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INTRODUCTION 

It is the purpose of the present paper to develop an existence and regularity theory 
for a class of evolution inequalities which includes the weak formulation of a type 
of modified Navier-Stokes equations under certain unilateral boundary conditions. 

In the present first part of our paper we are going to prove an existence theorem 
for a strong solution to a class of abstract evolution inequalities. These studies will 
be continued in the second part by establishing the existence and uniqueness of 
a weak solution to the abstract evolution inequality under consideration. Besides 
we shall prove some regularity results for the strong solution. In both parts, the 
conditions imposed upon the operators occuring in the evolution inequality reflect 
the essential features of the boundary value problem we are going to discuss in the 
third part. This part of our paper will be concerned with the application of the 
abstract results obtained to the following type of modified Navier-Stokes equations: 

I (n0 + IÍAWU r-2\ 
ÕU; 

õt fcГiOXĽ ' ' ' fa + 

+ i t / , ™ + ~ = f . 0 = U2,3); in 0 x [0, T] 
fc=l CXk CX i 

div u = 0 

(Q denotes a bounded domain in R3, r > 2, fij = const > 0 (j = 0, I), |Vw| = 
3 

= [ X ((^ui)l^xk)2Y/2)- The boundary conditions we shall consider are as follows; 
i,k=l 
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uT = O , u • v ^ O , 

(iu0 + / i 1 | V u | - 2 ) - - - v - p á O , 
dv 

Ui0 + /i1|Vu|r~2) — • u — pu • v = o 
1 1 dv 

on Г, x [0, T] 

uт = 0, u • v ^ 0 , 

(u0 + / І J | v u ľ ~ 2 ) — -v - p^O, 
ĉ v 

/ | i _?ч Őu 
Í / І 0 + / І I V u ľ ) — • u — pu • v = 0 

1 1 ôv 

on Г2 x [0, T] 

u = 0 F3 x [0, T ] 

(F = boundary of Q, T = Ft u F2 u F3, F; n F7 = 0 for i =j= j , v = outer unit 

normal, uT = u — (u • v) v tangential component of u). These boundary conditions 

will be completed by the usual initial condition. The function u which satisfies the 

above problem, describes the motion of a viscous, incompressible fluid with big 

gradient of velocity (cf. [5], [6]) through the " tube" Q with pressure p and under 

the external force f = {fi,f2,f3}. The first two boundary conditions on F! (F2) 

express the fact that the fluid runs into Q along Ft (respectively that it leaves Q 

along F2), while the remaining conditions on FL and F2 are natural boundary condi­

tions. The boundary condition on F3 means that the fluid adheres to this part 

of the boundary. 

It is obvious that we may impose only straightforward estimates from above 

upon the bilinear operator which represents the convection term. This peculiarity 

leads to some sharp differences between our theory and the theories known about 

the Navier-Stokes equations. 

The modifications of the Navier-Stokes equations which are based on the concept 

of the motion of a viscous, incompressible fluid with big gradient of velocity are 

extensively studied in [5], [6], [7; Chap. 2-5] (under zero boundary conditions). 

On the other hand, let us refer to the papers [1], [2], [3] where existence theorems 

for evolution inequalities related to the (usual) Navier-Stokes equations in two 

dimensions may be found. Another type of unilateral boundary conditions for the 

(usual) Navier-Stokes equations is discussed in [8]. 

In the first section of the present paper we state the main existence result. Its proof 

which rests upon a Galerkin type argument combined with the regularization of the 

functional involved, is carried out in the second section. 
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1. STATEMENT OF MAIN RESULT 

Let H be a real Hilbert space with scalar product ( , ) and norm | |. Suppose 
we are given another real Hilbert space V with scalar product (( , )) and norm 
|| ||. We further assume that V is compactly and densely imbedded into H. We 
denote by V* the dual of V, and by (x*, x) the dual pairing between x* e V* and 
x e V. Further, let W be a real, separable, reflexive Banach space that is continuously 
and densely imbedded into V. Let ||| jj| denote the norm on W, W* the dual of W, 
|j |||# the dual norm on W*, and (y*. y) the dual pairing between y* e W* and 

y e W. Identifying H with its dual one obtains continuous and dense imbeddings 
H a V* a W*, and in case h e H and x e V(resp. xeW) the dual pairing between h 
and x coincides with their scalar product in H. 

