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SVAZEK 23 (1978) APLIKACE MATEMATIKY cisLo 2

ON THE EXISTENCE OF A WEAK SOLUTION
OF THE BOUNDARY VALUE PROBLEM FOR THE
EQUILIBRIUM OF A SHALLOW SHELL REINFORCED
WITH STIFFENING RIBS

IGor Bock, JAN LoVISEK

(Received October 25, 1976)

The paper deals with the existence and the unicity of a weak solution of the bound-
ary value problem for a shallow shell reinforced with stiffening ribs. The boundary
value problem is formulated as a direct variational problem, hence we obtain a weak
(or variational) solution of the problem (the corresponding bilinear form is not
symmetric). The method of finite elements is used for numerical analysis of our
problem.

1. FORMULATION OF THE PROBLEM

A shallow shell (Fig. 1) is a thin planar construction the tension of which is small
compared with the radius of curvature of the middle surface. The theory of shallow
shells is based on the assumption that the middle surface of the shell with its small

Fig. 1.
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tension obeys the laws of Euclidean geometry in the plane with greatest values of
projection of the whole surface.

We suppose that the middle surface of the shell can be expressed in Cartesian
coordinates (x, y, z) by the equation z = z(x, y). Then under the assumptions
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Fig. 2.

the middle surface of the shell obeys the laws of Euclidean geometry in its projection
plane Q. The stiffening ribs have generally the form of curved beams of a constant
cross section. The reference axis of the rib is the line connecting the centres of all
cross sections of the beam. We assume that the ribs are placed on the inner side of the
shell (e, > 0, Fig. 2). We denote by

(11) q, = <ans Qyn> dzns r”yx>T >

— T
qm = <qym7 Gxms> Dzm» ’nxy>

the vectors of the unknown contact forces on the boundary of the contact between
the shell and the n-th rib (in the direction X) and the m-th rib (in the direction Y),
respectively (Fig. 4; positively directed inner forces of the rib and of the shell as well
as the components of the surface powers are shown in Figs. 2, 3, 4).
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The equation for the equilibrium of the shell is of the operator form

(12) [P]{u} = {p},

where

{p} = {Pwx> Pnys Pnz)"

is the vector of the surface strains (Fig. 4),
{u} = Cu, 0, w)T

is the displacement vector of the middle surface of the shell.

Fig. 4.
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The elements of the matrix [P] are differential operators exactly expressed in
[6], [7]- We do not express their explicit form here. The equations of statical com-
patibility for thin curved beams are expressed in the form

(1.3) [R] {u} = {a}
with
{w,} = <u,, v, w,, 6,07,

where u,, v,, w, express the displacement of the points of the axis of the rib and O,
expresses the rotation of the cross section of the rib. {g,} is the vector of generalized
forces (1.1), [R] = [K], where the elements of the matrix [K]| — differential opera-
tors — will be introduced in the end of this chapter. We suppose that the boundary
of the contact between the rib and the shell is only on the intersection of the per-
pendicular plane of the rib and the middle surface of the shell. The perpendicular
axis Z of the rib is the main central axis of the inertia, which is orthogonal to the
“supporting” surface (ry, r,) of the shell. We formulate therefore the conditions
of the contact in the following way:

1) statical
Axn = -Anxa qyn = —-ASx, 9zn = '_Atxz’ m

yx

2) geometrical
* * *
u.=u, v.=v, w =w,

0, = 0, , (rotation of the orthogonal clement of the shell)
where

dw,

* *
urzur_er@r’ Uy =0, — €
dy

r

Using the stiffness matrix of the rib we express the unknown vector of the load,
which acts on the surface of the contact between the shell and the n-th and the m-th
rib, respectively, in the following way ([6], [7])

