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SVAZEK 23 (1978) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

NUMERICAL SOLUTION OF CAUCHY TYPE SINGULAR INTEGRAL 
EQUATIONS BY USE OF THE LOBATTO-JACOBI 

NUMERICAL INTEGRATION RULE 

N . I. IOAKIMIDIS and P. S. THEOCARIS 

(Received March 29, 1977) 

INTRODUCTION 

An effective method of numerical solution of singular integral equations with 
a kernel consisting of a regular part as well as a Cauchy type singular part consists 
in the reduction of such an equation to a system of linear equations. This method was 
applied by Theocaris and Ioakimidis [ l ] to the numerical solution of singular in­
tegral equations of the form 

(1) A(x) w(x) cp(x) + B(x) J w(t) - ^ - dt + I w(t) k(t, x) cp(t) dt = f(x) , 
J - i t - x J _ ! 

- 1 < x < 1 , 

where A(x) and B(x) are bounded continuous functions in the integration interval 
[ — 1, l ] , w(x) is a weight function of the form 

(2) w(x) = (1 ~ x)a(l + x)b, a, b > - 1 , 

<p(x) is the unknown function of the integral equation, supposed to vary regularly 
along the integration interval, k(t, x) is a kernel bounded with respect to both its 
variables in the integration interval except for x = + 1 , where it may present Cauchy 
type singularities behaving like \\(t — x), and f(x) is a known function which may 
present weak singularities near the ends x = + 1 of the integration interval. Of 
course, the constants a and b in the weight function w(x) should be compatible with 
the behaviour of the known functions A(x), B(x), k(t, x) and f(x) near the end-
points x = + 1 of the integration interval. 

The results obtained in [ l ] for the reduction of Eq. (l) to a system of linear equa­
tions of the form 

(3) t Ak \ ^ ~ + k(tk, xr)\ <p(tk) = f(xr), r - 1, 2,..., m , 
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where in most cases m = n — 1, n or n + 1, have been based on the use of the 
Gauss-Jacobi numerical integration rule [2] for the approximate expression of the 
integrals in Eq. (l) together with the application of the resulting approximate 
equation at a certain number of properly selected points xr of the integration interval 

( - i . i ) . 
In this paper it will be shown that the Lobatto-Jacobi numerical integration rule, 

well known for regular integrals [2], can also be used for the numerical solution of 
the Cauchy type singular integral equation (l). This method has been already applied 
to the numerical solution of Eq. (l) by the present authors in the special cases where 
a = b = —1/2 and A(x) = 0 [3], a = b = 0 [4] or a + b -= — x (where x is an 
integer number) and A(x) and B(x) are constants [5]. In this last case the points xr 

of application of Eq. (l), appropriately selected in order that the system of linear 
equations (3) result, were the roots of an appropriate Jacobi polynomial. In the 
general case where the singularities a and b in the weight function w(x), given by 
Eq. (2), are arbitrary, these points x r should be selected as the roots of a transcen­
dental equation, as will be seen in the sequel. 

For the numerical solution of Cauchy type singular integral equations of the form 
(1) arising in practical applications, the values of the unknown function (p(x) at the 
end-points x = ± 1 of the integration interval are in most cases of practical interest. 
Since the Lobatto-Jacobi numerical integration rule contains among the abscissae 
used these points, it is quite appropriate for the numerical solution of Eq. (1) by the 
method described previously. The advantages of the Lobatto-Jacobi numerical 
integration rule over the Gauss-Jacobi rule in the case considered are described in 
detail in [3] . Here we will apply the Lobatto-Jacobi numerical integration rule to 
the numerical solution of the Cauchy type singular integral equations in which the 
problem of a crack terminating perpendicularly at the interface of two isotropic 
elastic media under generalized plane stress, plane strain or antiplane shear conditions 
is reduced. 

