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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ASYMPTOTIC NORMALITY OF MULTIVARIATE LINEAR RANK 
^ UNDER GENERAL ALTERNATIVES 

JAMES A. KozioL 

(Received September 12, 1977) 

1. INTRODUCTION 

Let Xj = (Xlj9 ...,Xpj)\ 1 < j < N, be independent random j?-vectofs with 
respective cbhtinuous cumulative distribution functions Fj9 1 g j 5| N. Define the 
p-vectors Rl9 ...9RN by setting RJ equal to the rank of Xtj among Xil9 :..9XiN9 

1 < i 5| p, 1 ^ j < N. Denote by a( iV)(-) a multivariate score function taking 
values in Rp

9 and given by a(N\R) = ( a f ) ( B 1 ) , . . . , a (/ )(Kp))'; the a(.N) are univariate 
score functions related to generating functions (j)t by either 

(i-i) ' i , ! , , / i M v : f-n*o = l«(^)>j 1 --k^w " ;: 

or 

(1.2) «TO = £ ^ h ) , ' l^kk'N, 

where, for each i, UL1^ < . . . < U^] are the order statistics in a sample of size N 

from the uniform distribution on TO, l l . Put 
'• •[>'•> • • ! > « \ ' i : o . V - j v " T i ; .. . i j ' ";• : ' L - , J ' J ; . . \ . , ; . , , - j . •;, ••_ • :'.._ 

(1.3) ' ' - " " ' - ; " - ' - ' - - ' ^ S = £ c , « W ( R ; ) , 

the Cj being arbitrary regression constants. , 

In this paper we investigate the asymptotic distribution of S under various sets 
of conditions on the constants, the generating functions, and the underlying distribu
tion functions. Sen and Puri (1968) and Puri and Sen (1971) establish asymptotic 
normality of S using Chernoff-Savage (1958) techniques; Patel (1971) considers the 
distribution of S in the null case when Ft = . . . = FN and in the case of contiguous 
location shift alteratives. We herein establish asymptotic normality of S under 
extremely mild conditions on the underlying distribution functions. Our methodology 
devolves from Hajek (1968), who proves similar results in the univariate setting. 
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In Section 2 are found a multivariate version of Hajek's projection lemma and other 
preliminaries. Section 3 contains the main results concerning the approximation of 
the distributions of the multivariate rank statistics S of (1.3) by multivariate normal 
distribution. In Section 4 we extend certain results of Dupac (1970) and Hoeffding 
(1973) concerning simple centering values for S. 

2. PRELIMINARY RESULTS; HAJEK'S PROJECTION METHOD 

The classical central limit theorem is concerned with sequences of sums of in
dependent random variables, so is not directly applicable to the linear rank statistics 
of interest (1.3). However, if we can show that our rank statistics are asymptotically 
equivalent to such sums, then the central limit theorem may be invoked to establish 
asymptotic normality. To approximate a linear rank statistic by a sum of independent 
random variables, we shall utilize the concept of orthogonal projection in the follow
ing manner: given independent random p-vectors Xl9 X2, ...,XN, the set of vector 
valued square integrable statistics S{pXX) = S(Xl9 X2, ..., XN) together with the usual 
inner product (Sl9 S2) = E(S[S2) forms a Hilbert space Jf'. Any S in 2tf can be 
approximated by a statistic S belonging to the subspace <£ of Jf7 comprised of 
statistics L, where 

(2.1) L - X Kj(Xj), Kj:R>-+R> * -

E[K'J(XJ)KJ(XJ)2 finite , 1 ^j ^ N 

and minimizing E[(S — S0)' (S — 50)] for S0 e Z£. It is well known that §, a sum 
of independent random vectors, will be the orthogonal projection of son S£\ we 
state the following lemma, that the projection may be obtained explicitly in terms of 
conditional expectations. 

Lemma 2.1. Let ,XU X29,.., XN be independent random p-vectors, and S — 
— S(XX, X2,..., XN) a (p x l) statistic such that F[-S"5] is finite valued. Let 

(2.2) § = ^ E(S | Xj) - (N - 1) ES. 
J=1 

Tfieji 

(2.3) \:'.. ; ES - ES 

a n d • ' ; • > , ? • i '•' 

(2.4) E[(S - S) (S - 5) ' ] - cov S - cov S . 

Moreover, if L is given by (2.1) with E[K'j(Xj)Kj(XJ)~\ < oo, 1 ^ j ^ N, then 

(2.5) E[(S ~L)(S~ L)'] -= E[(S - S)(S - S)'] + E[(2"- l)(S - L)'J. 
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The projection lemma is an immediate generalization to vector-valued statistics 
of the univariate projection lemma of Hajek [(1968), Lemma 4.1]; hence the proof is 
omitted. 

We now prove a lemma that relates conditional expectation of a vector-valued 
score function of a rank vector to a probability statement. The lemma will be utilized 
in the sequel, but is also of independent interest. 

Let Xi9 ...,XN be independent random p-vectors, possessing arbitrary continuous 
distribution functions Fl9 ...,FN respectively. Denote the marginal c.d.f, of the ith 
coordinate variate of Xj9 Xij9 by FtJ. Define Rj9 1 g j <; N, as in Section 1. Let 
at : R1 -» R1, i = 1,..., p, be arbitrary univariate score functions, and define 
a : Rp -+ Rp by a(xl9..., xp)' = (afax),..., ap(xp))'. Let u : R1 -> {0,1} be defined 
by u(x) = 1(0) if x = 0 (x < 0). Lastly, for a, fi p x 1 vectors, define a * p, the 
Hadamard product of a and p, by a *p ~ ( a ^ , ct2p2,..., apPp)'. We now state 
and prove 

Lemma 2.2. 

