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SVAZEK 23 (1978) APLIKACE MATEMATIKY CisLo 6

NUMERICAL SOLUTION OF CAUCHY TYPE SINGULAR INTEGRAL
EQUATIONS BY USE OF THE LOBATTO-JACOBI
NUMERICAL INTEGRATION RULE

N. I. IoakiMiDIs and P. S. THEOCARIS
(Received March 29, 1977)

INTRODUCTION

An effective method of numerical solution of singular integral equations with
a kernel consisting of a regular part as well as a Cauchy type singular part consists
in the reduction of such an equation to a system of linear equations. This method was
applied by Theocaris and Ioakimidis [1] to the numerical solution of singular in-
tegral equations of the form

(1) A(x) w(x) o(x) + B(x) J ilw(t);@x at + f 1

w(t) k(1, x) o(t) dt = f(x),
-l<x<1,

where A(x) and B(x) are bounded continuous functions in the integration interval
[—1, 1], w(x) is a weight function of the form

®) wx)=(1-x*(1+x)P°, a,b> -1,

¢(x) is the unknown function of the integral equation, supposed to vary regularly
along the integration interval, k(t, x) is a kernel bounded with respect to both its
variables in the integration interval except for x = =+ 1, where it may present Cauchy
type singularities behaving like 1/(t — x), and f(x) is a known function which may
present weak singularities near the ends x = +1 of the integration interval. Of
course, the constants a and b in the weight function w(x) should be compatible with
the behaviour of the known functions A(x), B(x), k(t, x) and f(x) near the end-
points x = +1 of the integration interval.

The results obtained in [1] for the reduction of Eq. (1) to a system of linear equa-
tions of the form

3) élA“{ B(x,) + k(te x,)} o) =1(x), r=12,..,m,

k t, — X,
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where in most cases m = n — 1, n or n + 1, have been based on the use of the
Gauss-Jacobi numerical integration rule [2] for the approximate expression of the
integrals in Eq. (1) together with the application of the resulting approximate
equation at a certain number of properly selected points x, of the integration interval
(=1,1).

In this paper it will be shown that the Lobatto-Jacobi numerical integration rule,
well known for regular integrals [2], can also be used for the numerical solution of
the Cauchy type singular integral equation (1) This method has been already applied
to the numerical solution of Eq. (1) by the present authors in the special cases where
a=b=—1/2and A(x) =0 [3],a=b=0[4] or a + b = —x (where x is an
integer number) and A(x) and B(x) are constants [5]. In this last case the points X,
of application of Eq. (1), appropriately selected in order that the system of linear
equations (3) result, were the roots of an appropriate Jacobi polynomial. In the
general case where the singularitiecs @ and b in the weight function w(x), given by
Eq. (2), are arbitrary, these points x, should be selected as the roots of a transcen-
dental equation, as will be seen in the sequel.

For the numerical solution of Cauchy type singular integral equations of the form
(1) arising in practical applications, the values of the unknown fanction ¢(x) at the
end-points x = =+1 of the integration interval are in most cases of practical interest.
Since the Lobatto-Jacobi numerical integration rule contains among the abscissae
used these points, it is quite appropriate for the numerical solution of Eq. (1) by the
method described previously. The advantages of the Lobatto-Jacobi numerical
integration rule over the Gauss-Jacobi rule in the case considered are described in
detail in [3] Here we will apply the Lobatto-Jacobi numerical integration rule to
the numerical solution of the Cauchy type singular integral equations in which the
problem of a crack terminating perpendicularly at the interface of two isotropic
elastic media under generalized plane stress, plane strain or antiplane shear conditions
is reduced. :

THE LOBATTO-JACOBI RULE

The Lobatto-Jacobi numerical integration rule is associated with the Jacobi
polynomials P{"*)(z) and has, for regular integrals, the form [2]

(4) J ! 1w(t) o(1) dt =é:1Ak o(ty) + E,,

where the weight function w(t) is given by Eq. (2), the abscissae 1, and the cor-
responding weights 4, are given by

(5) (=) P () =0, t,=1>t,>...>t,=—1,
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6) A= +a)H, A, =1 +bH,, A=H (k=23 ..,n-1),

atb+1
H, - 2 I'(n+ a)I(n + b) 1 (k=12.n),
(n—10)I(n)L(n+ a+ b+ 1) {P(t)}*

and E, is the error term, vanishing for integrands ¢(t) which are polynomiials of
up to (2n — 2) degree.