THE LOBATTO-JACOBI RULE 

The Lobatto-Jacobi numerical integration rule is associated with the Jacobi 
polynomials P(

n'
b)(z) and has, for regular integrals, the form [2] 

(4) 
ŕ*l n 

w(ř) ę(t) dř = £ Ak ę{tk) + En , 
J - i *=i 

where the weight function w(t) is given by Eq. (2), the abscissae tk and the cor­
responding weights Ak are given by 

(5) (1 - tl) Pn

albl%) = 0 , t l = 1 > t2 > ... > tn = - 1 , 

440 



(6) ^ - - ( l + в j H . , A„=(l + b ) H „ , Afc = Я t (fc = 2 , 3 , . . „ n - 1), 

2 a + ь + 1 Г ( n + g)Г(n + b) 1 

( n - l ) г ( n ) Г ( n + a + b + l ) { « ( ( ) t ) } : 
(fc = l , 2 , . . . , n ) 

and F„ is the error term, vanishing for integrands cp(t) which are polynomiials of 

up to (in — 2) degree. 

In accordance with the developments of Ioakimidis and Theocaris [6] who pre­

sented a general method of extending numerical integration rules for regular integrals 

to the case of Cauchy principal value integrals, the Lobatto-Jacobi numerical 

integration rule can also be used for the evaluation of Cauchy type principal value 

integrals. By taking into account the results obtained in [6], it can be easily found 

that 

1

 W(t) -==-d( = EA^AL _ ^3^M^L + En, 
_. W t - x & tk - x (l-x2) P„a*l'(x) 

(7) 

where the abscissae tk and the weights Ak are given again by Eqs. (5) and (6) respec­

tively, the function qn

a'b)(z) is given by 

(8) qn

a*\z) = - - f w(t) ^ ~ f 2 ) P»-^ df 
2 J - i t ~ z 

and the error term En may be computed by 

(9) E - I f *® - = ^ ) dU) 

where C denotes a contour surrounding the integration interval [—1, 1]. It may 

also be noted that q(

n'
b)(z), being a Cauchy type integral, is defined for the points x 

of the interval ( — 1,1) in the principal value sense [7] and that the error term En 

vanishes for integrands cp(t) which are polynomials of up to (in — 1) degree. 

Now we will try to express the function qn

a,b)(z), entering Eqs. (7) and (9), in terms 

of the derivative of the Jacobi function of the second kind Qn

a,b)(z) [8]. First, we may 

note that Qn

a,b)(z) is related to the Cauchy type integral nn

a'b)(z) defined by [9] 

/•I p(a>bHA 
(10) nn

a'b)(z) = - w(t) ^ — ^ d t 
J - l t — z 

by the relation [8] 

(11) 77^>(z) = 2 ( z - l ) a ( z + l ) * e ^ ) ( z ) . 
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Next, by using the differentiation formula [10, p. 170] 

(12) (2« + a + b)(l-2
2)gP',g} = 

= -n{(2n + a + b) z + (b - a)} { g H ^ } + 2(» + «)(« + i ) { ^ j } , 

valid both for the Jacobi polynomials P(a,b)(z) and the Jacobi functions of the second 
kind Q(a,b)(z), we can express the function q(a,b)(z), given by Eq. (8), as 

(13) 2(2n + fl + i)tf/1>(z) = 

= -n{(2n + a + b) z + (b - a)} n(a,b\z) + 2(n + a) (n + b) FI^z), 

where Eq. (10) as well as the property of Jacobi polynomials P(a,b)(z) of being ortho­
gonal along the interval [—1, l ] with respect to the weight function w(t), given by 
Eq. (2), have been taken into account. Furthermore, by combining Eqs. ( l l ) and 
(12) we obtain 

(14) 2(2n + a + b) (z - l)a (z + l)b (l - z2) Q(
n
a'b)\z) = 

= -n{(2n + a + b) z + (b - a)} 17<a'b)(z) + 2(n + a) (n + 6) n(aib)(z). 