(1.5) lan) = [K]{U}, {an} = [Ka] (U}, (U] = ({u}, 6.)
(1.6) by |0 [0 | by
[K,] = 0 | by | bys|O
0 | by | by |0
b [0 [0 | bu

d* d?
by = DrxaF’ by, = —Brd_yz’

d4 1 d2 2
bys; = Dy | — + 5 &5 + k2
dy*  of \ dy?
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2 2
(1.7) by = — (G, + ky D,.e, — D, é? -d_>—d—~

dy?) dy?
2 2 2
bro= —by = D6 — 1)L k6 L
dy? dy? dy?
; d? d
by3 = —bs, = B, I:(szf - & d_yz — ky a;jl

D,,, B,, G, are the flexural, bending and torsional rigidities of the rib, g, is the cross
section function (the radius of inertia of the cross section surface of the rib), ks, ky
are the main curvatures of the shell, e, is the distance between the neutral axis of the
cross section surface of the rib and the inner surface of the rib.

The stiffness matrix [K,,] is of the same form with the operator d/dx instead of
d/dy.

2. FUNDAMENTAL SPACES OF THE PROBLEM

For simplicity we assume the region Q to be rectangular: Q = (a, b) x (c, d).
We assume further that Q is divided by the help of a division

a=Xxy<Xx,<..<x,=bn =2
c=yo<yyW<..<y,=c¢c,mz=2

0=U URy;, Rj=(xi—,x) x (yj=1,3))
i=1 j=1

The stiffening ribs are defined by
I, =x;x (c,d), i=1,....,n—1
I, =(a,b)xy;, j=1,...,m—1.

Yi

Let 2(Q) be the set of all arbitrarily differentiable functions with a compact support
in Q, Hy(Q) the closure of 2(Q) in the Sobolev space H™(Q), V(Q) = Hy(Q) x
x Hy(R) x Hg(R). We shall define a weak solution of the problem (1.2), (1.3), (1.4)
in the space

w(Q) = {{z} = (u, v, wy eV(Q); u,, € Hi(a, b), u,, € H(Z,(c, d), uyj(x,-) =u.(,;)»

v,, € Hy(a, b), v, e Hi(c, d), v, (x:) = v (v;)s Wy, € Hi(a, b), w,, € Hy(c, d),

ow ow ow ow, . ow ow
—\| € H(a, b), == e Hi(c, d), — )= (x;), —= )= — i
e G e . 2] () = S0 B ) = 5 (1),
0 ow 0 ow
——| (x)=——=] (")p»
0x 0y v dy 0x |y,

where u, (x), u, () are the traces of the function u on I, 1., respectively.
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We denote further
u(xn y,) = uy;(x) = Uy (y v(xl, y) = UVJ(X) = Xi(yj) >

0*w J ow 0 8
Vi) = ————| \Xi) =
Ovcé’( ) ox Oy (<o) dy ox |, ’)

Yi !

Let (.,.), be the scalar product in the space Hy(Q). We define the scalar product
in W(Q) by

(2.1) (({fz1): {z21) = [z {z20] + <z {22

where

(2-2) [{zl}, {Zz}] = (uy, ”2)1 + (Un V) + (Wn Wz)z
m—1 b
03" ooty =% [ [itnan, + ot +
Jj= a
RPN <aw1’{ ) <awzf ” it
ﬁV Vi f)y ‘_Vj

ow,

n—1 d
+ Upelyy, T Ui Uay, + Wi Woy, + { —
i=1 Je 0x

We denote the norm in W(Q) by

(24) =3I = ({=} =) = (l{=3]° + {2312,
where

(25) {2} = [z} {=}],

(2:6) [{z}? = <{z}, {=)> -

Theorem 1. The set W(Q) with the scalar product (2.1), (2.2), (2.3) is a Hilbert
space.

