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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

MINIMUM MEAN SQUARE ERROR ESTIMATION 

GEJZA WIMMER 

(Received December 6, 1977) 

INTRODUCTION 

Repeated determination of the regression parameters e.g. in clinical practice, 
demographic investigations etc., indicates that the parameters could be often consid­
ered as the realizations of random variables (provided that the repeatedly obtained 
regression parameters are nonhomogeneous on a statistically significant level). The 
aim of this paper is to show one possible way of utilizing the information obtained 
from previous experiments. It is assumed that the information obtained from 
previous experiments enables us to determine the mean value and the covariance 
matrix of the regression parameters and of the error vector, respectively. 

I. FORMULATION OF THE PROBLEM 

Let us consider the statistical model of the type 

( 1 ) * W , 1 = *n,kPktl + Bn,l » 

where the random vector P e Mk (k-dimensional vector space) has a priori probability 
distribution with mean value EP = fi and covariance matrix cov p = E(p - fi). 
. (p — p)f = Ukk. The error vector e„ti is a random vector with mean value Es = O 
and covariance matrix V„ttt. We assume that P and e are uncorelated, i.e. E(p - fi) e' = 
= O. 

Definition 1.1. A linear estimator 

(2) Kx = -VA.1 + Kt 

is said to be a minimum mean square error estimator of p, if A and b are chosen 
in such a way that the matrix 
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(3) RKk = E(p-p){fi-P)' 

has the minimum norm. 

Note LI . We consider the following norm of a positive semi-definite matrix Aky. 

\\Aktk\\ = sup x'Ay . 
Il*ll = i 
lly|| = i 

Note 1.2. The matrix R given by (3) is called the risk matrix. 

II. PRELIMINARY ASSERTIONS 

Lemma ILL Let Ann be a regular symmetric matrix, Bkk a symmetric matrix 
and Cnk an arbitrary matrix. Then 

[ 
A-1 + A-lC{B - C'A-*C)-m CA'1 -A-*C(B - CA^C^ 

- ( ß - CA-iq-m CA1 (ß - CA-^c);ym _, 

is a g-inverse (see Rao-Mitra [ l ] , p. 20) Of the matrix 

[c ßj' 
where the symbol D~ means a g-inverse of the matrix D (defined as a matrix which 
satisfies the condition D = DD~D), S~ym is a symmetric g-inverse of the sym­
metric matrix S and D' is the transpose of the matrix D. 

P roo f follows easily from the definition of the a-inverse. 

Lemma II.2. Let Unk and Vnp be arbitrary matrices. Then 

ГU+(I - vc+)l 

where Cnp = (lnn — UU+) V, is a g-inverse of the matrix (U, V). The symbol U+ 

means U~M)m(N) for M = I, N = I. The matrix U~M)m{N) is a matrix satisfying 
the equations 

MUUU = MU, NU~UU~ = N U " , 

(U~U)' N = NUU, (UU)'M = MUU~, 

where M and N are positive semi-definite or positive definite matrices. 
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Proof. If JU(R) denotes the vector space generated by the columns of the matrix R 
and Ker (R) = {x : Rx = O}, then we obtain from the properties of the matrix C+ 
(see Rao-Mitra [1]) 

li(CC+) = 11(C) c Ker W 

or, equivalently, 

fi(U) c Ker (CC+)f = Ker (CC+), 

which implies 

(4) CC+U^O. 

Further 

or, equivalently, 

hence we obtain 

so that 

H(UU+V) c fi(U) 

KerU ' c Ker (UU+V)'; 

fi(CC+) = n(C) c Ker U' c Ker (UU+V)' 

fi(UU+V) c Ker (CC+) 

and 

(5) CC+UU+V = O . 

Now we can easily see that 

(u ,v)^ / - / c + ) ] (u ) v) = (u,v)) 

and the proof is complete. 

Corollary ILL If Ukn and Vpn are arbitrary matrices, then 

[ f - (K+) 'V( (U ' )+ ) ' , (K+) ' ] , 

where K = [/ - U,(U,)+~] V\ is a ^-inverse of Jf . 

III. SOLUTION OF THE PROBLEM 

In the sequel we shall need the following matrices: 

(6) Lkk+n(A) = (lkk — AknXnk, Ak>n), 

Kk + n,k = Qf X')' 
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and 

( 7 ) KJ = ((K')m-(/M))', 

where 

(8) м _ Гuw o,,Л 
/Vífc + /i,fc + гj — o V 

The symbol Tm(M) denotes a g-in verse of the matrix T satisfying the equation TT T = 

= T and (T F)' At = MT~T, where >VS is a positive semi-definite or definite matrix. 