Hence, Eq. (13) yields the following expression for the function q(a,b)(z)\ 

(15) q^\z) = (z - 1)« (z + 1)" (1 - z2) G?-V(-) • 

Equations (10—15) are valid for the points z of the complex plane outside the 
integration interval [—V 1]. Thus, the expression (15) for the function q(a'b)(z) can 
be used for the computation of the error term En, given by Eq. (9), but it cannot be 
inserted into Eq. (7), except after a proper modification. Since any Cauchy type 
integral exists along the integration interval, its end-points excluded, only when 
interpreted in the principal value sense [7], the derivation of an expression similar 
to (15) for the function q(a,b)(z) when z coincides with a point x of the interval 
(—1, l), requires particular attention. 

By using the second Plemelj formula [7] for the values q(a'b)(x) and n(a,b)(x) of the 
functions q(a,b)(z) and n(a,b)(z) along the integration interval (—1, 1), considered 
as an open interval, we obtain 

(16) £-b\x) = i{q^"\x + 00 + ^(x - 00} , 

(n) n<:>»\x) = ${rt:-b\x + o«) + nl"-b\x - 00}, 

where the right-hand side terms denote the limiting values of the functions q(a,b)(z) 
andII^ ,&)(z),the point z tending from the upper or the lower half-plane to the point x 
of the interval (—V l) . Hence, it is evident that Eq. (13) remains valid for the 
points x of the interval (— 1, 1). 
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Furthermore, by differentiating Eq. (17) with respect to x and taking into account 
the identity 

(18) lim {/Jr> '00}=f {77<«-*>(x ± Oi)} , 
z-»jc±Oi a x 

which is generally valid for functions like n{a,b)(z) defined as Cauchy type integrals 
[7], we obtain 

(19) nn
a,b)f(x) = i{n{

n
a,b)f(x + of) + n{:,b)f(x - o i)} . 

In this equation n{a,b)f(x) denotes both the function n{a,b),(z) for z = x and the 
function (d/dx) {n{a,b)(x)}. 

Now, by differentiating Eq. ( l l ) with respect to z, we obtain 

(20) ( l -z 2 ) / J<" ' 6 >'(z) = 

= 2(z - 1)" (z + 1)" [ -{ (« + b) z + (a - b)} Q<;-b\z) + (1 - z2) Q™'(z)\ . 

Equation (20), combined with (11) and (12), gives for the derivative of the function 
n{a,b)(z) outside the integration interval 

(21) (In + a + b) (1 - z2) n{
n
a,h),(z) = -(n + a + b) . 

. {(2„ + a + b) z + (a - b)} n{
n

a,b)(z) + 2(n + a) (n + b) H!,^^) • 

Because of Eqs. (17) and (19), it can be further seen that Eq. (21) remains valid even 
for the points x of the integration interval (—1, 1). 

Next, if we define the Jacobi function of the second kind Qn
a,h)(x) on the integra­

tion interval (—V 1) by 

(22) Q^\x) = inla-b)(x)lw(x), 

a definition which is different from the analogous definition given in [10, p. 171], 
and take into account Eq. (21), we can easily see that Q{a,b)(x) satisfies Eq. (12) not 
only outside the integration interval (—1, 1) but on this interval, too. 

Finally, by combining Eqs. (12), (13) and (22), we obtain the following expression 
for the function q{a,b)(z) along the integration interval (—1, 1) 

(23) q["*Xx) = w(x)(l-x>)Qi°*i'(x), 

which is completely analogous to Eq. (15). It is also evident that such simple expres­
sions of the function q{a,b)(z) like (15) and (23) cannot be obtained in terms of the 
function n{a>h)(z). 