In accordance with the developments of Ioakimidis and Theocaris [6] who pre-
sented a general method of extending numerical integration rules for regular integrals
to the case of Cauchy principal value integrals, the Lobatto-Jacobi numerical
integration rule can also be used for the evaluation of Cauchy type principal value
integrals. By taking into account the results obtained in [6], it can be easily found
that

' < g(x) p(x
(7) J‘—1W(t) % ¢ =k;1Ak tk(p(—tk)x - ( - 2; Iz(ipg)’z )

where the abscissae t, and the weights 4, are given again by Egs. (5) and (6) respec-
tively, the function ¢{"”(z) is given by

®) 4(z) = —-J (o L= P

t—z

and the error term E, may be computed by

_1 [ e a,""(%)
©) = ;EL fx (= e peg @

where C denotes a contour surrounding the integration interval [—1, 1]. It may
also be noted that g{*(z), being a Cauchy type integral, is defined for the points x
of the interval (—1,1) in the principal value sense [7] and that the error term E,
vanishes for integrands ¢(t) which are polynomials of up to (2n — 1) degree.

Now we will try to express the function ¢\*(z), entering Egs. (7) and (9), in terms
of the derivative of the Jacobi function of the second kind Q'""(z) [8]. First, we may
note that Q{""(z) is related to the Cauchy type integral II{"*(z) defined by [9]

(10) neD(z) = — J‘l w(t) w)dt

-1 t—z
by the relation [8]
(11) n%(z) = 2(z — 1°(z + 1)’ 0%P(2) .
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Next, by using the differentiation formula [10, p. 170]
(12) P{*(2)

(2n +a + b)(1 - ){ o 2)}

= —n{@n +a+ b)z + (b — a)} {’;2223} +2(n + a)(n + b){ - bl)gz;}

valid both for the Jacobi polynomials P{**)(z) and the Jacobi functions of the second
kind Q{"”(z), we can express the function ¢'**(z), given by Eq. (8), as

(13) 2o+ a+ ) gih(E) =
= —n{@n + a +b)z + (b — a)} HP(2) + 2(n + a) (n + b) ID)(z),

where Eq. (10) as well as the property of Jacobi polynomials P{""(z) of being ortho-
gonal along the interval [ —1, 1] with respect to the weight function w(t), given by
Eq. (2), have been taken into account. Furthermore, by combining Egs. (11) and
(12) we obtain

(14) 22n +a + b)(z — 1) (z + 1)° (1 — 22) Q¥P'(2) =
= —n{2n + a+ b)z + (b — a)} I""(2) + 2(n + a) (n + b) ICH)(z).

Hence, Eq. (13) yields the following expression for the function ¢i*"(z):
(]5) (a b)(z) Z _ 1)a (z + J)b (l A 2) Q(a b)/(z)

Equations (10— 15) are valid for the points z of the complex plane outside the
integration interval [ —1, 1]. Thus, the expression (15) for the function ¢*"(z) can
be used for the computation of the error term E,, given by Eq. (9) but it cannot be
inserted into Eq. (7), except after a proper modification. Since any Cauchy type
integral exists along the integration interval, its end-points excluded, only when
interpreted in the principal value sense [7], the derivation of an expression similar
to (15) for the function g{*”(z) when z coincides with a point x of the interval
(=1, 1), requires particular attention.