Let A : W-* W* be a (nonlinear) mapping that satisfies the following conditions: 

( l . l ) A is monotone and hemi-continuous1) ; 

there exists a functional F : W -> R such 

that A = grad F, where F(x) =
 c i | | |* | | |p + c2 

Vx e W, ct = const > 0, p ;> 4, c2 = const; 

(1.2) 

(1.3) lll^lll* ^ C3(|||X|||''_1 + 1) V x 6 W' C3 = C O n S t 

Further, let B be a bilinear mapping from W x Winto W* such that 

t \{B{x, y), z)\ g c4|x| 111,-IH || |z|| |, 

(1-4) \{B{x,y),z)\^cA\\\x\\\\\\y\\\\z\ 

\ Vx, y, z e W, c4 = const. 

Let cp : V -> (— oo, + oo] be a proper, convex and lower semi-continuous functional. 
Let D(cp) denote its effective domain, i.e. 

D(cp) = {x e V: <p(x) < + oo} . 

For our further purposes we suppose that 

(1.5) cp(x) = <p(0) V x e V . 

Next, given w e L2(0, T; V) (0 < T < + oo) we set 

( \<p(u)dt if <p(u(.))eL\0,T), 

*(«) 
I + oo otherwise . 

) That is, the function t |-> (A(̂ r + ty), z) is continuous on the real line for arbitrary but fixed 
x, y, z e W 
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The functional <P is proper, convex and lower semi-continuous on L2(0, T; V) (cf. 
[4; Prop. 2.16]). 

The main result of our paper is the following 

Theorem. Let the mapping A satisfy the conditions (1A) —(1.3), while B is assumed 
to fulfil (1.4). Let the functional cp satisfy (1.5). 

Further suppose that 

/ = / i + / 2 : 

fx e L2(0, T; H), f2, f'2 e U'(0, T; W*) (pf == t z l \ ,-) 

w0 e IV n D(cp) . 

Then there exists a function u e L°°(0, T; W) n C([05 T ] ; H) Such that 

(1.6) <P(u) < + co , u' G L2(0, T; H) ; 

1 (u' + Au + B(u, w), v - u) dt + #(v) - #(u) ^ (/, v - u) dt 
Jo Jo 

Vv e Lp(0, T; W) ; 
(1.8) u(0) = u0 • 

Remark . — Condition (1.1) implies that A maps strongly convergent sequences 
into weakly convergent sequences. Thus, by Pettis' theorem, the function t i-> A v(t) 
is strongly measurable on [0, T] (with respect to PV*) for any v e Lp(0, T; W) (cf. 
[9] for details). Setting (s#(v)) (t) = A v(t) for a. a. l G [0, T] and any v e Lp(0, T; W) 
one easily concludes from hypotheses ( l . l ) , (1.3) that s/ is a monotone, hemi-conti-
nuous mapping from H(0, T; W) into LP'(0, T; W*). 

Further, each of the estimates in (1.4) implies that B(.,.) is a continuous bilinear 
mapping from W x W into IV*. Hence the function t i-̂  B(v(t), v(t)) is strongly 
measurable on [0, T] (with respect to W*) for any v e Lp(0, T; W) (cf. [9]). Thus, 
setting (@(v)) (t) = B(v(f)), t;(t)) for a.a. t G [0, T] and any v G LP(0, T; W) we obtain 
<f (v) G Lp'(0, T; W*) (since 2p' ^ p). 

2. PROOF OF THE THEOREM 

We begin by making preliminaries which are necessary for what follows. 
Given e < 0 we set for any x e V 

cpE(x) = min J— ||y - x||2 + <p(y) 
yeV (26 

2) Throughout the whole paper, the derivatives are to be understood in the sense of vector-
valued distributions. 
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(cf. [4; Prop. 2.H]). Obviously, cpE(x) S <p(x) for all x e V. The functional cpe is 
convex and Frechet differentiate on V, and the Frechet derivative ipe coincides with 
the Yosida-approximation of dip: 

<p'e = (dcp)E=1-(l- Je), 
e 

JE = (I + s dip)-1 

where I denotes the identity in V, and dip the subdifferential mapping of ip (as (multi­

valued) mapping of Vinto itself), i.e. 

dip(x) = {ze V: ip(y) = ip(x) + ((z, y - x)) Vy e V} 

(cf. [4; Prop. 2.16]). The mapping (dip)E is monotone and Lipschitzian (with Lip-
schitz constant l/e). Further, (1.5) implies ipE(x) = ip(0) for all x e V, and (dip)E (0) = 
= 0. 