Proof. It can be verified easily that W(Q) is a linear space. The bilinear form (2.1)
has all the properties of a scaldr product. It remains to show that W(Q) with the
norm (2.4) is a Banach space. Let {z,} € W(Q) be a Cauchy sequence in the norm
(2.4) Then {z,} » {z} e V(Q) = Hy(Q) x Hy(Q) x H3(Q). Using the imbedding
theorems in Sobolev spaces ([8]) we obtain
0w, 0w|

Ukyy = Uyys Ohy; 7 Uyys Wigy = Wy F 3
Yl

*) We denote here 1’ = du/dx and u* = du/dy.
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foreveryj = 1,...,m — 1 in the space L,(a, b) and

0wy, ow
ukxi Uy, s Upey ™ Uxps Wiy, = Wiy ndoa >
0x |, OX |y,
foreveryi = 1,...,n — linthespace Ly(c, d).
Let ¢ be an arbitrary function from 2(Q). We have
M\ ¢ 52(a, b)
oy |y,
for every k = 1, 2, ... and hence
rb i ” b
2.7 J (% ) o(x) dx =J i ¢"(x)dx ;
a\ 0y i o 0y i

(0w,fdy],,)" is a Cauchy sequence in L,(a, b) and hence (dw/dy|,)” — g(x) in the
space L,(a, b). '
1t follows from (2.7) that

ﬂ’g(x) o(x) dx = jj—

a

@"(x) dx

Yi

for every function ¢ e %(a,b). Hence 0w/dy|,, € Hy(a,b) and (dw/[dy|,)" =
= g(x) € Ly(a, b). The other properties of the function {z} can be verified in a similar
way. We show for instance that the function w satisfies the relations

LR

J ow
(xi =
Ox Oy

(2-8) = a—y 'a’; (yj) :

Xi

Yi

Using the assumption {z,} = <uy, vy, w,> € W(Q) we obtain

0 Owy 0 0wy
2.9 — —= (x;) = ——= ) .
(2.9) 5 By yj( ) 3 3 Xi(y,)
As we have shown above

Wil ow in Hy(a, b)

0y Vi ay Yi .
and

0wk aW . 2

—= o — in Hg(e,d).

0x | 0x |, ofe: 4)
Using the imbedding theorem we obtain

Jd 0

9 OWk (x,,)_)i@ﬁ (x))

Ox 0y |y, 0x Oy 9
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and

00
JOR

0 Bwk

% o (yj)

By virtue of the last relations and (2.9) we arrive at (2.8). Hence {z} € W() and
W(Q) is a Hilbert space which is the assertion of the theorem.

The next theorem is important for the convergence of the finite element method
in the space W(Q). Let us denote

23(Q) = 2(Q) x 9(Q) x Q).

Theorem 2. The set 2°(Q) is dense in the space W(Q) with the norm (2.4).
We verify first the following lemma:
Lemma 1. Let us denote

o _ow

le(Q) = {{Z} € W(Q); Uy, = Uxp = Wy, = SU, = =W, =
O0x \x

Dw(Q) = 2°(Q) 0 W(Q).
The set Dy(Q) is dense in W(Q) in the norm (2.4).

Proof. As the function {z} e W(Q) satisfies the homogeneous conditions on the
“ribs” I, I, we obtain

{z} = Cu,v,w) e W(Q) =ueHy(R;), veHYR;), weHy(Ry)

foreveryi=1,....,.n—landj=1,...,m — 1.

Therefore there exist sequences {z;/} € Z°(R;)) satisfying {z/} - {z } in the spaces
V(RU) We define such a sequence {z,} € 2(Q) that {z}|R;; = {z//}. As Q =
= U U R;;, we obtain that {z,} — {z} inthe space V(Q) with the norm (2.5) which

i=1j=1

is in W(Q) identical with the norm (2.4). This completes the proof.

Proof of Theorem 2. Let ¢, (x)€ %(a, b), ¢,(y)€ 2(c,d) be test functions
satisfying

o (x) =1, xe(x;—opx; + o), oy <min{x; — x;_q, X405 — X;},

(Py,-()’) =1, ye(yj_ﬂj’yj+ﬁj), ﬂj<min{yj_yj—17yj+1 —)’j},
0= ¢(x)=1, xe(a,b); 0=Z¢,(y) =1, ye(ed),
i=1,...n—1; j=1...,m—1.