(2.6) E [ a ( 0 | X. = *„ X„ = *J - E[a(Rx) | X, = x j 

N JV N 

-Z I - I 
fci = 2 * 2 = 2 kp = 2 

Фi* - *!/,) - -^lД*^) 
«(*2« - *2/,) - F2ß(X2a) 

ai(кi) - a ^ - 1) 
a2(к2) - ^2(^2 - ! ) 

фp) - ap(K - -) _U(XP* - xpfi) - Fpfi(xp*)_ 

x Pr(Ra = (kl,...,kp)'\Xa-= xa,Xp<Xa)9 for any a 4= P , 

a,/?= 1,...,N, 

where Xtt < Xa connotes that all coordinates of Xp are less than the corresponding 
coordinates of Xa. 

Proof. To simplify the cumbrous notation, we specify a = 1 and p = 2. We 
shall prove the lemma only for p = 2; it will be clear that the method of proof for 
p > 2 does not involve any new notions. 

, pN J the probability of ( l J1 Denote by BN I successes in N independent 

bivariate trials, where at trial j the outcome Oj is one of i( J, ( J, ( J, ( J I, 

©-£->-- :(^-0>KB '-0>^-6H*-
= ( ) ) \ Since Rn - £ «(*.', - Xtj), i - 1, 2, it follows that PrfV = l*1 j X. = 

= * i ) ~B4(k)
 pi - (l>Q>Q,0),P2,~,Pi*\ where 
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(2.7) p'j = (Pr(XXj < xlt and X2j < x21), Pr(Xls < xlt and X2j > x21), 

Pr(Xlj > xlt and X2j < x21), Pr(Kiy > x u and K2; > x21)) 

= (Fj(xll9X21)t Fj/Xn) ~ Fi(x11,X21), F2y(x21) - F/XU,X21), 

1 - Fi/x^) - F2y(x21) + FJ(x11,x21)), ; = 2, ...,N. 

Similarly, 

*(*'-(-_) I*1"1"'•"*)" 
*B*((fcO - , - = ( i ' o > o ' o ) ' ^ - = - , - ^ " ' - > ^ ) ' 

where jp3, ...5pN are defined as in (2.7) and 

p*' = (1,0,0,0) if ux _= w(xu — x12) = 1 and u2 _= u(x21 — x22) = 1 

= (0,1, 0, 0) if ut = 1 and w2 = 0 

= (0, 0, 1, 0) if ux = 0 and u2 = 1 

= (0, 0, 0, 1) if ut = 0 and u2 = 0 . 

From the definition of BN, it is clear that 

BN ( ( * ' ) pi = (1, 0, 0, 0), p2,...,pN\ = BN_t (f}
1 " j ) p2, . . . ,p„) ; 

combining this with the definition of p2, we have 

(2.8) PrfRl = ( £ ) Xt = «,) = - - . ( x ^ x ^ ^ . ^ 1 _ J ) p'2 = 

= ( 1 , 0 , 0 , 0 ) , ^ , . . . , ^ ) + 

+ [~i2(xn) - ^ ( x n . x ^ X K . . ( r 1 ~ J) p2 = (0,1,0,0), p3,...,pw) 

+ [i?
22(x_1) - F2(xii,*2i)] " w - i ^ 1 ~ J) p. = (0,0,1,0),p3 pN) 

+ [1 - ^12^11) ~ ^22^2l) + -F2(*П>*2l)] 

ЧG.-D 2 = (0,0,0,1),/> 3,. . .,/^ 

+ [̂ 12(̂ 11) - ^2(^11^21)] V 2 I I ! __ ) \ P 3 > - > P N 
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+ [-?22v*2l) - F2(xluX2í)]BN. 
k! - 1 
k, - 2 

P3> 

+ [1 - -?i2v*n) - ^22(^21) + .*2v*ll,*2l)]-V 

>PN ) 

kt - 1 

k7 - 1 
In a like manner, we find 

'k 

Pз>- >PN • 

Xv = xuX2 = x2\ = u^Bff (2.9) PrU, = ( 

+»i(ii-»-)^-((í;:') 

k! - 2 
k, - 2 

P3> •••-jPлř 

+ (1 - uOuгJV; 
k, - 1 

k, - 2 

Pз> ->PN 

Pз> • ->PN 

+ (1 - 110(1- И2)-_V-2 
k! - 1 

k, - 1 
P3> ->PN 

Combining the last two results (2.8) and (2.9) yields 

HR'-(^\xi-'"x'-'¥HR--Q) 
fkt - 2 

Xt=Xl 

[«.«2 -yF2(x l l ',x21)]\BNS2 
iv2 ' -— 

P3> • >PN 

- в N _ 
k! - 2 

k2 - 1 

k! - 2 

k, - 2 

Pз> • ->PN 

P3> • ->PN I + BN-2 
k! - 1 

k, - 1 
Pз> - > P N 

+ [«i ™ ^12(^11)] Bлt-2 M Г __ J >3> .'-,PN j 

ЯN-; 
k! - 1 

k, - 1 
P3> • >PN 

+ ["2 - r22(^2i)] BN_2 U
1 ^ )\p3,...,pN) -

-MC; :;)h--)]: ; 
= S1 + S2 + S3, say, where jt is implicit that the St are functions of kx 

and k2. Then 
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(2.10) _[_(_,) | _Г_ = x_, X2 =_ x2] - £[a(__) | _Г_ = x,] 

-£ iit'-lH** fci Xĵ  — л. l 5 X2 — л\ 

P r iřři 

2 
N ľ. *'.) . - . ) ! -£ £ ("f-M + 52 + S, 

k2/| / J fc„=lfc2=l \-.2( f c2)/ 

To evaluate this expression, we first consider 

£ £ ( ű i ( & i ) 

*,=-! fc2=i \a2(k2) 
[в»-J(Q;:;)j_,...*)-в»-г(Q;:;)jл ,,)]. 

Decompose " f l i ( f e i ) \ _ / ^ í ^ i ^ /«i(fcin + t o v a n d n o t e t h a t 
.«2(fc2y v o ; WC-). 

'"" '"'^''(fe-íl*'--''"); • — 
0 - - W - 2 

fc2 • 1 
P3> ->PN Va2(fe2) j 1 

+ Ы2 ((fcД l)|Л'\\-,Л)~ßл-2((fc2;- l ) | Л i - ' Л ) + ... 

