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SVAZEK 23 (1978) APLIKACE MATEMATIKY ČÍSLO 3 

REMARK TO THE COMPARISON OF SOLUTION 
PROPERTIES OF LOVE'S EQUATION 
WITH THOSE O F WAVE EQUATION 

VERA RADOCHOVA 

(Received November 8, 1976) 

Love's partial differential equation is derived in [2], [3] by the energy method and 
under the assumptions that the kinetic energy per unit of length is 

(i) r. = \FQ{(uty + n2k2(Utxy] 

and the potential energy per unit of length is 

(2) Vx = \EF(uxy , 

where F is an area of cross-section, k is a cross-section radius of gyration about 
the central line. 

Using in (2) the corrected form of tension we have 

(3) Vi = iFux(Eux + Qj.i2k2uxtt) 

and the variational equation of motion is 

(4) dt 
I"! 

{ІFQ[(U,У + џ2 k2(ulx)
2] - \Fux(Eux + Qџ2k2uxtt)} dx = 0 

If we form variations we obtain the equation of extensional vibrations of rods in the 

form 
E 

(5) utt uxx - 2\i2k2uxxtt = 0 . 
Q 

This equation differs from the Love's one only by the double coefficient at the fourth 

derivative. 

Taking in the variational equation of motion the term (1) for kinetic energy 

uncorrected and the term (2) for the potential energy, we obtain the classical wave 
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equation qutt — Euxx = 0. Denoting c2 = E/O, a2 = fi2k2, we have the equation (5) 
in the form 

(6) 2a2uxxtt + c2uxx - utt = 0 

and Love's corrected wave equation in the form 

(7) a2uxxtt + c2uxx - utt = 0 . 

As the coefficient a2 is very small in comparison with c2, we can take constants 
a2, 2a2 for a small parameter, consider the equations (6) and (7) as equations with 
a small parameter s > 0 at the highest derivative and write these equations in the 
form 

(8) suxxtt + c2uxx - utt = 0 . 

In what follows let us compare some solution properties of the equation (8) with 
those of the classical wave equation 

(9) c2uxx - utt = 0 . 

Let us consider the differential equation (8) with initial conditions 

(10) u(0, x) = <p0(x) ut(0, x) = <p,(x) if x e [0, L] 

and with boundary conditions 

(11) «o u(t, 0) + P0[s uxtt(t, 0) + c2 ux(t, 0)] = <p0(t) 

a, u(t, L) + px[s uxtt(t, L) + c2 ux(t, L)] = (^(t) if t e [0, T] , 

where s > 0 is a small parameter and c2 > 0, a0, al9 fi0, pu T > 0, L > 0 are given 
constants. We assume that the functions <p0(x), (^(x) have in [0, L] continuous 
derivatives up to the third order and piecewise continuous derivatives of the fourth 
order and that 

<Po(0) =<Po(0) =<Po(0) = 9 o ( 0 ) = 0 , 

<p0(L) = <p0(L) = cpl(L) = K ( L ) = 0 , 

^ ( o ) =<p' l vo) = ^ ( o ) = <P7(O) = o , 

<p,(L) = <p\(L) = ^I(L) = <B7(L) = 0 . 

The boundary conditions (11) can be considered homogeneous 

(12) a0 u(t, 0) + p0[s uxtt(t, 0) + c2 ux(t, 0)] = 0 , 

alU(t,L) +pi[suxtt(t,L) + c2ux(t,L)] = 0 if t G [0, T] , 

because the transformation 

«(,, x) - Z„, „) + 1 (l - 3 g + 2 g) «,) + i (3 t - 2g) W.) 
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if a0 + 0, aj + 0 and the transformation 

x2 (x2 \ 
u(t, x) = Z(t, x) + — q(t) - I x J p(t) if a0 = 0 , al = 0 , 

where p(t) is a solution of the differential equation s p"(t) + c2 p(t) = ij/0(t) and 
q(t) is a solution of the differential equation e q"(t) + c2 q(t) = ^ ( t ) , transforms 
the inhomogeneous conditions (11) to homogeneous conditions (12). 