By using the second Plemelj formula [7] for the values ¢/*?(x) and IT{*?(x) of the
functions ¢?(z) and I1%?(z) along the integration interval (—1, 1), considered
as an open interval, we obtain

(16) g P(x) = 1{gi"V(x + 0i) + ¢{*P(x — 0i)},
(17) I (x) = I (x + 0i) + I (x — 0i)},

where the right-hand side terms denote the limiting values of the functions ¢ "’(z)
and I1{*")(z), the point z tending from the upper or the lower half-plane to the point x
of the interval (—1, 1). Hence, it is evident that Eq. (13) remains valid for the
points x of the interval (—1, 1).
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Furthermore, by differentiating Eq. (17) with respect to x and taking into account
the identity

(18) lim {I1&Y(2)} = 4 {I@P(x + 0i)},
z-ox10i dx

which is generally valid for functions like H,(,"’b)(z) defined as Cauchy type integrals
[7], we obtain
(19) I (x) = H{I@eP (x + 0i) + I8P (x — 0i)} .
In this equation I7{""’(x) denotes both the function I1{*"’(z) for z = x and the
function (d/dx) {I1{*P(x)}.

Now, by differentiating Eq. (11) with respect to z, we obtain
(20) (1= 22) I (z) =

=2z = 1)"(z + 1)’ [~{(a + b) z + (a = b)} QI""(2) + (1 — 2%) ;"(2)] -
Equation (20), combined with (11) and (12), gives for the derivative of the function
11%P(z) outside the integration interval
(21) @n+a+b)(1 -0 (2)= —(n+a + b).

A@n + a+b)z + (a — b)) I(z) + 2(n + a)(n + b) T")(z) .

Because of Egs. (17) and (19), it can be further seen that Eq. (21) remains valid even
for the points x of the integration interval (—1, 1).

Next, if we define the Jacobi function of the second kind Q{**(x) on the integra-
tion interval (—1, 1) by

@) 0(x) = HIFP(x) ()

a definition which is different from the analogous definition given in [10, p. 171],
and take into account Eq. (21), we can easily see that Q{»"(x) satisfies Eq. (12) not
only outside the integration interval (— 1, 1) but on this interval, too.

Finally, by combining Egs. (12), (13) and (22), we obtain the following expression

. for the function ¢{*(z) along the integration interval (—1, 1)
(@) V() = W) (1 - X7) QIR (),

which is completely analogous to Eq. (15). It is also evident that such simple expres-
sions of the function ¢{?(z) like (15) and (23) cannot be obtained in terms of the
function I1¢%%(z).

Since the Jacobi function of the second kind Q\*”(z) can be expressed, outside the
integration interval [ — 1, 1], as a hypergeometric function [8], the same will be true
for the function g{"”(z), given by Eq. (15) for the points of the complex plane outside

n
the integration interval. For our problem, the values of the function g{*”(z) along
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the integration interval (—1, 1) are of the greatest importance. Along this interval
we can take into account that [11]

1 (a,b)
(24) lj w(t) P(0) dt = cot ma w(x) P{*"(x) —
TTJ_y t—Xx
a+b _
— 2___1(@,F(n+,b,+41) F(n +1, —n—a—b: 1 —a: 1 —x a0,
nl(n+a+b+1) 2

Then, because of Eqgs. (10) and (22), we obtain
2°**"1 (@) I'(n + b + 1)
wx)M(n +a+b+1)

.F<n+], —n—a-—>b;1—a; %§>, a+0,1,....

(25) QM (x) = — gcot na P{""(x) +

At this stage we have to remark that Eq. (24) was considered in [11] to be valid
only when the sum of the singularities (a + b) of the weight function w(x) is an
integer number. Nevertheless, by taking into account the formula [10, p. 171]

I(a)I(n+b+1)
I(n+a+b+1)

(26) Qﬁa’b)(Z) = — gcosec na P,('”v”)(z) 4+ patb-1

.(z—l)_“(z+1)'bF(n+l, —n—a—b;l——a;lgz)

as well as Egs. (11),(17) and (22), we can see that Eqgs. (24) and (25) remain valid
for all values of a and b (a + 0,1, ...). We can also mention that Eq. (25) differs
from the corresponding equation given in [10, p. 171] because, as we have already
mentioned, a definition of the function Q{"”(z) for the points x of the integration
interval (—1, 1) different from (22) was considered in this reference.