We express the function {z} = Cu, v, w) € W(Q) in the form
(2.10) {z} = {zo} + {Z} R {zo} = {ug, Vg, Wo » {Z} =<U, V, W),
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where
n—1m-—1

@mueE%m%MJE%m%m 5 i 3) 0.5) 0,00)
=T 00 0+ T 5,0 00) 5, . o) 0.(2) 2,0).

n—1 m—1

W= Zl w0 () @ (x) + Z D) 0 0) = X X wlxo v;) 0x(x) 0,,(0) +

ﬁ;WWMM@—MWA@;gW@mMO—nWJw—

— Z Z [ow[ox|2(v,) (x = x;) + aw[ay|, (x) (v — y)) +

i=1 j=1
+ 0w[ox 0y (xi vy) (x = xi) (v = wp)] 0.(x) 0, (0)
According to the properties of the function {z} we have

(Z)ew(Q), {zo) e W(Q).

In virtue of Lemma 1 there exists a sequence
{20} € 20(Q) = 2°(Q) 0 W(Q)
which satisfies

(2.12) lim [{zo.} — {zo}]]| = 0.

There exist sequences uy’, vi', Wi', wi' € Z(c, d), u’, v}, wi, Wi € 9(a, b) which
satisfy the relations

.
(2.13) Up o U, Wi o Wy, Wi M in Hi(c, d),

vt > vy, in Hi(e,d), u}l — u,, in  Hy(a, b),

A Wyl > w Wy — ow
k yj?® k Vi k

in Hi(a,b).

Vi
Using the imbedding theorems we obtain

(2'14) ”Ifi(yj) - u(xi, yj) > “l{j(xi) - “(xi, Yj) s
U;i()’j) - ”(xia .Vj) > Uij(xi) - U(xi, ,Vj) s
wi'(ny) = wxi v;) s wil(xs) = w(xs ),

x ow| - ow
Wi'(vy) = — (J’;) wil(xi) = — | (x),
dy v

Ox

0 w

(JJMWH

owy' 0*w
ay (v)) = oxdy (xs, yj)-
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We define now the function {Zk} = (U, Vi, W,) in the following way:

m—1

Uy =T 05 0) 0.0) + 5, ) 0,0) -
YT ) 0.3 0,0

n—1 m—1

v, =iZ u'(y) @ (x) + _Z u(x) @y, (¥) =

n—1m—1

'12 Z vk (yj) Px; (x) (py,(V)

n—1

W = Y () 0.(x) *é W(x) 0, (1) -

m—1

n—1m-1

——'Z 1; wi(y )‘P (%) ‘/’yj( )

0 (= x) o) + 5 ) (= 1) 0,0) -

n—1m—1

= L 2 D) (=) + ) (0 = ) =

i=1 j=

TR =)0 = 1)on) 0,0).

Let us further introduce the sequence {z,} = {z,,} + {Z,}. It can be seen easily that

{2} € 23(Q). A
Using (2.13), (2.14) and the properties of the function {z} € W(Q) we obtain in
the same way as in [3]

(15) i 122} - (2)]] = 0.
Combining (2.12), (2.15) we have
(16) in [z ~ (3 = 0, (=} e7(@)

and the proof is complete.

3. WEAK SOLUTION OF THE BOUNDARY VALUE PROBLEM

We introduce the following notation. Let {z} = <{u, v, w) € W(2). We denote
(3.1) ({2} = ¢l e? ey, ({2} = oty o)
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where

2
sl=a—bf+k1w, %’=6—W
Ox ox?
- 2
(3.2) e =2 + kow; % = 9-—‘2
dy oy?
gl
Jdy  0x 0x0y
The stiffness matrix is defined by
1 n 0
(33) [p]= 2 _(# 1 0
Tl I 1 —p
2 Jaays
O<pu<l
Let us denote vectors and matrices by
(3.4) (6,17 = <u;,., W T Wo ex W, b Ryw,
wi kyu,, Y, <0—"E — kyu,, >
0x |, 0x |,
G5 T o 0 0 0 0 kyDy + 0]
+ Gy
0 D,, 0 0 0 0 D.e.
0 0 B, B, ko, —B,, 0 0
[K.]= 0 0  —B,ky? D, 0 0 0
0 0 —-B,, 0 D, 0.’ 0 0
—ky(Dy, + 0 0 0 0 G,, + 0
+ G,,) + k,D,e,,
2
o —D, e, 0 0 0 0 Dl s,
fori=1,...,n—1,
(3.6) {e,}7 = <v;j, Uy Uy Wy s ey Wy A kW
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(3.7)