If e -» 0, then we have the initial-boundary problem for the wave equation (9): 

(10a) u(0, x) = cp0(x), uty0, x) = cp{(x) if x e [0, L] , 

(12a) a0 u(t, 0) + poc
2 ux(t, 0) = 0 , 

a t u(t, L) + p^2 ux(t, L) = 0 if t e [0, T] , 

with the same assumptions about the functions cp0, cpx as in the case of conditions (10). 
Since the initial-boundary problem (8), (10), (12) or (9), (10a), (12a) describes 

the extensional vibrations of rods, let us consider in what follows two variants of 
boundary conditions: 

;:;:)-=GXH-q <*> 
Let u(t, x) be a solution of the problem (8), (10), (12) and U(t, x) that of the problem 

(9), (10a), (12a). Existence and uniqueness theorems for the problem (9), (10a), (12a) 
are very well known, for the problem (8), (10), (12) they are proved for instance 
in [4]. 

To compare the solution properties of these problems, we use the Fourier method 
and the method of small parameter [5], [6]. Let us assume that u(t, x) = y(x) v(t). 
Then we have 

(13) — = - — - = const, if y(x) + 0 , e v"(t) + c2 v(t) + 0 . 
y sv" + C V 

Denoting the constant on the right hand side by — X2, we obtain 

(14) / + X2y = 0 , 

c2;2 

(15) v" + -^— v = 0 . 
V ; 1 + a2 

For the boundary conditions we have 

(16) u(t, 0) = 0 => j;(0) = 0 , 

u(t, L) = 0 => y(L) = 0 for the variant I. 
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(17) u(t,0) = 0 => y(0) = 0 

e uxrr(t, L) + c2 ux(t, L) = 0 => y'(L) = 0 for the variant II. 

Hence we have the sequences of eigenvalues and normalized eigenfunctions in the 
form: 

(18) Xn = — ; yn(
x) ~ / - s i n Kx f ° r 1 n e variant I. 

(19) Xn = —̂ ; y,.(x) = / - sin Xnx for the variant II. 

To each Xn we have the differential equation 

(20) v\t) + - ^ S - ^ - o , 
1 + £/„ 

and its solution 

v«{t) = A„ cos — — + B„ sin 
V(i + BK) V(I + £^2) 

If we assume that the series 

(21) / - Y sin l„x [A„ cos ^ — - + 6„ sin °-^-A 
{ ' V^»=o L v ( i + ^ 2 ) v ( i + ^ 2 )J 
is uniformly convergent with its derivatives up to the fourth order in [0, L] x [0, T] , 
we can take it for the solution of the problem (8), (10), (12). From the initial conditions 
(10) we obtain 

12 °° 
<Po(x) = "(0, X) = / - £ S i n KxAn , 

\ L« = 0 

/2 °° c/l 
<Pi(*) = ut(Q, x) = / - X s i n ^ - 9 „ - r r " _2. • 

\] Ln = 0 yj(l + sXn) 

With regard to the assumptions about the functions (p0(x) and (p{(x) we have only 
one development of these functions in series of normalized eigenfunctions >/(2/L). 
. sin Xnx; these series and their derivatives up to the second order are uniformly 
convergent. 

Hence 

wr sin X„i, <p0(Ç) d£ , 

cl„ VIJo 
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Since the series 

COS - 7 (22) u(t, x) = - £ sin Å„x \ j sin X,Л <Po(ï) dţ ^ 
L„ = 0 (LJ0 J V(! + EÅ"> 

— — sin A„ç ф Д g d£ sin -+ 

is majorized by the series 

r\ 00 (*L 

7(i + ^ 

L n = 0 

'L 2 /e °° CL 

sin Я„<.f <p0(£) d í + - ^ - 1 sin Xnx sin Я„£ <Pi(Č) dc; 
0 ĹC n = 0 J 0 

which is uniformly convergent in [0, L], (22) is also uniformly convergent in [0, L] 
x [0, T] . The assumptions imply (see [ l ]) that the series 

sin X£ q>0(£) d£ < (23) uxx(t, x) = - - Y X2 sin Xnx 
L n = o 

I cos 

+ 
V ( l + вЯ2) 

cX„ 
sin Xnţ ęx (É)dЛsin 

V(l + вЯ2) 

cЯJ 

+ 

V(i + < 

is also uniformly convergent in [0, L] x [0. T] . The series 

^ 0 0 1 2 rr~ /•L ~ 

(24) «„(*, x) = - ± X ^ ^ sin A„x i sin A„£ <p0^) d£ 
L„ = o 1 + e/„ (LJo 

cos 
cЯA 

V(l + O 

+ Г V ( 1 cя в ~̂ г^s in ^ ^i(^) d Л s in 
cXj 

V(! + **î). 