•[Ч(.: î) Pз>, • ->PN) -

•[чa Pз> ->jPN) " 

Also, 

(2.12) £ £ fű i ( f c i )ì 
fc_=. i fc2 = i \ 0 . . / [Ч(.:î 
— ( C : : : ) 

Pз> •••>/>_.) 

N - 2 

fc. - 1 

I) \fl2 (fc_. 

Л . •••>PN 

.0 = 0, 

Í P З > •••>_?_/ 

N, N / 

k_ = 2 fc_=2 \ 

Ptih) - «i(fci ^ i) Ш: - 2 

2 - 2 
i>з>-•:>_»/. 
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From (2.H) and (2.12), we have 

(2.13) 
JV JV 

i Í (ť ! )^-Í ÉC-- '.*._("(*')-•*'-'>) 
1 = i *2_:i \a2[k2)J k1=-2„2=2 \ O / 

X B ' V - 2 ( ( ^ 2 ) | A ' - ' A ) 

= i i í"1 - F l 2 ( X l l ) ) * ffll(fcl) ~ai(fel ~ x)\ 
X B - 2 ( C ; : 2

2 ) | A ' - ' A ) -
A completely analogous argument yields 

JV TV 

(2-14) Í Í ("^U" 
„! = i fc2=2 \a2\k2)j 

__ y y / 0 \ / 0 \ / / J ^ ^ M \ 
^ = 2 fc2=2 \w2 - F22(x21)J \ a 2 ( k 2 ) - a2(fc2 - 1)/ N 2\\k2 ~ 2/ | / 

Finally, 

(2.15) i i (/a i( fe l )>) 
*l = l *2=1 V«20_)/ 

X [ B ^ ( ( ^ 0 I ^ - ' A ) " B N - 2 ( C ; : 0 I A , - - , A ) 
- B-2 (G;: 01 A' ••••*)+*»-2 ( (£ : 0 I A **)] 
= i Z-»»-aff*1-j|)|j»3,...,_W) 

*, = 2 *2 = 2 \ \ fc2 - 2 / | / 

x [7«i(*-)\ _ M * . ) \ _ lai(fci - i ) \ + l«i(fci - i ) \ l _ o 

LW*2)/ Wfc2-1)/ W*-) / W*2-l)/J 

Hence £ £ 1 , ^ Si = 0, and (2.11), in light of (2.12) and (2.13), becomes 
*i = l *2 = 1 V _ ( J _ ) / 

(2.16) £[a (_ x ) | * . = „ . , _"2 = x2] - £[<.(_.) | AT. = x ] = 

- i i ("'"''f"!)*(t'!"°t"I!)B-((t'^)" '«)• 
*,-2 *2-2 V"2 - F_a(xai)/ \_a(fca) - <_(*_ - 1)/ VV*2~2/ / 
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But by definition of BN„2, PrfRi = (kl j Xx = xi9 X2 < xA = BN_2((
kl 2 J 

P3? • •?JPN ) • Hence (2.16) reduces to (2.6), and we are done. 

Theorem 2.3. Suppose that the conditions of Lemma 2.2 hold. Consider the statistic 
N 

S = YJ cj a(A%^1) j where the marginal univariate scores a(JV)(-) are related to 
1=i 

generating functions 0 , : /J^1 -> z^1 b.y tf*N)(P) = Q^RjN + 1), 1 ^ i g P. Suppose 
in addition, that each (j>i has bounded second derivative. Then there exists a constant 
M depending only on <j>u ..., (j)p such that for any N, (cl9 ..., cN), and continuous 
Fl9 ...,FN, 

(2.17) E[(S-ES-izj)(S-ES-izj)'] S MAT^c, - cf I, 
7 = 1 . / = 1 j = l 

where I is the p x p identity matrix, 

(2.18) Zj = ZJ(XJ) = (N + l)-*i(ck- cj) 
k=l 

7H(X. - XtJ) - F1,(x1)\ (^(H^xM 
u(x2 - X2J) - F2J(x2) ^ <f,'2(H2(x2)) d ^ ( x i ) ^ ; t ^ • ̂  N ; 

[u(xp - Xpj) - Fpj(xp)J \<t>'P(Hp(xp))j 

and/ f , (x ) = l / N £ F 0 . ( x ) . 
J = I 

Proof. Define <f>, 0 ' , 0 ' : R> -* R" by *(x) = ( ^ ( x ^ , <£2(x2),..., </>p(xp))', and 
similarly for <f>' and 0". Also, let H : ffp -• Wp be given by # (x ) = (H^Xj), i f 2 (x 2 ) , . . . 

N 

...,Hp(xp))'. Then, s = £ Cj<j>(lj(N + l)Rj), and from Lemma 2 1 , 
J = I 

(2.19) s - £ s = £ £ [ £ c,0 ( - J — icA I Xft] - JV£s 
fc=l LJ=1 \ N + 1 / I J 

-ii^H*^'')!*] - £*(̂ iK')}-
N N 

Observe that £ <£(1/(N + l)-fy) is a constant vector ( = £ 0Q7(N + 1) e), where 
. 7 = 1 i = i 

*= (1, 1, ..., 1)'); hence £ <^(l/(N + 1) Rj) = F[ £ 0(l/(-V + 1) * , ) | Kfc] = 
1=i j = i 

JV N 

= X F<^(1/(N + 1) Rj) | Xfc] = £ £#(1/(N + 1) fly). So, from (2.19) we have also 
i = i 1=i 
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(2.20) :• 5 - ES = £ I -(c» - c,) ^E 
fc=lJ=l 

By Lemma 2.2, 

1 

{fe*< X, 

N + 1 

Eф 

R; Xk 
- Eф 

1 

N + 1 
R 

N + 1 
R 

-{-[*(jГГi-)\'**]-E[*(jiTÏ-) 
fci 

N N 

I - E 
fc! = 2 fcp = 2 

^ ( x ! - Xu) - f u ( X j ) \ 

x Rr(R; = (fc1; . . . . y | X,. = x, X, < Xj) áFj(xu ..., x„) . 

N + 1 

кn 

X; 

Фi 
ki - 1 

N + 1 

But 

k! 