0 0 0 0 0 k(D,+ ©
+ GYj)
0 D, 0 0 0 0 D,e,,

0 0 B,, B, ki, —B,, 0 0

[K,,] = 0 0 B, ko), D, 0 0 0

0 0 -B,, 0 D, 0’ 0 0

—ki(D,, + O 0 0 0 G,, + 0

+ Gy,) + k{Dye,,

0 ~D,e,, 0 0 0 0 D,e; |27

forj=1,....,m — 1.
We introduce now the bilinear forms belonging to the problem (1.2), (1.3), (1.4).
Assume that {z,}, {z,} € W(Q). Then

Az (22 = 0 [ (07001 () 00 + 1 [ 7001 s} 2

(3.8)
bo((z) {2)) =J (ol (K] (o dys = Lo = 1,

(39)  by{zi). {2)) = f (ou T I (o} 0 = L = 1,

R RN CAN NI R N ERREN R
(3.11) a({z:}, {z2}) = A({z.}, {z2}) + b({z:}. {z2}) -

Let {p} = {p1, P2, P3)" € [L,(2)]*. We define a linear bounded functional [ € W(Q)*
by

n—1m-1

(=) = 7140 3 T 0) + o) +
(3.12) + 0., (1;) + v,,(x0) + we (y) + wy(x) +

. (2 | )60 ewa.

- k2uXi> (yj) + <_
xt oy

Definition 1. Let {p} € L,(Q)*. 4 vector-function {z,} € W(Q) is a weak solution
of the problem (1.2), (1.3), (1.4) if it is a solution of the equation

Yi

(3.13) a({zo}, {z}) = I({z}) (equation of virtual work)

for every vector-function {z} = (u, v, w) e W(Q), where e W(Q)* is defined in
(3.12).
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We shall show that the problem (1.2), (1.3), (1.4) has a unique weak solution.
According to the Lax-Milgram theorem it is sufficient to show that the bilinear
form a({z,}, {z,}) is coercive, i.e.

(3.14) a({z},{z}) z A[[{Z][]*, ¥iz} e W(Q).

We verify first that the bilinear form A({z,}, {z,}) is coercive on the space V(Q) o
> W(Q). In virtue of the positive definiteness of the matrix [ D] we obtain

Az () 2 j U + [P de =
(2]
0 2 2 ) A0\ 2
(3]5) = il{ + I\"W + 93 + sz + {E + fD +
o L\0x dy dy  ox
PAVA 2..\2 2.\2
() (20) a2 e, w0, vzen(@).

ox? ay? ox dy

We shall use in our further considerations the results from [2] about the inequalities

of Korn’s type, employing the same notation as in [2]. We introduce therefore the
operators

(3.16) N{z} =¢', Ny{z} =&, Ny{z} =¢*,
Nz} = ', Ns{z} =3, Nelz} = .

The components u, v, w are denoted by
(3.17) U=ug, V=1Uy, W=u,.
The inequality (3.15) has now the form

6
(.19) A D) 2 13 1N
The operators N, have the form

(3.9) Ni({z}) =

s

Mew

> D,
la] =ks

I

1

We define the components of the matrix N({¢}); . 4 by

(3.20) N({€}) - DIRUNSES I IR AR o

a|=ks

We have in our case

oS O

¢
(321) N = |0
0 % 5% 28:&, (3,6)
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If {&} # {0} then rank (N({¢})) = 3 and by Theorem 3.1 from [2] we obtain that
the system {N,} is coercive on V(Q), i.e.