Since the Jacobi function of the second kind Q{a,b)(z) can be expressed, outside the 
integration interval [—1, 1], as a hypergeometric function [8], the same will be true 
for the function q{

n
a,b)(z), given by Eq. (15) for the points of the complex plane outside 

the integration interval. For our problem, the values of the function q{a,b)(z) along 
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the integration interval (—V 1) are of the greatest importance. Along this interval 
we can take into account that [11] 

(24) i w(t) £*—£! dt = cot na w(x) Pn
a'b\x) -

71 J _ _ t - X 

2a + b r(a) r(n + b + 1) / 1 - x \ _̂  
- F n + 1, —n - a — b; I — a; , a + 0, 1, . . . 7i F(n + a + b + 1) 

Then, because of Eqs. (10) and (22), we obtain 

(25) e r > w . - _ co, „ Pi-...w + ̂ f;;;;' 

2 w(x) F(rc + a + b + 1) 

F ( n + 1, —n — a — b; 1 — a; - ) , a + 0, 1, . . . . 
At this stage we have to remark that Eq. (24) was considered in [11] to be valid 

only when the sum of the singularities (a + b) of the weight function w(x) is an 
integer number. Nevertheless, by taking into account the formula [10, p. 171] 

(26) Qn
a>h\z) = - - cosec Tia P^b\z) + 2f l+&~1 ri^llil±Jb±3 . 

2 r(n + a + b + 1) 

. (z - l)" f l(z + l ) " * F / n + 1, -n - a - b; 1 - a ; ^ - ^ j 

as well as Eqs. (11),(17) and (22), we can see that Eqs. (24) and (25) remain valid 
for all values of a and b (a + 0 , 1 , . . . ) . We can also mention that Eq. (25) differs 
from the corresponding equation given in [10, p. 171] because, as we have already 
mentioned, a definition of the function Q(a'b)(z) for the points x of the integration 
interval (—1, l) different from (22) was considered in this reference. 

We can also remark that the functions Qn
a,b)(z) satisfy both outside the integration 

interval [— 1, 1] and on this interval the same differential equation and the same rec-
curence relations as the Jacobi polynomials Pn

a,b)(z) [8, 1]. Hence, their evaluation 
is very easy. As regards the derivative Qn

a'b)\z), Eq. (12) can be used in the whole 
complex plane, too. Also, in the case when a = 0, 1, ..., an analogous formula to 
(24) can be easily obtained. Finally, for the numerical evaluation of Q0

a,h)(x) which is 
necessary when using the recurrence relations of Jacobi functions for the evaluation 
of Qn

a'b)(z), the developments of [ l ] which make use of a rapidly convergent infinite 
series along the whole interval (—1, 1), can be taken into account. 

Following these arguments, we will proceed to the application of the Lobatto-
Jacobi numerical integration rule for both regular and Cauchy type principal value 
integrals, expressed by Eqs. (4) and (7) respectively, to the numerical solution of 
Eq. (1). 
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NUMERICAL SOLUTION OF THE SINGULAR INTEGRAL EQUATION 

By applying the Lobatto-Jacobi numerical integration rule expressed by Eqs. (4) 
and (7) to the integrals of the left-hand side of Eq. (l) and nelgecting the error term En 

due to numerical integrations, we obtain the following approximate form of Eq. (1) 

(27) \A(x) W(X) - 2 B(x) ^ f f j co(x) + £ Ak \ M - + k(tk, x)\ . 
I (1 - X2)P{

nl((x)\ _«1 [tk - X J 

• <p(tt) = f(x), -1 < x < 1 . 