We can also remark that the functions Q" (z) satisfy both outside the integration
interval [ -1, 1] and on this interval the same differential equation and the same rec-
curence relations as the Jacobi polynomials P{*(z) [8, 1]. Hence, their evaluation
is very easy. As regards the derivative Q{"”'(z), Eq. (12) can be used in the whole
complex plane, too. Also, in the case when a = 0, 1, ..., an analogous formula to
(24) can be easily obtained. Finally, for the numerical evaluation of Q%"”(x) which is
necessary when using the recurrence relations of Jacobi functions for the evaluation
of Q{")(z), the developments of [1] which make use of a rapidly convergent infinite
series along the whole interval (—1, 1), can be taken into account.

Following these arguments, we will proceed to the application of the Lobatto-
Jacobi numerical integration rule for both regular and Cauchy type principal value
integrals, expressed by Eqgs. (4) and (7) respectively, to the numerical solution of

Eq. (1).
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NUMERICAL SOLUTION OF THE SINGULAR INTEGRAL EQUATION

By applying the Lobatto-Jacobi numerical integration rule expressed by Egs. (4)
and (7) to the integrals of the left-hand side of Eq. (1) and nelgecting the error term E,
due to numerical integrations, we obtain the following approximate form of Eq. (1)

0 a4y (x) (x)
(27 {A(x) w(x) — 2 B(x )(i—z—)ﬁ; b),( )} o(x) + Z Ay {——— + k(1 x)}
o(t) =f(x), —l<x<1.

Next, it is easy to see that if we choose the points x, of application of Eq. (27) as
the roots of the equation

(28) A(x) w(x) — 2 B(x) 0 ;_‘;) I(’)(c”)")’(x) _

or, because of Eq. (23), of
(29) F(x) = A(x) PL%'(x) — 2 B(x) Q%)'(x) = 0,

which is in general a transcendental equation, then Eq. (1) can be approximated by
the system of linear equations (3). As we will see in the sequel, the roots x, of Eq.
(29) are at least (n — 1). In this way, it is probable that one more linear equation,
besides those of system (3), is required. Such an equation may result from a physical
condition of the form

L
(30) J w(t) q)(t) dt =

(where C is a known constant), which after an application of the Lobatto-Jacobi
rule (4) may be approximated by the following linear equation

(31) kZIAk o(t) =C,
or it may even be of the form
(32) p(dy=C, d=—1 or 0 or 1,

resulting also from physical considerations at the end-points or, perhaps, at the
middle-point of the integration interval. More detail on this subject may be found in
[1,3,4,5,11].

Furthermore, proceeding in a way analogous to that described in [1], where the
Gauss-Jacobi method was applied to the numerical solution of Eq. (1), we can
easily show that Eq. (29) has at least one root in each subinterval of the integration
interval defined by two consecutive abscissae of the Lobatto-Jacobi numerical in-
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tegration rule, the abscissae 1, = 41 included, provided the restrictions a, b > —1
hold.

It can be also shown that in the case when the functions A(x) and B(x) reduce to
constants, there is only one root of Eq. (29) in each of the subintervals considered,
or, in another wording, Eq. (29) has (n - 1) roots alternating with the n roots of the
polynomial (1 — x*) P{“%’(x), which are the abscissae of the Lobatto-Jacobi nu-
merical integration rule. To achieve it, we take into account that both the Jacobi
polynomials P{*"(x) and the Jacobi functions of the second kind Q{""(x) satisfy
the same second order differential equation [8, pp. 60, 74]. Then it can be seen that
the same will be true for their derivatives P{""%’ (x) and Q\")’(x) as well as for the
functions F{"?)(x) defined by Eq. (29), the roots of which are sought. Then we can
apply the following Sturm’s type theorem reported by Porter [12]:

Theorem. If within an interval (a, b) (excluding the ends) the coefficients of the
differential equation
d

. p(x) ot a(x)y =0

are continuous, and if there exists a solution y, which does not vanish between a
and b such that its ratio to a linearly independént solution y, approaches zero as
we approach each end of the interval, then y, vanishes once and only once between a
and b,

by considering the differential equation satisfied by P{*%’(x), Q{“%"(x) and F{"")(x),

easily resulting from the developments of [8, p. 60]