629 TN + 1@l 2 diHe. o> 0.

Our further considerations will be the same as in the proof of Theorem 2.1 in [2].
Let us denote

6

Py ={{z}eV(Q), l;”Nt{Z} Loy = 0.
Let {z} € P,. Using the fact that w € Hj(Q) we obtain w = 0. Using the form of &'
and ¢* in (3.2) we obtain

ou v
ox ~ Oy

We assume u, v e Hg(Q). Using the Fridrichs inequality ([8]) we obtain u = v = 0
and hence {z} = {0}. We have now the relation
(3.23) P, = {0} .

Let us assume that the bilinear form A(.,.) is not coercive in V(). Then there
exists a sequence {z,} € V(Q) satisfying the relations

(3.24) {z} vy = 1,

(3.25) A((z) {z) < :_( k=1,2....

We can choose a subsequence (we do not change the notation) {z,} such that {z,} —

- {z} in V(Q), {z,} = {z} in [L,(Q)]® and N\({z,}) = N/({z:}) in L,(2). Combining
(3.18) and (3.25) we arrive at

(3.26) IN({z) e = I=1,..,6, k=12,....

3
ak’
The weak convergence of N({z,}) implies that

[Nz} = iim inf Ny({z,}) = 0.

Combining (3.23) and the last relation we have {z} = {0}. Using the inequality (3.22)

we obtain {z,} — {0} in ¥(2) which contradicts (3.24). This means that the bilinear
form A(.,.) is coercive, i.e.

(3.27) A 2D 2 a7, 0 >0, ¥z ev(@).
If we verify the inequality
(3.29) b({), 12) = (=), >0, Viz}e W(@)
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then after combining (3.11), (3.27), (3.28) we obtain the coerciveness of the bilinear
form a({z,}, {z,}). With regard to (2.2), (2.6), (3.10) it is sufficient to verify the
inequalities

i 2
(329)  b((z) 1) = /fx,f [u;g + o2+ Wi (Z)ﬁl > ]dy,

c X |x;

By >0, i=1,..,n-1, V{z}eW(Q),
rb ow
63) b3 Dz, [u;f W (—

”2
e
ay |y,

By, >0, j=1,...,m—1, Yz} eW(Q).

We verify that the inequality (3.29) holds. Using (3.4), (3.5), (3.9) we express
b.({z}.{z}) in the form

(1) bul(2h 12)) = | 7[R (62} 0,

where
(3.32) {87 = <u;i, Vi Ws €x W, + Kowy,,
ow ow -
—| = kyu,, )i — | — kyuy, ,
(], =)o ) )
D, 0 0 0 0 0|
0 Bx ~Bx;k20x —Bxi 0 0
> 1_ | 0 —B,kyox D,, 0 0 0
(333) [Ka]= 0 —B, 0 D, 03’ 0 0
0 0 0 0 G, +kyD.e., O
2
i 0 0 0 0 0 Dx.-ex_i 66

The quantity o,, is sufficiently small compared with the other quantities in the matrix.
All the main minors are then positive and hence the matrix [K, ] is symmetric and
positive definite. From (3.31) we obtain now the relation

(3.34) b((z) =) 2 B, j e dy, B >o0.

Using (3.32) and the Fridrichs inequality applied to u}, we obtain the inequality
d d
(39) [escd oy 2o [tz i 2+

.. ow
+wy, o+ (—
¢

-2
Y kb)) >0,

1Xi
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We assume that k, € C*([c, d]). The expression in the integral on the right hand side
of the inequality (3.35) is of the form

B{¢hy) =8+ 8+ G+ +E+
+ (&6 — k3 (y) & = 2ky(y) & — ky(y) &5)% .
B({¢}, y) is for every y e[c, d] a positive definite quadratic form. Hence B({¢}, y)
is a positive and continuous function on the compact set Sg x [c, d], where Sg is
the unit circle in RS. B({¢}, y) has then its minimum g > 0 on Ss x [c, d], which
implies
(3.36) B({ehy) 2z & + &+ ... + &)
for every {¢} e R® and y e [c, d].
After inserting (3.36) in (3.35) we obtain

d — 2 s ow "2
{‘3x,.}|2 dy = inl‘f [“x,- + v+ ow, <6_ ) de s

. x
where we have omitted the positive quantities u2 , u,>. Comparing the last inequality
with the right hand side of (3.34) we obtain the inequality (3.29) with the constant
B« = By yx,t. In the same way we can verify (3.30). (3.29), (3.30) imply the inequality
(3.28)