(28) A(x) w(*) - 2 B(x) tf «" % ' л = ° • 

Next, it is easy to see that if we choose the points xr of application of Eq. (27) as 
the roots of the equation 

ti*\x) 
(i-x>)p<-:*r(x) 

or, because of Eq. (23), of 

(29) Ftbl(x) = A(x) PW(x) - 2 B(x) Q™'(x) = 0 , 

which is in general a transcendental equation, then Eq. (l) can be approximated by 
the system of linear equations (3). As we will see in the sequel, the roots xr of Eq. 
(29) are at least (n — l). In this way, it is probable that one more linear equation, 
besides those of system (3), is required. Such an equation may result from a physical 
condition of the form 

(30) 
1 

v(t) ę(t) át = C 

(where C is a known constant), which after an application of the Lobatto-Jacobi 
rule (4) may be approximated by the following linear equation 

(31) t Ak cp(tk) = C , 
k=l 

or it may even be of the form 

(32) <p(d) = C, d = - 1 or 0 or 1 , 

resulting also from physical considerations at the end-points or, perhaps, at the 
middle-point of the integration interval. More detail on this subject may be found in 
[1,3,4,5,11] . 

Furthermore, proceeding in a way analogous to that described in [ l ] , where the 
Gauss-Jacobi method was applied to the numerical solution of Eq. (l), we can 
easily show that Eq. (29) has at least one root in each subinterval of the integration 
interval defined by two consecutive abscissae of the Lobatto-Jacobi numerical in-
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tegration rule, the abscissae tk = + 1 included, provided the restrictions a, b > — 1 
hold. 

It can be also shown that in the case when the functions A(x) and B(x) reduce to 
constants, there is only one root of Eq. (29) in each of the subintervals considered, 
or, in another wording, Eq. (29) has (n — l) roots alternating with the n roots of the 
polynomial (1 — x2) Pn

alb±f(x), which are the abscissae of the Lobatto-Jacobi nu­
merical integration rule. To achieve it, we take into account that both the Jacobi 
polynomials P(

n
a,b)(x) and the Jacobi functions of the second kind Q(a,b)(x) satisfy 

the same second order differential equation [8, pp . 60, 74]. Then it can be seen that 
the same will be true for their derivatives Pn

aib}'(x) and Q(
n-l'(x) as well as for the 

functions F(
n

aib}(x) defined by Eq. (29), the roots of which are sought. Then we can 
apply the following Sturm's type theorem reported by Porter [12]: 

Theorem. If within an interval (a, b) (excluding the ends) the coefficients of the 
differential equation 

d 2 y , >. dy , x 

~i + p(x)-f + q(x)y = 0 
ax ax 

are continuous, and if there exists a solution yx which does not vanish between a 
and b such that its ratio to a linearly independent solution y2 approaches zero as 
we approach each end of the interval, then y2 vanishes once and only once between a 
and b, 

by considering the differential equation satisfied by Pn
alb?'(x), Qn

albl'(x) and F(albl(x)y 

easily resulting from the developments of [8, p. 60] 

(33) (1 - x2) y" + {b - a - (a + b + 4) x] y' + 

+ {(n - 1) (n + a + b) - (a + b + 2)} y = 0 

and assuming that the functions y1 and y2 coincide with the functions P(
n

aibi'(x) and 
F(aibl(x), while the interval (a, b) is each one of the (n — l) subintervals to which 
the roots of Pn

a-l'(x) divide the integration interval [— 1, 1]. By the direct application 
of the foregoing theorem we can find that in each of these subintervals there exists 
one and only one root of F(aib{(x). 

Although this fact is evident for all subintervals (a, b) for which a, b + ± 1 , it is 
necessary to show that F(

n
aib?(x) becomes unbounded as x -> + ( l — 0), in order 

that the proof for the subintervals (— 1, tn_t) and (t2, l) be complete. Since P(
n
aib^(x) 

is bounded for x —> + 1 , we have to show, because of Eq. (29), that Q{a-l'(x) becomes 
unbounded as x -> + ( l — 0). This fact can be easily established for x -> 1 — 0 
if Eq. (25) and the assumption a > —1 are taken into account with the exception 
of the case when a is a non-negative integer number. However, even in this case it 
can be seen that Q(a-l'(x) becomes unbounded for x -> 1 — 0, if the developments 
of Szego [8, pp. 78 — 79] are taken into account. In accordance with these develop-
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merits, we have the following behaviour of Qn

a'b)(x) for x --> 1 — 0 

(34) 
Q^\x) ( l - x ) - * , 0 = 1,2,. 