N + 1 

к 
N + 1 

k! - 1 

N + 1 

N + 1 

1 

N + 1 

, / fcl 

N + 1, 

N + 1> 

— — ) C 2 a , 
VN+17 

where 

C 2 = max sup |0j(O|» a n c * e a c n Kl = *• Further, 
l ^ i ^ p te(0,l) 

(kt\ 

I ••• Z *' | J V \Rj = 

(kyҲ 

\kj 
Xj — x, Xk < Xj I — 

So, 

(2-21) ^(^ф]-Ц^*, 
Hü(xt - JГ1Jfc) - ҒцfxJ 

= (N + l ) - 1 

\u(xp - Xpk) - Fpk(xp)j 

x dFJ(x1,...,xp) + (N +1)-2C2<*. 

*E [*' (î TT *'). ^ *" *> ** < *'] 

The remainder of the proof is quite analogous to the proof of Theorem 4.2 of Hajek 
(1968), so is deferred. 
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3. APPROXIMATE NORMALITY OF A CLASS 
OF MULTIVARIATE RANK STATISTICS 

Let the assumptions concerning X l 5 ..., XN, independent random p-vectors, be as 
in Section 1. In this section, we shall prove that the distributions of statistics of the 
class (L3) can, under various joint restrictions on the constants, the distribution 
functions, and the generating functions, be approximated by certain multivariate 
normal distributions. We start with a theorem that imposes rather stringent restraints 
on the generating functions (f>h counterbalanced by rather relaxed conditions on 
Fl9 F2, .., FN and choice of cl9 c2,..., cN. (We shall preserve the notational conven
tions introduced in the previous section. In particular, we remind the reader that 
if A, B are positive definite matrices, A > B if (A — B) is positive definite, and that 
if x, y are p x 1 vectors, x > y if xt > yh 1 = i ^ p.) 

Theorem 3.1. Consider the statistic S of.(1.3) where the scores are given either 
by (1.1) or by (1.2). Assume that each (j)t has bounded second derivative. Then for 
every e > 0, there exists a constant K — K(e) > 0 such that if 

(3.1) - cov S > K max (c ; - c)2I(pXp) 

then 

(3.2) sup \Pr[d'(S - ES) < x(d'(cov S) d)1/2] - <P(x)\ < e , 
— oo < J C < oo 

where d(pX1) is an arbitrary non-null vector and <P denotes the cumulative normal 
distribution function. In other words, under the hypothesis (3A), the distribution 
of S can be approximated by that of a multivariate normal distribution with 
natural parameters (ES, cov S). Furthermore, the conclusion (3.2) remains true 
if we replace cov S in (3.1) and (3.2) by 

(3.3) Z^iEiZjZJ], 
j=l 

where Zj, 1 ^ j ^ N, are given as in (2.18). 

R e m a r k . Note that EZj = 0, 1 ^ j g N since 

lu(xx - yj) - Fi/xi)\ 
j dFj(y,,..., yp) = 0; hence £ in (3.3) 

\u(*p - yP) - FPAXP)I 
N N 

is equal to ^ cov Z / = cov ( ^ Zj). 
j = i ./=i 

Proof. Choose an e > 0, and let d^pX1) be an arbitrary non-null vector. Then by 
the Lindeberg-Feller theorem, there exists A =-=' A(e) > 0 such that 
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(3.4) (d'Zd)'1 £ f x2 dPr(d'Zj < x) < A 
1_1 J{|*|>A(</'2:</)-/2} 

implies 

(3.5) sup \Pr(^d'ZJ<x(d'Zdy'2)-4>(X)\<ie. 
-oo<x<ao j=l ' V / | * 

Let , > 0 be such that sup |#(x) - #(x + n)\ < ie; then (3.5) in turn implies 
— oo < * < oo \ / sr 

N 

(3.6) sup \Pr( £ rf'Z, < x^'Zrf)1/2 + ^(d'Zd)1'2) - <p(x)| < i e . 
- C O < J C < O O J=l \ / | Z 

Suppose cov 5* is such that 

(3.7) cov S ^ { [ V ^ - 1 max sup |</>;.(t)j + ( ^ ' V 1 + l) M
1 / 2 1 2 

i t / J 

max|c*- c\2}l, Mas in (2.17). 

We shall show that (3.2) will follow if we choose K = [Ip1'2!"1 max sup |(/>f(f)| + 

+ (2e-1/V1 + 1)M1/2]2. Suppose first that the scores are geneValer/rom the </>, 
by (1.1). From the definition of ZJt we have 

IV ' 
N + 1 

IV * 

I(Ck - cj)\ [u(x - XtJ) - Fř,(x)] ^(H^dF^ 

< 2 max \ck - č\ sup |^;(í) | . 
IškšN K*0,1) ' So, 

(3-8) dZj -S 2 max \ck - d\ max sup U'St)\ V Id J . 
* l < A < ^ f e ( 0 , l ) ' . = 1 ' 

From (2.17) and Minkowski's inequality, 

(3.9) \(d'Zdy2 - (d'(cov S) dy2\ < M1'2 max \ck - c\ [ £ d2]1'2 . 
* i = l 

Combining (3.9) and (3.7), 

(d'Zd)1'2 + AI1/2max|c t - c\ [Zd2]1'2 ^ (d'(cowS)dy2 

^ max \ck - c\ [ £ d2]1/2 [2P1/2;.-1 max sup |< ;̂(f)| + M1'2] . 
k f ~ l » t 

Or, 

(3.10) A(rf'rd)1'2 ^ Ip1'2 max \ck - c\ [ £ d2]1^ m a x sup Uft)| . 
* i = i i t 1 1 
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From the Cauchy-Schwarz inequality, p £ d2 ^ [ £ \dX]2\ hence, comparing (3.8) 
i = i i = i 

and (3.10) we conclude that the left hand side of (3.4) is 0 for cov S satisfying (3.7). 
N 