We now define a mapping CE:Wr-» W* by 

(Ce(x), y) = (((dip), (x), y)) Vx,yeW. 

It is readily seen that CE is monotone and Lipschitzian. As above, defining (^£(v)) (t) = 

= CE(v(t)) for a.a. t e [0, T] and any v e Lp(0, T; W) one easily verifies that <€t is 
a monotone and continuous mapping from LP(0, T; W) into LP'(0, T; W*). 

Finally, setting for e > 0 and u e L2(0, T; V) 

<Pt(u) = min J— ||v - u||ia(o,r ;n + # ^ H 
t?eL2(0,T;V) (2e J 

we have 

Фe(") = - II" - Л(U)\\ІЦ0,T;V) + Ф(Л(")) 
2e 

i 
rT 

9e(") d ^ 
I o 

for all u e L2(0, T; V), where / e = (I + e Stf)" 1 (I denotes the identity in L2(0, T; V)) 

and 

d$(u) = {we L2(0, T; V) : <P(v) ^ ^(u) + | ((w, v - II)) dt Vv e L2(0, T; V)} 

(cf. [4; Prop. 2.11, Prop. 2.16]). 

1° Approximate solutions. Let {wl9w2, ...,wn, ...} be a system of elements 
in W having the following properties: 

a) the elements {wu vv2, . . . , wn} are linearly independent for each n; 

b) (J Wn = W where Wn = span {wu . . . , wn}. 
n = l 
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Without any loss of generality we may assume that u0 e W„0 for a (fixed) natural 
number n0. 

We now consider the following initial value problem for real functions gni (i = 
= 1, . . . , n; n = n0): 

(1.9) 
{u'n{t), w,) + (Au„(í), w;) + (ß(и„(t), м„(<)), w() + (Cг(и„(í)), w,.) = 

= (Д0,w,.), ( i - 1 *) 

(1.10) и„(0) = м0 

where 

w»(0 = wг,п(0 = Z #*;(') W І 

From the theory of ordinary differential equations we obtain for each n = n0 a num­

ber tn e (0, T] and absolutely continuous functions a,,; on [0, t„] (i = 1, .. ., w) that 

fulfil (L9) for a.a. t e [0, t„], and the initial condition (1.10). 

2° A — priori — estimates. Multiplying (1.9) by gni(t), summing over i = 1, . . . , n 

and integrating over the interval [0, t] (0 < t ^ tn) one obtains 

[)uH(s)\2 ds + F(uH(t)) - F(u0) + 

+ J (B(uH(s), un(s)), uf

n(s)) ds + (pe(un(t)) - (pE(u0) = J (f(s), u'n(s)) ds 
Jo Jo 

(here we have used the fact that A maps strongly convergent sequences into weakly 

convergent sequences, and that A = grad F; cf. (VI), (1.2)). Thus, by (1.2) and (V5), 

J |u;(s)|2 ds + c 1 | | |u n (0 | | | p S const - J (B(un(s), un(s)), un(s))ds + 

(1.11) J o

 f

 J o 

+ f(/(s),u;(s))ds 

for all t e (0, t„] where the constant depends neither on tn nor on n and e. 