(33) 1=x¥)y" +{b—-—a—(a+b+4)x}y +
+{n=)(n+a+b—(a+b+2)}y=0

and assuming that the functions y, and y, coincide with the functions P{*%) x) and
F{*"(x), while the interval (a, b) is each one of the (n — 1) subintervals to which
the roots of P{*%’(x) divide the integration interval [ =1, 1]. By the direct application
of the foregoing theorem we can find that in each of these subintervals there exists
one and only one root of F{*?)(x).

Although this fact is evident for all subintervals (a, b) for which a, b + +1, it is
necessary to show that F{*%(x) becomes unbounded as x — +(1 — 0), in order
that the proof for the subintervals (—1, #,_,) and (¢,, 1) be complete. Since P{""’(x)
is bounded for x — 41, we have to show, because of Eq. (29), that Q{>"'(x) becomes
unbounded as x — i(l — O). This fact can be easily established for x - 1 — 0
if Eq. (25) and the assumption a > —1 are taken into account with the exception
of the case when a is a non-negative integer number. However, even in this case it
can be seen that Q{"?)'(x) becomes unbounded for x - 1 — 0, if the developments
of Szegé [8, pp. 78 —79] are taken into account. In accordance with these develop-
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ments, we have the following behaviour of Q%*”(x) for x — 1 — 0

(34) QU (x) ~ {(1 -x)7%, a

ln(l -—x), a

Il

1,2,...

Il

and, therefore, Q{*"'(x) tends to infinity for x - 1 — 0. In an analogous way it
can be shown that Q{"”’(x) tends to infinity for x — —1 4 0 under the assumption
that b > —1.

Thus, it is seen that under the original assumptions a, b > —1 (Eq. (2)), necessary
for the existence of the integrals with a weight function w(t), the function Qf,“_’bl)’(x)
becomes unbounded as x — +(1 — 0). Thus it was proved, for the case when A(x)
and B(x) are constants, that the number of roots x, of the function Fi-"}(x) (that is the
points of application of Eq. (l) used for its reduction to the system of linear equations
(3)) is (n — 1) and the roots alternate with the n roots of the function (1 — x?).
. P{"'(x), which are the abscissae used in the Lobatto-Jacobi numerical integration
rule.

AN APPLICATION

As an application we consider the problem of a crack of a length ¢ perpendicular
to the interface of two semiinfinite isotropic elastic media S; and S, as shown in
Fig. 1. These media are characterized by their shear moduli x; and u, and their

Sy So

(K1>V1) (H21 v2)
c

Fig. 1. A straight crack terminating perpendicularly at the interface of two media.

Poisson ratios v, and v,, respectively. The whole elastic plane is supposed to be
under a generalized plane stress, a plane strain or antiplane shear conditions. These
problems have been considered by Erdogan and Cook [11, 13, 14], who showed
that they can be reduced to a Cauchy type singular integral equation along the crack.

If in the cases of a generalized plane stress or a plane strain the loading on the
edges of the crack is supposed to be a uniform compressive loading of a constant
intensity o, then, in accordance with the developments of [11,13], the whole problem
can be reduced to the following Cauchy type singular integral equation, written here
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under a slightly modified form

(35) ! Jﬂw(t) o(1) {t_,—l—_x + k(t, x)} dt=1,

TJo
where
(36) w(t) = (1 — 1)
with a = —1/2 and b determined as the smallest root of the equation
(37) 2d,cosn(b + 1) —dy(b + 1)> —dy =0,

the constants d,, d, and d; given by

(38)  dy = (m+ ) (1 + mxy),

dy = —4(1 = m) (m + x,),
dy= (1 =m)(m+ %)+ (14 mxy)(m + %) — m(1 + %) (1 + mx,),
where
(39) m = p,lu,
and
(40) =B =)L +v), i=12

for generalized plane stress conditions and
(41) ;=3 -4y, i=12

for plane strain conditions. As regards the kernel k(t, x) in Eq. (35), it is given by

2
Lo g vay = 3d, > 4 2a, (-2 .
2d,(t + x) t+ x t+ x

Equation (35) should also be supplemented by the condition of single-valuedness of
displacements

(43) qu(z) p(t)dt = 0.