But, since d was arbitrary, this implies that the distribution of £ Zj can be approxi-
1=i 

mated by that of a multivariate normal distribution with parameters (0> I). 
N 

We now show that d'(S — ES) is "near" d' £ Zj. 
j = i 

Pr[d'(S - ES) ^ x(d'Id)1/2] ^ Pr[df^Zj g x(d'Zd)1/2 + ^(tfTd)1/2] 
i = i 

+ Pr[\d'(S - .ES - £ Zj)\ > n{d'Id)1/2] 
j = i 

N 

g <P(x) + is + Pr[\d'(S - ES - X Zj)\ > rj(d'Id)1/2] from (3.9) 
7 = 1 

^ <?(x) + ic 4- £[.f'(S ~ ES - £ Zj)fjn
2(d'Id) 

J = I 

g <*>(*) + ie + M max | q - c|2 £ d2jrf2(d'Zd) from (2.17). 
t i = i 

From (3.7) and (3.9), 

(d'ld)1'2 + M1'2 max \ck - c| [ f a"2]1/2 

Jfc i = l 

g [d ' ( cov5)J ] 1 / 2 ^ ( 2 £ ~ 1 / 2 / 7 - 1 + 1) M 1 / 2 max |ck - c | [ £ d 2 ] 1 / 2 . 
fc i = i 

Hence, 

n
2(d'Id) ^ 4e_ 1M max |cfc - c|2 X d? 

fe i = l 

and so 

Pr[df(S - ES) ^ x(d'Id)1/2] ^ $(x) + | e . 

We could similarly prove the other inequality Pr[d'(S - ES) <; x(d'Zd)1/2] ^ 
^ $(x) - f e, so that 

sup |Pr[rf'(S - -?5).g x(<fl<?)1/2] - <2>(x)| S | e . 

Next, assuming a < 1, we again argue from (3.9) and (3.7): 

n(d
fId)112 > M 1 / 2 max | Q - c| [ f d 2 ] 1 / 2 , 

so 
v 

\(ďЫУ'2 •-, (d'(cov 5)</) 1 / 2 | < м1/2 max [c» - č| [ X <ii] 1 / 2 á ^ďЫ)1'2 

i=i 
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Then, sup \Pr[d'(S - ES) < x(d'(co\ S)d)1/2'] - <P(x)\ < e, as was to be shown. 
X 

Note that in the course of the proof we have also proved that (3.2) remains valid if 
cov S is replaced by ]T in (3.7). 

Finally, suppose that the scores are generated from the </>; by (1.2). But then 

EUUZ) = 0i ( ^77 ) + &•» ' 

where j ^ , ^ | ^ CN \ and C is a constant that does not depend on i or N. It follows 
that 

E{[(St - ES,) - (S2 - ES2)] [(St - ESX) - (S2 - ES2)]'} 

^ CpN-'^icj- c)2I(pXp\ 
i = i 

where SX(S2) connotes the statistic S of (1.3) with scores generated by ( l . l ) ((1.2)). 
Thus SX — ESX is equivalent to S2 — ES2 in asymptotic considerations. This com
pletes the proof. 

We now prove a version of Theorem 3.1 that is useful in situations in which the 
distribution functions of the random vectors are "almost identical", in the sense of 
(3.12). In particular, the following theorem will yield the approximate null distribu
tion (that is, under the hypothesis Fx = F2 = .. . = FN) of the statistic 5 of (1.3) 
as an immediate consequence. 

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Define 

Wj = ^(F i y(X l 7), F2J(X2j)9..., Fpj(Xpj)y , j = 1, 2 , . . . , N 

Vj = (Cj - c) Wj 

V = y w = £ E^Vj _ EVj)(Vj - EVj)'] . 
j = i 

Then for every e > 0 and £ > 0 there exists a 6 = 8(e, £) > 0 such that if 

(3.11) £ (cj - c)2 > S-1 max (Cj - c)2 

j = l l^J^N 

(3A2) max (Fj(x) - Fk(x)) < S 
l^j,k^N 

xeRp 

and 

(3.13) cov WX > C/ 

then 

(3.14) sup \Pr[d'(S - ES) < x(d'¥d)1/2] - <P(x)\ < e , d(pX1) #= O . 
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That is, the distribution of S can be approximated by that of a multinormal random 

variable with parameters (ES, ¥). 

Proof. We first relate (3.13) to the positive definiteness of *F. Note that EWX = 
«= EWj,j = 2. 3, ...,N, and that 

E(WnWn) -E(WtjWtJ) = Ut[Ftl(Xtiy\ 4>t\Fll(Xn)]dFu,l(Xu,Xn) 

~ j "*i [Fu(X y ) ] hlFiAX,,)] dFtu(XtJ,XtJ) 

= Ut\Fn(Xn)] ^[F I 1( .Y I 1)]d[F„p l( .Y,1 , .y,1) - FiUj{Xn,Xn)] 

+ UUFniXij)] <t>,[Fn(X,j)] - Wt/XtJ)\ 4>,[F,(Y,,.)]} x d i ^ / Y . , , Y v ) 

S Cl max |F.(x) - F / * ) | + f {#,[F I 1(XV)] - M F . / X . , ) ] } 
2£j£N J 

xe/J?p 

x 0 y [F y (X v ) ] dF , , , /**, ,*, , ) + j 0 f [ P o ^ u ) ] { ^ ^ u ( ^ i I ) ] 

- W J dF^K,,,*,,) 
= C2

0 max |Fi(x) - F,(x)| + 2C0C1 max \Fx(x) - F,(x)| 
1 =iJ=t-V l^J^N 

xeRp xeRp 

= max |Fk(x) - F,(x)| [C2 + 2 ^ ^ ] 
1 £j,k£N 
xeRp 

where 

Cö = max sup \фi(t)\ , C^ = max sup |фí(f)| 
lйiáP íє(OД) lйiUP ř є ( 0 , l ) 

Then, 

N 

(3.15) *F = X ( c , - c)2cov*V, 
1=i 

N N 

= X (Cj - c)2 cov PV! + X (cj - c)2 (cov FT, - cov Wt) 
j=l J = l 

= I fa - ^) 2 [C - max |F,(x) - Fk(x)[. (Cl + 2 C 0 C t ) p] / , 
1=i 

where the matrix on the right hand side is positive definite for max |F,(x) — Fk(x)j 

sufficiently small. 