is uniformly convergent in [0, L] x [0, T] because it is majorized by c2u(t, x)je. 
Similarly the series 

2 °° r2}2 (T CL 1 r} t 
(25) uxxtt = - X = - sin l„x I sin X£ <?<,(£) d£ cos - " - + 

L „ = 0 l + e A „ (LJo J V(l + £X«) 

is uniformly convergent in [0, L] x [0, T] . Therefore (22) is a solution of the problem 
(8), (10), (12) for variant (I) of boundary conditions. 

Analogously we obtain the solution of the problem (9), (10a), (12a): 

(26) U(t, x) = - X sin X„x 
L „ = o 

sin Xnl <pQ(Ç) d£ cos cXnt + } 
— sin A„£ (?,(£) d d sin c/ln . l , 
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where Xn are the same as in (18) and (19). For the corrected tension we have 

(27) Ж i Ы Ï ^ l - A ^ C o s Я „ x { Г Í L s i n Я „ ^ 0 ( ^ ) d Л 
Q L «=o 1 + eÀ„ (LJo J 

cLt 

VO + ^n) 
- + 

cos CÅJ + 

and in the case of classical solution we obtain 

(28) ° ^ = — £ ln cos Xnx \ \ f sin U <Po{t) d{ ] 
O L »=o (LJo J 

+ — s i n Kl <Pi(€) d £ sin cknA . 

Since the series (25) and (27) are uniformly convergent in [0, L] x [0, T] for each 
e G [0, e0]> where e0 > 0 is an arbitrary constant, and because all functions on the 
right hand side are continuous in this domain, we obtain 

lim u(t, x) = U(t, x) , lim a(t, x, s) = a(t, x) , 
E-+0 £->0 

so that for small s > 0 the difference between the corrected solution and that of 
the classical wave equation is very small. 

To obtain the asymptotic behaviour of the solution of Love's equation we can 
also use the method of small parameter. 

Theorem 1. Consider the problem 

(29a) 

(29b) 

(30) 

or 

(30a) 

euxxtt + c2uxx -utt = 0 if (t, x) G [0, L] x [0, T] , 

w(0, x) = c?o(x) , w,(0, x) = cp^x) if x G [0, L] , 

variant I : w(t, 0) = ij/0(t) , u(t, L) = \jjx(t) if t e [0, T] , 

variant II : w(t, 0) = ij/0(t) s uxtt(t, L) + c2 ux(t, L) = xj/^t) 

if te[0, T ] , 

where (p0(x), 9x(x) G C2[0, L], ij/0(t), ij/^t) G C2[0, T] . Then in the quadrilateral 
[0, L] x [0, T] we can write for the solution u(t, x) of Love's equation the relation 

(21) u(t, x) = e~a£ U(t, x) + e z(t, x) , 

where a is an arbitrary constant, U(t, x) is a solution of the wave equation which 
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fulfils the initial conditions (29b), the boundary conditions (30) in the variant I, 
the boundary conditions 

(30b) U(t, 0) = ip0(t) , Ux(t, L) = il/X(t) if te [0, T] 

in the variant II, and z(t, x) is a solution of the differential equation zxxtt = 0 for 
which e~aEUxxtt + c2zxx — ztt = 0 holds. For the variant I we have 

(31) z(t, x) = i (1 - e—) L o W - | «Po(L) + t U , ( x ) - ^ ?.(£)"] -

- | f(l - x) V l(0) + ^ *V.(.) + i (L - x) |>0(.) - ^o(O)]} -
JL/ X-/ As J 

For the variant II of boundary conditions we obtain 

(32) z(t, x) = - (1 - e"") L 0 ( x ) - x <p0(L) + </>„(.) - ^0(0) + 

+ f[<Pi(x) — ̂ ( 0 ) — x </i(L)] + x (p0(L) cos — f + 

/£ C C C C 

+ x — ФІ(L) sin — t + x sin —— t I iДi(т) cos —- т dт 
c v

/ в V є Jo V є 

— t <AI(T) sin — T di v . 