@) ktx) =

For the numerical solution of Eq. (35) supplemented by condition (43), Erdogan
and Cook [11, 13] have used the Gauss-Jacobi numerical integration rule, of course
after a transformation of the integration interval [0, 1] to the interval [—1, 1].
Although the results obtained by Erdogan and Cook were correct, it was shown by
Theocaris and Ioakimidis [1] that the selection of points x, of application of Eq. (35)
was not the proper one and this fact resulted in a very slow convergence of the results
with increasing values of the number n of abscissae used. Since in the problem under
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consideration the values of the stress intensity factors at the crack tips A and B
(Fig. 1) are the quantities of the greatest importance and these factors are related
to the unknown function ¢(t) by [11, 13]

44 ky=2Y2¢p(1)gc™,
A
Ky = otz ML+ 2) B3+ 26) (L + miey) = (14 2b) (m + 53] - p(0) e,
2d, sin b

it is evident from the arguments of [3] that the use of a Lobatto-type numerical

integration rule for the numerical solution of Eq. (35) presents considerable advan-

tages over the use of a Gauss-type rule. Thus, the Lobatto-Jacobi numerical integra-

tion rule has been used for the numerical solution of Eq. (35), together with condition

(43), in accordance with the developments of the present paper. The elastic materials

have been assumed to be epoxy (S;) and aluminum (S,). Then we have [11, 13]:
=035, v, = 0:30, m = p,/p, = 23-077.

The results obtained after a reduction of Eq. (35) and condition (43) to a system
of linear equations and the numerical solution of the latter are presented in Table 1
both for a generalized plane stress and plane strain conditions. The number of
abscissae used, equal to the number of linear equations, was obtained as n = 3(3) 15.
Also an appropriate transformation of variables has been made for the reduction
of the integration interval [0, 1] to [— 1, ]]. The results, shown in Table 1, are in

Table 1

Convergence of the numerically obtained reduced values of the stress intensity factors at the tips
of a crack terminating perperdicularly at the interface of two media (v; = 0-35, v, == 0-30,
Uy lpy = 23-077).

Plane stress Plane strain Anliplane shear
"ol ket ko1t | kgl | ko 2| ko (2
a= —0-5 a= »«0-5{b : —0- 238113 a= —075 b——0130657
S 1, S S S S o e
3 0-872674 4-157028 0-878736 2:865473 0-896674 1 8:769577
6 | 0-878576 4-161217 0882556 2:789663 0-906129 | 11-583040
9 0-878637 4-146768 0-882547 ‘ 2777447 0-906559 ‘ 12-598343
12 0-878650 4-141488 0-882545 | 2:775064 0-906631 | 13-160276
15 0-878655 4-139260 0-882544 1 2-774655 0-906652 ‘ 13-528842
oF y
& | 08789 4-1760 0-8827 2-7845 0-90709 ’ 13-13303
o=

*) The results of these references may have been obtained for a slightly different value of
1 = p,/uy (considered here equal to 23-077).
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accordance with those given in [11, 13] for the same problem. Nevertheless, they are
seen to converge to their correct values much more rapidly if a comparison of the
speed of convergence with Table VII of [11] is made*). It can also be seen that the
results of column 3 of Table 1 converge faster than the corresponding results obtained
in [1] by using the Gauss-Jacobi numerical integration rule after a proper selection
of the points of application of Eq. (35).

Furthermore, the antiplane shear problem for the same crack AB (shown in Fig. 1)
was considered. This problem was reduced by Erdogan and Cook [14] to the fol-
lowing Cauchy type singular integral equation, written here in a slightly modified
form

(45) L -[ lw(z) (1) {# + JL—} dr =1,

T Jo t—x t+x
where a constant antiplane shear loading (—0’) was assumed on the crack edges and

(46) 2= (uy — Nz)/(ﬂl + 1) -
The weight function w(t) is given again by Eq. (36) where [14]
(47) a=—1/2, cosnb = —A.