The remainder of the proof consists of showing that W is "near" £ of Theorem 
3A , so that the proof may follow from the preceding theorem. The methods are 
straightforward, so are omitted. 
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Remark . Suppose the assumptions of Theorem 3.2 are satisfied, and that Fx = 
= F2 = ... = FN. Then the diagonal elements of W, the approximate covariance 

N 

matrix of S, are given by q>u = J] (cj — c)2 j 0 [$&) — <?J2 dt, where $t = 
1=1 

= JJ </>,-(t) dt. However, the off-diagonals are generally dependent upon the underly
ing distribution functions Fl9...,FN: for example, assuming continuous, non-
vanishing densities, we have 

E[(WtJ - EWiJ)(WlJ - EWtj)] = f f U^UWtjFT/Wr1 

Jw = 0 Jz=0 

[/J,FI-.
1(z)]-V«>Xi?o».^1W)dwd2 - W „ 

where fij(fij) is the ith (lth) marginal p.d.f. of Xj9 a n d / n j is the joint p.d.f. of Xtj 

and Xtj. In orther words, the distribution of our multivariate rank statistic S is 
generally not independent of the underlying distributions of the observations. Thus 
in circumstances in which the Fj are postulated equal but unknown, only the diago
nals of W — the variances of the marginal univariate rank statistics, the individual 
components of S — can be calculated; the additional information — specifically, the 
covariance structure of S — that Theorem 3.2 provides over the univariate asymptotic 
results cannot be utilized readily. 

In the next theorem, we shall relax our restrictions on the generating functions <j>i 

to the situation in which they are absolutely continuous and square integrable. 
Recall (cf. Natanson (1961), p. 242) that a real valued function <$> is absolutely con-

N 

tinuous inside (0, 1) if for every e > 0 there exists a S > 0 such that []T \<p(bk) — 
/ t = i 

— 0(a,v)|] < £ for all numbers ax, bl9 ..., aN, bN where 0 < ax < bx ^ a2 -< 
N 

< b2 ^ ... ^ aN < bN < 1, and £ (bk — ak) < S. It s a well known fact (Natanson 
k = l 

(1961), p. 246) that if cj) is absolutely continuous in (0, 1), then 4> is of bounded varia
tion; hence </>' exists, is finite almost everywhere, and is integrable on (0, l). However, 
the limit of (f)(t) as t -> 0 or t -» 1 may not exist or may exist, but be infinite. 

Theorem 3.3. Consider the statistic S of (1,3), where the scores are given either 
by (1.1) or by (1.2). Assume that each (fri satisfies (frfa) = €p^\t) - &2)(t), 0 < t < 1, 
where the 4>^, 1 S i ^ p9 m = 1,2, are non-decreasing, square integrable, and 
absolutely continuous inside (0, l) . Then for every e > 0 and £ > 0 there exists 
N0 = N0(e, C) such that if 

(3.16) N>N0(e,C) 

and 

(3.17) cov S > CN max (cj - c)2 I 
i ^ y ^ N 
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hold, then (3.2) obtains. That is, S can be approximated by a multivariate normal 
distribution with parameters (ES, cov S). In addition, as in Thoerem 3.1. cov S 
in (3.17) and (3.2) may be replaced by I Of (3.3). 

Proof. Let s > 0, f > 0 be given. Choose P > 0 and rj > 0 such that 

(3.18) sup \<P(x) - <P[(x ± p) (1 + J/)-1]) < ia 
X 

and let a > 0 be such that 

(3.19) a < CP"1 min (rj2, iP2)/S4 . 

From Lemma 5.1 of Hajek (1968), we can decompose </>;(t) = xl}) + rfXt) — ?(2)(t), 
0 < t < 1, where Xi is a polynomial, T ( 1 ) and T(

£
2) are non-decreasing, and J0 [ T * 1 ^ ) ] 2 • 

. dt + J0 [T(
f
2)(l)]2 dt < -Ja. Denote 

zW = (zi(^i)J-..?zi,(^))/ 

^*) = M*W...-^*W)' ^-^2 

Ä y Mjv + i }j 

S.-ic^f-S-R,) fc-1,2. 
;=i \At + 1 / 

Then S = Sx + S± - 5 2 . Now, let ^ x l > be a non-zero vector. Then 

(3.20) |[var d'S]1'2 - [var d'Sx~\1/2\ S [var d'(S - Sx)f
/2 

g [ v a r d ^ ] 1 / 2 + [var d'S2]
1/2 . 

Denote by T(k) = { t^} the covariance matrix of 5k , k = 1,2. Then by Hajek's 
variance inequality [(1968), Theorem 3A ] 

'"S21,^-4K^TT)J-
Hence, 

var d'Sfc S p(d'd) 21 max (C| - c)2 max 1 £ |r(fc) (—1— 
l=j = N H i ^ t j - l L \N + 1 

Consequently, 

(3.21) [var d'S^'12 + [var d'52]
1/2 

£ p1/2(dW)1/2 (21)1/2 max \Cj - gl { [ max £ [ > M _ 
ls i iN (L1--'---,1=1 L VN + i 

+fei[<s!'(^)TJ 

" 2-11/2 
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__// 2(rf/rf)1 / 2(2l)1 / 2max|c_ - č | 2 1 / 2 í max [ £ [T._> (—J—\ 
IŠJáN _ l á i l . Í 2 _ P | _ j ' = l |_ \N + lj 

I.K^)J1 12~Ћ !/2 

+ 

But for non-decreasing Tf, 

(i22) l ,K^)I s 2 N | 0 ' w ' ) ] M ' -
and by construction of T_ ! ) and T_2), 

(3.23) f [r.fV)]2 d< + f [T. 2

2 )(<)] 2 dr < a for any choice of i_ and i_ . 
Jo Jo 

Combining (3.21), (3.22), (3.23), and (3.19), we have 

(3.24) [var d'S,]1'2 + [var d's2]
1/2 

_2 pll2(d'd)112 (42)1/2 max |c_ - c\ (IN*)1'2 

1 __ J _i N 

^ (_*'_-)1/2 max |c_. - c| JVtt2.1'2 min (-., _/?e1/2). 