In (1 - x) , o = 0 

and, therefore, Qn

a,b)'(x) tends to infinity for x -> 1 - 0. In an analogous way it 
can be shown that Q(a,b)'(x) tends to infinity for x -> - 1 + 0 under the assumption 
that b > - 1 . 

Thus, it is seen that under the original assumptions a, b > — 1 (Eq. (2)), necessary 
for the existence of the integrals with a weight function w(t), the function Qn

a-l'(x) 

becomes unbounded as x —> +(1 — 0). Thus it was proved, for the case when A(x) 

and B(x) are constants, that the number of roots xr of the function Fn

a_l(x) (that is the 
points of application of Eq. (l) used for its reduction to the system of linear equations 
(3)) is (n — l) and the roots alternate with the n roots of the function (l — x2) _ 

Pn

a^'(x), which are the abscissae used in the Lobatto-Jacobi numerical integration 
rule. 

AN APPLICATION 

As an application we consider the problem of a crack of a length c perpendicular 
to the interface of two semiinfinite isotropic elastic media S1 and S2 as shown in 
Fig. 1. These media are characterized by their shear moduli fix and \i2 and their 

Һ 

Si 

(M-1 .vn) 
.. .. Q Һ 

X A B 

< 

s 2 

(U-2> ^2) 

0 

y 

Fig. 1. A straight crack terminating perpendicularly at the interface of two media. 

Poisson ratios vt and v2, respectively. The whole elastic plane is supposed to be 
under a generalized plane stress, a plane strain or antiplane shear conditions. These 
problems have been considered by Erdogan and Cook [11, 13, 14], who showed 
that they can be reduced to a Cauchy type singular integral equation along the crack. 

If in the cases of a generalized plane stress or a plane strain the loading on the 
edges of the crack is supposed to be a uniform compressive loading of a constant 
intensity a, then, in accordance with the developments of [11,13], the whole problem 
can be reduced to the following Cauchy type singular integral equation, written here 
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under a slightly modified form 

1 
(35) 

71 

where 

11 Í 1 ) 
vv(t) cp(t) 1 + k(t9 xU át = 1, 

o [t - x J 

"(36) w(t) = (1 - t)a tb 

with a = —1/2 and b determined as the smallest root of the equation 

(37) 2dx cos n(b + 1) - d 2(b + l ) 2 - d3 = 0 , 

the constants d l 9 J 2 and 0*3 given by 

(38) dx = (m + x2) (l + mxjj) , 

d2 = —4(1 — m) (m + x 2) , 

J3 = (1 — m) (m + x 2) + (1 + mxx) (m + x 2) — m(l + xx) (l + mxj), 

where 

(39) m = n2lin 

and 

(40) x, = (3 - v,)/(l + v,), i = 1, 2 

for generalized plane stress conditions and 

(41) %; = 3 - 4v,, i = 1, 2 

for plane strain conditions. As regards the kernel k(t, x) in Eq. (35), it is given by 

I f x / ^ \2 
(42) k(t, x) = <d2 + d3 - 3d2 —~ + 2d2 2dx(t + x) I t + x \t + x 

Equation (35) should also be supplemented by the condition of single-valuedness of 
displacements 

(43) 
•1 

0 

(t) ę(i) dí = 0 

For the numerical solution of Eq. (35) supplemented by condition (43), Erdogan 
and Cook [11, 13] have used the Gauss-Jacobi numerical integration rule, of course 
after a transformation of the integration interval [0, 1] to the interval [—1, 1]. 
Although the results obtained by Erdogan and Cook were correct, it was shown by 
Theocaris and Ioakimidis [ l ] that the selection of points xr of application of Eq. (35) 
was not the proper one and this fact resulted in a very slow convergence of the results 
with increasing values of the number n of abscissae used. Since in the problem under 
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consideration the values of the stress intensity factors at the crack tips A and B 