Jo V e J V8 

This theorem implies also that 

lim w(t, x) = U(t, x) 
E~+0 

Proof. If we take u(t, x) = e~fl(°£ U(t, x) + s z(t, x) as a formal solution of the 
equation (29a) we obtain that a(t) is a constant, U(f, x) is a solution of the wave 
equation c2uxx — utt = 0 and z(t, x) is a solution of the partial differential equation 
zxxtt = 0 for which e~fleUXJCff + c2zxx — ztt = 0 holds. The relations (31) and (32) 
follow from the initial and boundary conditions. 

For the solution of the differential equation (8) we can derive a similar theorem 
about the behaviour of zeros as in the paper [7] for the wave equation. 

Theorem 2. L<?t t0 > 0, L0 > 0. Let us consider the problem 

(B) mxxtt + c2uxx - utt = 0 if (t, x) e [0, L] x [0, T] , 

u(t0, x) = 0 , ut(t0, x) = (p(x) if 0 <: x S L. 

If T > 0 is given then we can choose the function (p(x) so that there exists a solution 
of the problem (B) which has no zeros for t0 < t < T Further, there exist constants 
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L0 > 0, T0 > 0 such that we can choose the function tp(x) for which the solution of 
(B) has no zeros in the quadrilateral [0, L0] x [0, T0[. 

Proof. I. Let X2 be the constant on the right hand side of (13). From (13) we obtain 

(33) v" C-^T v = 0 if 1 - X2s + 0 , 
1 — AS 

(34) y" - X2y = 0 , 

and from the initial conditions (10) we have 

v(t) y(x) = 0 => v(t0) = 0 
and 

v'(to) y(x) = (p(x) 

which holds, for instance, in the case v'(t0) = 1, y(x) = (p(x). 

a) 
Assume that 1 — X2s > 0. Then we have the solution of (33) 

^ ) - = V ( 1 - £ A 2 ) s i n h C ^ - H > 
V ' CX 7 ( 1 - £^2) 

which has no zero if t > t0. 
If we choose for the function (p(x) the positive solution y(x) of the equation (34), 

then u(t, x) = y(x) v0(t) is a solution of (B) which has no zero in (t0. T) x (0, L). 

b) 
Assume that 1 — X2s < 0; then we have the solution of (33) in the form 

, v J(X2s - 1) . cX(t - t0) vAt) = yA '- sin —* ^- . 
W cX ^J(X2s - 1) 

If T0 = t0 + n yJ(X2s — \)\cX, then the function v±(t) has no zero in (t0, T0). If we 
take for the function cp(x) the positive solution of (34), then the solution u (t, x) = 
= y(x) vj(t) has no zero in (t0, T0) x (0, L). 

II. Let — X2 be the constant on the right hand side of (13). Then 1 + X2s > 0 
and the solution of 

v + — -v = 0 
1 + eA2 

is 
/A V(l + eA2) . c A(* - t0) 
V; cx 7(1 + a2) 

Denoting Tt = t0 + n 7 (1 + X2s)jcX, then the function v2(t) has no zero in (t0, T t). 
The function y(x) = k sin X(x — x0), being a solution of the differential equation 
y" + ?2y = 0, is positive in (0, L) if L0 ^ Ir/A. If we choose this solution for the 
function (p(x), then the solution u(t, x) = y(x) v2(t) has no zero in (t0, T0) x (0, L0). 
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S o u h r n 

POZNÁMKA K POROVNÁNÍ VLASTNOSTÍ ŘEŠENÍ ROVNICE 

LOVEOVY S KLASICKOU VLNOVOU ROVNICÍ 

VĚRA RADOCHOVÁ 

V práci je porovnáno řešení Loveovy korigované rovnice s řešením klasické 

vlnové rovnice a odvozeny některé vztahy, vyjadřující jejich vzájemnou souvislost, 

pro jistou třídu okrajových podmínek, při čemž se vychází z toho, že Loveovu 

rovnici lze považovat za rovnici s malým parametrem u nejvyšší derivace. 

Authoťs address: RNDr Věra Holaňová-Radochová CSc, MÚ ČSAV pobočka v Brně, Janáč
kovo nám. 2a, 662 95 Brno. 
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