But if (3.17) is satisfied, then 

(3.25) |(var d'S)112 - (var rf's„)1/2| __ [var d'(S - sx)]1/2 

__ [_"(cov s) rf]1/2 min (r,, W2) • 

Let K1/2e = K1/2e(x) be the constant, the existence of which is established in Theorem 
3.1. (The X,-, being polynomials, have bounded second derivatives; thus Theorem 3.1 
can be applied to Sx.) Put JV0(e, _) = (l - t])~2 (,~lKll2t; then from (3.25), 

var d'Sx 5; var d'S[l - min (r,, _j3e1/2)]2 

(this follows from the fact that if \a — b\ < ca, then b > (l — c) a). So cov s > 
> ./V(_, C) max (c_ — c)2 / implies cov Sx > K1/2c max (c_- - c)2 /. 

l _ j _ i V 1 S J _ N 

Arguing as in the proof of Theorem 3.1, we have 

Pr[d'(S - ES) < x[d'(cov s)__1/2] 

__ Pr[rf'(s_ - ESX) __ (x + /?) [d'(cov s)d]1/2] 

+ Pr[ |d '(s - ES - Sx + ESX)\ > /3[d'(cov s)d]1/2] 

__ Pr[rf'(s_ - £s_) rg (x + )3)(l - i,)"1 [var rf'Sj1'2] 

+ [vard '(s - sx)] [/5
2d'(covs)rf]-1 

^ <*>((x + P) (1 - J?)"1) + _e + ie g <*>(x) + e . 
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Similarly, we could prove the opposite inequality 
Pr[df(S - ES) < x(d'(cow S)d)1/2] ^ <P(x) - e; this establishes (3.2). 

The version of the theorem in which cov S is replaced by I may be shown by means 
of a decomposition of Z corresponding to the decomposition </> = % -f- T ( 1 ) — T ( 2 ) . 
Define ZX9 Zl9 and Z2 by (2.18) and (3.3) wherein <j> is replaced by #, T ( 1 ) , and T ( 2 ) 

respectively. Then 

\(dfZd)1/2 - (d'Zxd)1/2\ S (d'Zxd)1/2 + (d'Z2d)1/2 . 

Utilizing a univariate variance inequality of Hajek [(1968), eqn. (5.37)], 

[(d'Zd)112 - (d'Zxd)1/2]2 ^ 8pN max (Cj - c)2 *(d'd) . 
i=7=N 

Then for a sufficiently small, \(d'Zd)1/2 — (d'Zxd)1/2\ can be made negligible in com
parison with CN max (cj - c)2 (d'd). As seen in (3.9) and (3.25) both |[var dfSx]

1/2 -
i ^ y = N 

-[dfZxd]1/2\ and |[var d'S]1/2 - (var dfSx)
1/2\ are suitably bounded. The dif

ference \(d'Zd)1/2 - (d'(cov.S)d)1/2 | is thus negligible with respect to (d'Zdf12 if 
Z > CN max (cj — c)2I and N is sufficiently large. 

i = 1 = N 

We have implicitly assumed in the above derivation that the scores are given as 
in (1.1). But if (1.2) obtains, we could argue as in the proof of Theorem 3.1, with the 

N 

aid of the inequality £ [£0,(l / j&)] a S N Jo lHf)Y dt> v a l i d f o r a11 '• 
1=i 

Remark . In anticipation of section 4, we note that if the scores are indeed given 
by (1.2) where the </>; are square integrable and absolutely continuous, then 

N 

X |a-N)0') ~~ 0»C/)| = 0(1)> f° r an* ^ a n d '• This observation, together with Theorem 
1=i 
4.2, yields a different proof of the assertion that Theorem 3.3 remains valid when the 
scores are related to the generating functions by (1.2). Indeed, from the results con
tained in section 4, it is sufficient to prove the theorems of this section merely under 
the assumption that the scores are related to the generating functions by (1.1); as 
we shall see, the theorems all remain valid if (1.2) instead obtains. 

As we had done with Theorem 3.1, we now specialize Theorem 3.3 to the situation 
in which the distribution functions of the random observations Xl9 X2f..., XN 

are "nearly identical". The following theorem is especially useful (as is Theorem 3.2) 
in determining the null distribution of S. 

Theorem 3.4. Let the assumptions of Theorem 3.3 hold. Define Vj9 Wj9 1 ^ j ^ N 
and *F as in Theorem 3.2. Then given any e > 0, Ci > 0, and (2 > 0 there exists a 
<5 = S(e, Ci, C2) > 0 and N0 = N0(e, Ci, C2) > 0 such that if 

(3.26) N > N0 , £ (CJ ~ cf > Ci-V max (Cj - cf 
1=i i ^ 1 = !v 
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(3.27) max (F /x ) - Fk(x)) < 5 
i^i.fc^N 
xeRp 

and 

(3.28) cov Wx > {2Z 

are jointly satisfied, then (3.14) ftoWs. 

Proof. The proof is an amalgam of techniques used in the proofs of Theorems 3.2 
and 3.3, and that of Theorem 2.4 of Hajek (1968), hence is omitted. 

4. CENTERING VALUES FOR CLASSES 
OF MULTIVARIATE RANK STATISTICS 

In section 3 we have shown, under various joint restrictions on the constants 
cu c2,..., cN. the distribution functions Fu F 2 , . . . , FN, and the generating functions 
4>u <t>2,..., <pp9 that the distribution of the linear rank statistic S can be approximated 
by a multivariate normal distribution with natural parameters (ES, cov S). Further
more, we had indicated that the covariance matrix cov S could itself be approximated 
by another co variance matrix, the latter being characterized by its ready expres-
sibility and calculability in terms of known parameters. We have deferred until this 
section, however, the analogous problem with regard to the centering values of S: 
namely, under what conditions can we replace ES in the conclusions of the theorems 
of section 3 by relatively simpler expressions? The question is of paramount impor
tance in applications, because ES generally is not easily computable. 