(Fig. 1) are the quantities of the greatest importance and these factors are related 

to the unknown function cp(t) by [11, 13] 

(44) 

K = -21'2 

kл = 2ll2ę(l)ac~a, 

m(\ + xO {(3 + 2Ь)(1 + mx{) - (1 + 2b) (m + x2) 

2ăx sin %b 
l <p(0) GC 

it is evident from the arguments of [3] that the use of a Lobatto-type numerical 
integration rule for the numerical solution of Eq. (35) presents considerable advan­
tages over the use of a Gauss-type rule. Thus, the Lobatto-Jacobi numerical integra­
tion rule has been used for the numerical solution of Eq. (35), together with condition 
(43), in accordance with the developments of the present paper. The elastic materials 
have been assumed to be epoxy (S x) and aluminum (S 2). Then we have [11, 13]: 
vi = 0-35, v2 = 0-30, m = fi2\fi1 = 23-077. 

The results obtained after a reduction of Eq. (35) and condition (43) to a system 
of linear equations and the numerical solution of the latter are presented in Table 1 
both for a generalized plane stress and plane strain conditions. The number of 
abscissae used, equal to the number of linear equations, was obtained as n = 3(3) 15. 
Also an appropriate transformation of variables has been made for the reduction 
of the integration interval [0, 1] to [—1, l ] . The results, shown in Table V are in 

Table 1 

Convergence of the numerically obtained reduced values of the stress intensity factors at the tips 
of a crack terminating perperdicularly at the interface of two media (vi = 0-35, v2 = 0-30, 

//_///. = 91-077^ џ2jßl = 23-077). 

n 

Plane stress Plаne strаin Antiplаne sheаr 

n 
k^- kвo~lcь k,o~ kвo~lcь kAo~\c\2f kßO-Ҷc/lү 

a= -0-5 b=-0-288977 a= -0-5 b=-0-338113 a= —0-5 b = - 0 1 3 0 6 5 7 

3 0-872674 4-157028 0-878736 2-865473 0-896674 8-769577 
6 0-878576 4161217 0-882556 2-789663 0-906129 11-583040 
9 0-878637 4-146768 0-882547 2-777447 0-906559 12-598343 

12 0-878650 4-141488 0-882545 2-775064 0-906631 13-160276 
15 0-878655 4-139260 0-882544 2-774655 0-906652 13-528842 

R
ef

s.
*)

 
[1

3,
14

] 

0-8789 4-1760 0-8827 2-7845 0-90709 1313303 

*) The results of these references may have been obtained for a slightly different value of 
m — /u2\ju1 (considered here equal to 23-077). 
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accordance with those given in [11, 13] for the same problem. Nevertheless, they are 
seen to converge to their correct values much more rapidly if a comparison of the 
speed of convergence with Table VII of [11] is made*). It can also be seen that the 
results of column 3 of Table 1 converge faster than the corresponding results obtained 
in [1] by using the Gauss-Jacobi numerical integration rule after a proper selection 
of the points of application of Eq. (35). 

Furthermore, the antiplane shear problem for the same crack AB (shown in Fig. l) 
was considered. This problem was reduced by Erdogan and Cook [14] to the fol­
lowing Cauchy type singular integral equation, written here in a slightly modified 
form 

(45) i Cw(t) cp(i) \-L- + — I d, = i , 

n Jo It — x t + x) 

where a constant antiplane shear loading ( — o) was assumed on the crack edges and 

(46) X = (fi, - fi^Kfi, + fi2) . 

The weight function w(t) is given again by Eq. (36) where [14] 

(47) a = - 1 / 2 , cosTib = - A . 

