, n) 

- l o g Zio(<Pi> $u n) + -og Y.oo{<P» ^i, n) 

and 
,1/2 

KLiiKФhФh" 
+ ^ - 7 ; — \ + г̂—; ;—т + !) Zoi(<P»> ^b n) Y,to{(ph fi, n) Xoo(<P., i> iA 

Hence our test rejects the independence hypothesis on the derived table T(<ph t/',-, n) 

iff 

kM 
Si(n) 

Ш JГaìl2 

2.2. Lemma. Let Xn be a sequence of k-dimensional random vectors having 
asymptotically the Jf{Q, A) distribution {normal distribution with zero means 
and regular covariance matrix A). Let v]{Xn) be consistent non-zero estimates of an 
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(i = 1, ..., k). Then Xn, where Xfn = Xin\at(X) for i = 1, . . . , k, has asymptotically 
the ,/V(0, A!*) distribution, where A* is a matrix with diagonal elements equal to 1. 

(The lemma follows from 2.c.4.(x) in [10].) 

2.3. Lemma (Sidak [l 1]). If variables Xu ...,Xk have a k-variate normal distri
bution with zero means, then 

P(\Xt\ < ct,..., 1**1 < ck) ^ P(\XX\ < Ci)...P(\Xk\ < ck) . 

2.4. P r o o f of Theorem 1.8. It is clear that 

<V(n)(no,...,o/« - Po,...,o)> -•-> \/(n)(n1%„.tiln - Pi i)> 

has asymptotically a 2f-variate normal distribution with zero means and the dis
persion matrix 

/ Po....,o0 ~ JPo....,o)> -P0,...,0P0 H • • \ 

P = I -Po,...tPo,...,o> ••• ] • 

\ Pi tO - P I i ) / 

Consider now functions at- as defined in (l) and hence the vector variable 

*n = Q(n)(gi(n\n) - gt(p)),..., yj(n)(gk(n\n) - gk(p))> , 

where 

n/n = <w0,....o/"> •• •»«!,...,i/w> 

and n is the cardinality of the sample. Thus we obtain, for the diagonal elements of 
the dispersion matrix of Xn, 

y w = L L v<iL...,it>oi,...jt> > 
<«i....»'«> <i i Jt> dPii,...,it

 dPju...jt 

where ^.,...,;,><;.,...,jt> are elements of V. For gt corresponding to (q>h _ f> we have 
yi(P) ~ SKP) ( t o P r o v e ^ 1S a principally elementary but tedious exercise). By Lemma 
6.a.2. (iii) in [10] we see that Xn has asymptotically a normal distribution with the 
diagonal elements i\(p). (Moreover, vt(p) = s2(p) > 0.) 

Note that under the null hypotheses we have g,(P) = 0 for i = 1, ..... k. 
Moreover, we have s2(njn) = n s](n) and gi(n\n) = g _/*); we see immediately that 

s2(n\n) > 0 for i = 1, ..., k and that s2(n\n) is a consistent estimate of 5?(_). Hence 
by 2.2 

'________) \ _ / _ _ _ ) 

S^JI/H) / \s1(n) 

has asymptotically a k-variate normal distribution with zero means and the diagonal 
elements of the dispersion matrix equal to 1. 
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Now we apply Lemma 2.3 to estimate the probability of error. By the lemma we 
have 

u \x\ ^ Cl) Š i - n 
i = 1 i = 1 

(2) P(\j\Xt\^ct)^l-Yl(í-P{\^t\^ct). 

If now a l 9 , . . , ak are some numbers (at e (0, 0-5)) and Xl9..., Xk are multinormal 
variables with zero means and with VAR (Xt) = 1 we obtain by (2) 

p(\j\x,\^jfai/2)^i-U(i-«,)-
i=i i = i 

Applying the asymptotical properties of g^njjs^n), i = 1 , . . . , k, we have 

fc k 

lim [P( U M » ) | ^ ^ , 7 2 «.(»)) - P( U \X,\ ^ JTatl2)\ = 0 
n -* + oo i — 1 i = 1 

under null hypotheses, which completes the proof. 