N 

We remark that in the case of univariate rank statistics S = £ Cj a(Rj), the problem 
J = i 

of finding centering constants that have simpler structure and are easier to evaluate 
than ES was left unanswered by Hajek, but was subsequently investigated by Dupac 
(1970) and by Hoeffding (1973). Dupac successfully found centering constants for S 
under the hypothesis that the generating functions had bounded second derivatives; 
Hoeffding, too, succeeded, upon imposing on the generating functions a condition 
slightly stronger than square integrability, but still weaker than existence of second 
derivatives. We shall provide in this section the multivariate analogs of these results. 

With the following theorem, we show that Theorem 3.1 can be generalized with 
regard to the choice of scores a/N)(*) — that is, the scores need not be specified 
exactly by (1.1) or (1.2) but may instead satisfy a broader relation to the generating 
functions </>,> We also provide relatively simple expressions that can be substituted 
for ES in the conclusion of Theorem 3.1. The theorem is based upon Theorem H, 2.1 
of Dupac (1970), in which are proved similar assertions, but for the univariate case. 
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To simplify the exposition, we introduce here the following definitions: 

«f>= AT* £ «<»>(;) 
1=1 

a =(a[N\a?\...9a^y 

<t> = (<?i,<?2> --M^p)' • 

Also, we shall adhere to the notational conventions adopted in earlier sections. 

Theorem 4.1. Under the assumptions of Theorem 3.1, (3.2) remains valid: 
N 

(i) with ES replaced by p = ]T Cj E(j)(H(Xj)), if the scores are related to the 
1=i 

generating functions by (V2); or 
(ii) with ES replaced by /i* = /i + Nc(a — <j>), if the scores are given by (VI), 

or more generally, if the scores are related to the generating functions by 

= o(i), i й i ѓ P ; (4-1) I -TO-*... 
j=l \ N + 1 

Or 

(iii) with F_S* replaced by fi if (4.1) hOWs awd if 

(4.2) c = 0( max \cj - c\). 

The next theorem stands in relation to Theorem 3.3 as the previous theorem does 
to Theorem 3.1: we prove that Theorem 3.3 remains valid if the scores are related to 
the generating functions by (4.1), and we provide simple centering values for S. The 
theorem is a multivariate generalization of Theorem 1 of Hoeffding (1973). 

Theorem 4.2. Let the assumptions of Theorem 3.3 be satisfied, but with the square 

integrability condition on the (pf} be replaced by 

(4.3) ĄфЮ) = ГV'-(1 - í)1/2 dфf\t) < o o , / c = l , 2 , 1 ś i ś p 

Then the conclusion of Theorem 33 follows: 

(i) with ES replaced by \i in (3.2), if the scores are given by (V2); or 
(ii) with ES replaced by /i*, if the scores are given by (VI), or more generally, 

if the scores are related to the generating functions by (4.1); or 
(iii) with ES replaced by fi if both (4.1) and (4.2) obtain. 

R e m a r k . Integrating by parts in (4.3) we obtain 

I(<A.)=fW)0-i)'~1/2(l-0"1/2dt. 
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Í: 
Hence condition (4.3) is equivalent to 

V«4,(r)| *~,/2(l - t)-1/2dt< oo, fc=l,2, l ^ i g p . 
I 0 

Hoeffding's Proposition 2 implies that, in the univariate case, 

(ES - ft)2 = 0 |~N max (c,. - c)2 ( f ^ ( f ) ! r 1 / 2 ( l - t )~ 1 / 2 dX 

from whence arises the assumption <j> = </>(1) — <£(2), with 0(fe)(t) F"1/2(l — l)~1/2 

integrable. Hoeffding shows that if <j) is non-decreasing, then the condition J(<jft) < oo 
implies square integrability of 0 and is implied by j j </>2(t) [log (1 + |0(O|)]1+<5 & < 
< oo for some O" > 0. In this sense, the condition (4.17) is not much more restrictive 
than square integrability. 

The p roo f s of Theorems 4.1 and 4.2 follow directly from the aforementioned 
univariate results of Dupac (1970) and Hoeffding (1973), and the observation that if 

then 

\S, - n,\ (var S ()
1/2 < t , i = l , . . . , j » j 

|Pr[(S ( - Ml) (var S,)1'2 <xt, i = 1 , . . . , p] 

- Pr[(S ; - £S,) (var Sf)
1/2 < x ř , i = 1,..., p]\ 

<: max { £ Pr[Xi ^ (5,- - ESt) (var Sf)
1/2 < x, + T] , 

X Pr[x ; - t Si (5; - £S,) (var 5,.)1/2 < x,]} . 
i=l 
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Souhrn 

ASYMPTOTICKÁ NORMALITA MNOHOROZMĚRNÝCPI 
LINEÁRNÍCH POŘADOVÝCH STATISTIK 

PŘI OBECNÝCH ALTERNATIVÁCH 

JAMES A . KOZIOL 

Nechť Xj, 1 ^ j ^ N, jsou nezávislé náhodné p-vektory se spojitými distribučními 
funkcemi Fj9 1 ^ j ^ N. Definujme p-vektory Rj tak, že položíme KI7 rovno po
řadí XÍJ mezi hodnotami Xn,..., XiNi 1 ^ ií <I p, 1 g j ^ N. Budiž aiN\-) mnoho-

JV 

rozměrná skórová funkce v Rp a položme S ==Ys cj a(iV)(^/)> kde Cj jsou libovolné 
1=i 

regresní konstanty. V článku se vyšetřuje asymptotické rozložení S při různých 
podmínkách na konstanty, na skórovou funkci a na základní distribuční funkce. 
Speciálně je dokázána asymptotická normalita S pouze za předpokladu, že F.- jsou 
spojité. Dále jsou za určitých slabých předpokladů nalezeny centrující vektory pro S. 

Authoťs address: Prof. James A. Koziol, Department of Mathematics University of Califor-
nia at San Diego, La Jolla, California 92093, U.S.A. 
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