The results of the numerical solution of Eq. (45) supplemented also by condition 
(43) and under exactly the same conditions considered for the numerical solution of 
Eq. (35), are shown in the form of the reduced values of the stress intensity factors 
at the crack tips determined by [14] 

(48) kA = 21 / 2 cp(l) oc"a , kB = - ( 2m) 1 / 2 <p(0) oc~b 

in the last two columns of Table 1. These results can be seen to be in accordance with 
the corresponding results of [14]. 

Finally, we observe from the results of Table 1 that the convergence of the reduced 
values of the stress intensity factors at the tip A, far from the interface, is much 
faster, especially in the antiplane shear case, than the convergence of the correspon­
ding values at the tip B lying on the interface. This fact can be easily explained if the 
form of the kernels in Eqs. (35) and (45) is taken into account. Since these kernels 
contain, besides the Cauchy type term, terms which have poles in the complex plane 
and not simple polynomials, it is evident that these terms will contribute significantly 
to the error terms En neglected during the application of the Lobatto-Jacobi numerical 
integration rule for the approximation of the integrals in the integral equations. 
When a point x of application of the integral equations is near the crack tip B, the 

*) The results of the second column of this Table seem to be multiplied by a constant. The 
correct result is given in [13] and may be seen to be in agreement with the results obtained here 
(Table 1 column 4). 
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poles of the kernels lie near this crack tip and their contribution may become signi­

ficant. The opposite holds for the crack tip A; near this crack tip no poles of the 

kernels exist except the one due to the Cauchy type principal value term. Nevertheless, 

this pole has been taken into account through a proper selection of the points of 

application of the integral equations. 

Although it seems very difficult to prove theoretically the convergence of the 

numerical results obtained from the numerical solution of Eqs. (35) and (45) to 

their correct values, nevertheless, it seems that this occurs. Firstly, it is seen that the 

results presented in Table 1 converge very fast with the exception of the results of the 

last column of this Table. Secondly, the results of columns 1 and 2 (corresponding 

to the case of a generalized plane stress) are seen to be in agreement with the results 

obtained by Lin and Mar [15], which are 0-855 and 4-240, respectively. Also the 

results of columns 5 and 6 (corresponding to the case of antiplane shear) are seen to 

converge to their theoretical values, which can be found if the developments of Smith 

[16] of Chou [17] are taken into consideration together with Eqs. (48). Thus, in the 

special case considered it results in 

(49) kA = — ^ — oc~a , kB= i - = A m

1 / 2 2 f e - 1 / 2 a c ~ 5 . 
sin \nb sin \nb 

The numerical values obtained from Eqs. (49) are 0-90667 and 14-48995 in the reduced 

form for the tips A and B respectively. These values are in accordance with the results 

of columns 5 and 6 of Table 1, respectively. 

Finally, it can be mentioned that the influence of the pole due to the second term 

of the kernel of Eq. (45) was seen, through numerical experiments, not to be the 

main reason for the slow convergence of the numerical results in the last column of 

Table 1. It seems that this slow convergence is due to the fact that <p(t) has not 

a regular behaviour for t -» 0 [16, 17]. 
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S o u h r n 

NUMERICKÉ ŘEŠENÍ SINGULÁRNÍCH INTEGRÁLNÍCH ROVNIC 
CAUCHYOVA TYPU LOBATTOVOU-JACOBIOVOU METODOU 

NUMERICKÉ INTEGRACE 

N . I . lOAKIMIDIS, P . S. THEOCARIS 

Lobattovu-Jacobiovu metodu numerické integrace lze rozšířit na numerický 
výpočet hlavní hodnoty integrálu Cauchyova typu a na numerické řešení singulár­
ních integrálních rovnic s jádrem Cauchyova typu jejich převedením na soustavu 
lineárních rovnic. Za tím účelem jsou integrály v takové singulární integrální 
rovnici nahrazeny součty stejně jako v případě regulárních integrálů, při vhodné 
volbě bodů v integračním intervalu. Metoda je aplikována na problém z rovinné 
teorie pružnosti. 
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