In order to evaluate the first integral on the right hand side of (1.11) we use the 

second inequality in (V4): 

- f (B(un(s), un(s)), u'n(s)) dsS~[ \u'n(s)\2 ds + const (1 + f \\\un(s)\\\<> ds) . 
Jo 4 Jo Jo 

Further, by our hypothesis on/(note t h a t / 2 e C([0, T ] ; W*)): 

f ( / ( s ) , < s ) ) d s = f(/ 1 (s),<(s))ds + 
Jo Jo 

+ {f2{t), u„(0) - (L(0), «o) - f'(/i(s), u„(S)) ds ^ 
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4 
i r i r 
- |u„(s)|2 ds + -e1|||w„(t)j|jp + const (1 + |||wn(s)|||pds) . 
4 Jo 2 Jo 

Inserting these estimates into (1.11) we get 

|w„(s)|2ds + |||u„(0|||P S const (1 + |||w„(s)|||',ds) 
Jo Jo 

for all t e (0, Q. Thus 

|wM(s)|2 ds + |||w„(t)||| gj const 

for all t e (0, t„] where the constant does not depend on tn, n and e. Hence the solution 
gBi (i = 1, . . . , n) to (V9), (1.10) must exist on the whole interval [0, T] and it holds 

|||w.,(t)||j ^ kt Vle [0, T ] , Vn ^ M0, Ve > 0 , 

IKimO,T;H) ^ 1 V / 1 ^ M0, Ve > 0 . 

3° Passage to limit n -> oo (e > 0 fixed). From (1.12) we may conclude (by 
passing to a subsequence if necessary) that 

(1.13) un -> w£ weakly* in L°°(0, T; W), 

(1.14) (stf(un) + ^(M-, ) ) -> Xe weakly in IT(0,T;W*), 

(1.15) M; -> un weakly in L2(0, T; H) 

as n —> oo. Consequently, 

|||we(r)||| ^ k! for a.a. t e [0, T] , Ve > 0 , 

||w«||L2(o,T;H) ^ ^ i Ve > 0 . 
(1.12,) 

Further, by a well-known compactness theorem (cf. [7; Chap. 1, 5.2]), (1.13) and 
(1.15) imply (passing to a subsequence if necessary) 

(1.16) un -> we strongly in L2(0, T; H) 

as n -> oo. On the other hand, using integration by parts, from (1.13) and (1.15) 
one easily concludes that 

(1.17) wn(t) -> w£(t) weakly in H , W e [0, T] 

a s n - > oo. Hence 

(1.18) w£(0) = w0 Ve > 0 . 

Next, we assert that 

(1.19) <%(un) -> <%(uR) weakly in IT(0, T; W*) 
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as n -> oo. Indeed, let v e Lp(0, T; W) be arbitrarily given. Our hypothesis (1.4) 

implies that 

w i-> (B(uE, W), V) dt 
Jo 

is a linear, continuous functional on LP(0, T; W). Consequently, 

T 

(B(uE, un — uE), v) dt -> 0 as n -> oo , І 
and (1.19) is easily seen when combining the first inequality in (1.4) with (1.16) and 
the latter convergence property. 

Let if/ E C^°((0, T)) ( = space of all real infinitely differentiable functions on R 
having their support in (0, T)) be arbitrary, let i0 be an arbitrary natural number 

= n0, and let at (i = 1, . . . , i0) be arbitrary reals. Multiplying (1.9) (for n = i0) 
by \j/(t) a i, summing over i = 1, . . . , i0 and integrating over [0, T] yields 

f (uf

n(t) + Aun(t) + B(un(t), un(t)) + CE(un(t)) - f(t) , 

ils(t)£aiwi)dt = Q. 
i = l 

Observing (1A3) — (1.15) and (1.19) we conclude from this identity after n -> oo that 

[«.(') + Ze(t) + ^(«e(t), «e(t)) " / ( t ) ] <Kt) & = 0 , Í: 
i.e. 

(i.2o) «; + *. + # ( « . ) = L 

We show that Xe = ( ^ + #«) («£) = ^ ( « c ) + #.(«.)• To this end, let t> e 
e Lp(0, T; W) be arbitrary. We have 

0 ^ f ((A + C.) (t>) - (A + C.) («„), v - u„) dt = 

= f ((A + C.) (»), « - «.) dt - f ((A + C.) («,), 0) dt 
Jo Jo 

+ f (/, uB) dt - i|«„(T)|2 + i|t.„(0)|2 - f (B(un, u„), u„) dt. 
Jo Jo 

Taking the lim sup on the right hand side of this inequality and using (1.20) one finds 