III. DISCUSSION 

3.L Our proof depends on the idea of Andel's proof of Theorem 3 in [1]. But 
Andel's proof is not quite complete: it is based on the incorrect Rao's lemma 6.a.2.11. 
Andel's proof can be corrected using our Lemma 2.2 to prove that 

P(\dt - Sx\< cSdl,..., \dw - 5W\ < cSdw) -

- P d Y i J < c , . . . , | Y w | <c), where Yt,...,Yw 

are multinormal with zero means and with the diagonal elements of the dispersion 

matrix equal to 1, converges to zero. (Since - - —- i = 1, . . . , w has asympto-
S<ti> 

tically the desired distribution. In Andel's proof 

P(\dt - 5i\< cSdl, . . . , \dw - dw\ < cSdJ -

- Pfly-J < c V(n) Sdl,..., \Yw\<c y/(n)'Sj 

need not converge to zero; note that the left expression is incorrect; <[Sdi, ..., 5dw> 
is a random variable and the probability concerns <Y1? ..., Yw> (see [ l ] , p. 104)). 

3.2. Exactly the same error occurs in the proof of Theorem 1 of [1]. The proof 
of this theorem could be completed using the following easy lemma: 

Let Xn be a sequence of k-dimensional random vectors having asymptotically the 
JV(0, A) distribution (A is assumed to be regular). Let An = f(Xn) be consistent and 
regular estimates of A. Then XnA~xXn has asymptotically the ^-distribution with k 
degrees of freedom. (A proof can be based on 2.C.4 from [10].) 
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3.3. Both Lemmas 3.2 and 2.2 have the same basis: norming the sample values 
by estimates of variances (or covariance matrix) based on the same sample values. 
Note that in all cases (Theorem 1.8 here and Theorems 1 and 3 in [1] and many 
others) the idea is to establish that t(Xn) converges in distribution to X, where Xhas 
a distribution independent of the sample values. 

3.4. All the proofs could be completed using Rao's lemma 6.a.2.H in its true form, 

i.e. sup \Fn - H„\ -> 0. 

However, by the first step we obtain then only the convergence in probability which 
leads to further complications. The "norming" method seems to be more natural 
and straightforward. 

3.5. How numerically good is the improvement of the Bonferroni bounds achieved 
by Theorem 3 of [1] or Theorem 1.8 of the present note? Consider some usual sig
nificance levels (probabilities of the error of the first kind) and a moderate number 
of tests: 

level of number of tests 

one test 3 5 

0004990 

10 15 20 

0-019811 

30 

0001 0002997 

5 

0004990 0009955 0014895 

20 

0-019811 0029569 
0003 0005 0010 0015 0020 0-30 

0005 0-014925 0-024751 0-04889 0-07243 0-09539 013962 
0015 0-025 005 0075 0-1 0-15 

001 0-0297 0-0490 00956 01399 0-1821 0-2603 
003 005 0 1 0-15 0-2 0-3 

002 0-0588 00961 0-1829 0-2614 0-3323 0-4545 
006 0 1 0-2 0-3 0-4 0-6 

005 0-143 0-226 0-401 0-537 0-642 0-785 
015 0-25 0-5 0-75 1-0 1-0 

(the upper numbers are our bounds, the lower are the Bonferroni bounds). 
We see immediately that our (and Andel's) bounds are considerably better than 

Bonferroni bounds for values of the global probability greater than 0*10, i.e. out of 
the conventional region of admissible values of probability of an error. 

Another comparison of the effectiveness of such bounds for simultaneous inference 
methods, using the given probability of the global error of the first kind and on this 
basis computed critical levels and critical values, can be found in [3] (with further 
references). 
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Souhrn 

O SIMULTÁNNÍ INFERENCI 
V MNOHOROZMĚRNÝCH KONTINGENČNÍCH TABULKÁCH 

TOMÁŠ HAVRÁNEK 

V článku je studována otázka simultánní inference pro mnohorozměrné kon-
tingenční tabulky typu 2 x 2 ... x 2. Je popsána metoda odvozování kontingenčních 
tabulek 2 x 2 , které odpovídají „složeným" vlastnostem; tyto tabulky nemohou být 
obdrženy z původní tabulky pomocí obvyklého kolapsování na marginální tabulky. 
Je dokázána věta asymptoticky omezující hladinu pravděpodobnosti celkové chyby 
prvního druhu při použití interakčního testu (viz [1]). Je dále diskutována efektivnost 
takto dosažené hladiny a uvedeny některé doplňky k článku [1]. 
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