Combining the relations (3.11), (3.27), (3.28) we obtain (3.14) which implies the
positive definiteness of the form a({z,}, {z,}) on the space W(Q). According to the
theorem of Lax-Milgram there exists a unique weak solution of the problem (1.2),
(1.3), (1.4). This is expressed in the following theorem.

d

Theorem 3. Let [({.}) be a linear bounded functional on W(Q). Let k, € C*([a, b]),
ky € C¥([ec, d]), ¢v, > Dy By Gyppkys0,,> D, s B, , G, ky. Then there exists a
unique vector-function {z,} € W(Q) satisfying the identity

(3.37) a({zo}> {z}) = I({z})

for every vector-function {z} € W(Q).

4. APPLICATION OF THE FINITE ELEMENT METHOD

Let V;,(Q) o W(Q) be a sequence of finite dimensional subspaces of the space
W(Q) satisfying the relation

(4.1) lim dist ({z), V;,(2)) = 0

for every function {z} € W(Q). A function {z,} € V,,(2) is called a Galerkin approxi-
mation of the solution of (3.37) if {z,} is a solution of the identity

(42) a({z, {z}) = I({z}), v{z}eV,(Q).
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As a consequence of coercivity of the bilinear form a({z'}, {z?}) there exists a unique
sequence of Galerkin approximations which is convergent ([8]) i.e.

(4.3) JL‘Z”I{Zk} — {z}lll =0,

where {z,} € W(Q) is a solution of (3.37).
A useful method for approximate solution of the problem (3.37) is the method of
finite elements, which is considered one type of the Galerkin method.

Let b, > 0, lim h, = 0. We consider a sequence of rectangles {K{®}** which
k— o0
have the following properties:
N(k)
iy Q@=UkK®,
i=1

i) KPaKP =0, i+],
iii) diamK® <h,, i=1,..,N(k),
iv) KPnI, =0, KPnI, =0, i=1,..,n—1,j=1,..,m—1.

The last property means that the ribs I, I, coincide with the sides of the rectangles
K. We call a division of the set Q with the above properties a regular division.

We consider the approximate solution {z.} = {u, v, w,y € V,(Q) on every
rectangle K¢ in the form

Do
(4'4) U, = Z a(ij)xlyj’
0=ijs3
Noi
v, = Z bf-j)x‘y’,
0=ij=3
Do
Wi = Z C(ij)xlyl
0sij=3
with such coefficients a{?, b{?, c{} that u,, v,, w, € C'(Q) (the condition of con-

formity). Using the properties of the Hermit interpolating polynomials ([12]) we
obtain the inclusion ¥, (Q) = W(Q). By Theorem 2 we can verify in the same way
as in ([3]) that the method of finite elements with bicubic polynomials (4.4) is con-
vergent in our case.
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Sdhrn

O EXISTENCII SLABEHO RIESENIA OKRAJOVEJ ULOHY ROVNOVAHY
PLOCHEJ SKRUPINY ZOSILNENEJ TUHOSTNYMI REBRAMI

Icor Bock, JAN LoviSEx

V tejto préci sa priamou variatnou metédou dokazuje existencia a jednoznacnost
slabého rieSenia okrajovej ulohy pre plochu $krupinu zosilnent tuhostnymi rebrami.
Okrajov4 tloha sa rie§i na priestore W(Q)  HA(Q) x H(Q) x HZ(RQ), na ktorom
je odpovedajtica bilinedrna forma koercitivna. Pre numerické rieSenie sa navrhuje
metdda koneénych prvkov. Priblizné rieSenia konverguju k slabému rieSeniu v prie-
store W (Q).
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