The results of the numerical solution of Eq. (45) supplemented also by condition
(43) and under exactly the same conditions considered for the numerical solution of
Eq. (35), are shown in the form of the reduced values of the stress intensity factors
at the crack tips determined by [14]

(48) ky=2"@(1)oc™®, ky= —(2m)"? ¢(0) oc?

in the last two columns of Table 1. These results can be seen to be in accordance with
the corresponding results of [14].

Finally, we observe from the results of Table 1 that the convergence of the reduced
values of the stress intensity factors at the tip A, far from the interface, is much
faster, especially in the antiplane shear case, than the convergence of the correspon-
ding values at the tip B lying on the interface. This fact can be easily explained if the
form of the kernels in Eqs. (35) and (45) is taken into account. Since these kernels
contain, besides the Cauchy type term, terms which have poles in the complex plane
and not simple polynomials, it is evident that these terms will contribute significantly
to the error terms E, neglected during the application of the Lobatto-Jacobi numerical
integration rule for the approximation of the integrals in the integral equations.
When a point x of application of the integral equations is near the crack tip B, the

*) The results of the second column of this Table seem to be multiplied by a constant. The
correct result is given in [13] and may be seen to be in agreement with the results obtained here
(Table 1 column 4).
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poles of the kernels lie near this crack tip and their contribution may become signi-
ficant. The opposite holds for the crack tip A; near this crack tip no poles of the
kernels exist except the one due to the Cauchy type principal value term. Nevertheless,
this pole has been taken into account through a proper selection of the points of
application of the integral equations.

Alihough it seems very difficult to prove theoretically the convergence of the
numerical results obtained from the numerical solution of Egs. (35) and (45) to
their correct values, nevertheless, it seems that this occurs. Firstly, it is seen that the
results presented in Table 1 converge very fast with the exception of the results of the
last column of this Table. Secondly, the results of columns 1 and 2 (corresponding
to the case of a generalized plane stress) are seen to be in agreement with the results
obtained by Lin and Mar [15], which are 0-855 and 4-240, respectively. Also the
results of columns 5 and 6 (corresponding to the case of antiplane shcar) are seen to
converge to their theoretical values, which can be found if the developments of Smith
[16] of Chou [17] are taken into consideration together with Eqgs. (48). Thus, in the
special case considered it results in

(49) ky= L oc” %, kg= :—2 mtl/2 2b=12gc=0
sin ¥nb sin 3mb

The numerical values obtained from Egs. (49) are 0-90667 and 14-48995 in the reduced
form for the tips A and B respectively. These values are in accordance with the results
of columns 5 and 6 of Table 1, respectively.

Finally, it can be mentioned that the influence of the pole due to the second term
of the kernel of Eq. (45) was seen, through numerical experiments, not to be the
main reason for the slow convergence of the numerical results in the last column of
Table 1. It scems that this slow convergence is due to the fact that ¢(f) has not
a regular behaviour for 1 — 0 [16, 17].
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Souhrn

NUMERICKE RESENI SINGULARNICH INTEGRALNICH ROVNIC
CAUCHYOVA TYPU LOBATTOVOU-JACOBIOVOU METODOU
NUMERICKE INTEGRACE

N. I. ToAkMIDIS, P. S. THEOCARIS

Lobattovu-Jacobiovu metodu numerické integrace lze rozsifit na numericky
vypocet hlavni hodnoty integralu Cauchyova typu a na numerické feSeni singuldr-
nich integrédlnich rovnic s jddrem Cauchyova typu jejich pfevedenim na soustavu
linedrnich rovnic. Za tim tGlelem jsou integrdly v takové singuldrni integrédlni
rovnici nahrazeny soudty stejné jako v pfipadé reguldrnich integrdlii, pfi vhodné
volb€ bodh v integraénim intervalu. Metoda je aplikovdna na problém z rovinné
teorie pruznosti.
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