+ 0 ^ Г ((A + C.) (v), v - щ) dí - ľ (ь, ») dí 
Jo Jo 
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+ f (/, u.) dt - i\uE(Tf + i|u.(0)|2 - f (B(u , u.), u.) dt = 

= f ((A + C.) (v) - * , v - M.) dr 

(here we have used the fact that un(T) -> ue(L') weakly in H as n -> oo; cf. (V17)). 
Thus, by a standard argument from the theory of monotone operators, / e = (j?/ + 
+ ^.) (u.). Hence 

(1.200 «I + •*("«) + #(««) + *«(«.) = / • 

4° Passage to limit e -> 0. As above, by passing to a subsequence if necessary, 
we may conclude from (1.120 that 

(1.21) u. -> u weakly* in L°°(0, T; W), 

(1.22) u. ~> uf weakly in L2(0, T; H) 

as e -> 0. By the same argument as above, u(0) = u0 (cf. (1.17), (V18)). 
Further, equation (1.200 ™plie s that, for any e > 0, 

(u. + Au. + B(u, u.), v - u.) dt + <P(v) - ^.(u.) = 

(1-23) J ° , r 

= \ (f,v ~ ue) dt Vv G If (0, T; W). 

Set v = 0 in (1.23). Then 

const = *.(u.) == - ||u. - /£(uO||2
2(o, r ;K) + #( / . (« . ) ) 

where the constant does not depend on e. Hence 

(1.24) / . (u . ) ~> u weakly in L2(0, T; V) 

as e -> 0, and therefore <!>(u) < +oo. 
Finally, (1.23) implies 

f (Aue, ue -v)dt^ f ( « ; „) dt - i\ue(T)\2 + i|«£(0)|2 + 
Jo Jo 

+ J (B (u , iit), v - u.) dt + * (») - d>(/.(u.)) + f ( / , u. - v) dt 

for any v e If (0, T; W). Observing that M(ut) -> J*(u) weakly in Lp'(0, T; W*) as 
£-*0(cf . (1.19)), and that 

(B("«, «.), u - ue) dí| á 
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= CA IIKUI2 |M - Me|dt g c 4 k 2 мj dř -> 0 

as e —> 0, we find 

lim (B(мe, мe), v - мe) dt = 
Jo 

(B(м, м), v — м) dt 

(veLp(0, T; W) arbitrary). Thus, by (1.21), (1.22) and (1.24), 

lim sup (Aмe, мe - м)dt ^ 0 . 

The operator stf being monotone and hemi-continuous, it holds 

(AM, M — v) dt ^ lim inf I (AMe, M£ — v) dt ^ 
Jo Jo 

»T p T 

(uf + B(u, M), v - u) dt + <£(v) - ^(M) + (/, M - v) dt 
o Jo 

for all v e If (0, T; W). 

The proof of Theorem is complete. 

Remark . — It is easy to see that the assertion of the theorem holds if condition 

(1.2) is replaced by the following ones: 

(i) (Ax, x) ^ c0|||x|||p Vx e W, c0 = const > 0, p > 3 ; 

(ii) there exists a functional F : W -> R such that A = grad F 

cf. also Part II of our paper). Indeed, the estimate ||wn||Lp(o,T:jY) = const for all 

n ^ n0 and all £ > 0 is readily verified when multipliying (1.9) by gni(t), summing 

over i = 1, . . . , n and integrating over the interval [0, t] . In virtue of this estimate 

we get (V12). 
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Souhrn 

O EVOLUČNÍCH NEROVNOSTECH MODIFIKOVANÉHO 
NAVIEROVA-STOKESOVA TYPU, I 

MANFRED MŮLLER, JOACHIM N A U M A N N 

V článku je dokázána existenční věta pro silné řešení abstraktní nerovnosti, při 
čemž vlastnosti uvažovaných operátorů jsou motivovány modifikovanými Naviero-
vými-Stokesovými rovnicemi při jistých jednostranných okrajových podmínkách. 
Metoda důkazu spočívá v úvaze Galerkinova typu kombinované s regularisací 
funkcionálu. 

Anschriften der Verfasser: Dr. Manfred Můller, Dr. Joachim Naumann, Sektion Mathematik, 
Humboldt-Universitát zu Berlin, Postrach 1297, 1086 Berlin DDR. 
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