Lemma III.l. Vector fe0 minimizes the norm of the risk matrix (3) if and only if 

(9) b0 = (l-AX)fi. 

Proof. We have 

$-P = Ax + b-p = A(Xfi + s) + b - p = 

= Ae + fe - (/ - AX)p = (l - AX) (p - p) + As + (b -(I - AX) p). 

This implies 

(10) R = E($ - P) ($ - P)f = (/ - AX) U(l - AX)' + 

+ AVA + (fe - (/ - AX) p) (fe - (/ - AX) py . 

Consequently, we see that R has the minimal norm iff fe = fe0 = (/ — AX) p. The 
proof is complete. 

Lemma III.2. The relation 

(11) min {||(/ - AX) U(i - AX)' + AVA'\\ : A is k x n matrix} = 

= ||(l - AX)U(l - AX)' +AVA'\\. 

holds if and only if L(A) = K , where L(A) and K* are given by (6) and (7), respec­

tively. 

Proof. We have 

(12) L(A) K = lKk 

and 

(13) (/ - AX) U(l - AX)' + AVA' = L(A) ML(A), 

where M is given in (8). 
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Using (12) and (13) we obtain 

(14) (/ - AX) U(S - AX)' + AVA' = L(A) ML'(A) = 

= L(A) (KK* + (/ - KK*)) M(K^ + (/ - KK*))' L'(A) = 

= L(A) KK^M^K})' L'(A) + L(A) (I - KK^ M(S ~ KK^)' L'(A) = 

= K ^ K * ) ' + (L(A) - K*) M(L(A) - KJ)' , 

because of the relations 

KK}M(S - KK*)' = (/ - KK*) M(KKJy = O 

t 
(see the definition of K ). 

t 
From (14), it is seen that (11) is true if and only if L(A) = K . The proof is com­

plete. 

Corollary III.l. The matrix A from (11) is a solution of the equation 

(15) L = (/ - AX, A) = ((/, X');(M))' = K* . 

Lemma III.3. If 

E w = (/ + U)"1 + (/ + U)-1 X'(XX' + V - X(/ + u)- 1 x')-m x(/ + u ) - ' , 

B w = - ( / + U)-1 X'(XX' + V - X(/ + U)-1 X')s-ym , 

Cn>„ = (XX' + V - x(/ + u)- > x ' ) - m , 

Dkk = E + X'B' + BX + X'CX = 

= (/ + U)"! + [((/ + UY1 - /) X'(XX' + V - X(/ + U)" i X')"m . 

.XftZ + U ) " 1 - / ) ] , 

fhen 

((/, X')m-(M))' = ((D+)' ( - + BX)', (D+) ' (B' + CX)'). 

Proof. A special g-inverse ((/, X')~(M))' is the matrix ((/, X')~I)MM))'. From the 
properties of ((/, X')~l)MM))' (see Rao-Mitra [1] p. 54) and from Lemma II. 1 we have 

(16) (l,X%l)MM) = 

+[M[*]T[*]= 
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- [ X XX' + vj [ x j [ [ x XX'J [ X XX' + vj [xJJ [ x j 

= U CJ U l I.ІA xxj[ß' cj[xJJ [xj = 

= [B' + CXJ[XDJ [xj" 

It follows from Corollary IIA that 

[ y _ = (('-(K+)'XD)((D')7,(K+)'), 

where K = (/ - D'(D')+) D'X' = O. Consequently, we can take K+ = O. 

So we have 

(") [xo]"=(D*-°) 
and from (16) we conclude 

(18) ((/, X%(M))' = ((D+) ' (£ + BX)', (D+ ) ' (B' + CX)') . 

The lemma is proved. 

Corollary III.2. The matrix 

A = (D+y(Bf + cxy 

is a solution of (15). 

Proof. 

i - AX = i - (D+y (B' + cxy x = (DD+y - (D+y (B + xfc) x = 

= (D+)' (E' + BX + XBf + XCX - BX - XCX) = (D+)f (E + BX)f 

and A is a solution of (15) according to Lemma III.3. The proof is complete. 

Theorem III.l . In the statistical model (l), the vector 

(19) flKl =Ax + b0 

is the minimum mean square error estimator of p. The risk matrix with the mini­
mum norm is given by 

R = Z'UZ + AVAf, 

where 

^k,k — 

= {(/ + U)-1 + (/ + U ) 1 X'(XX' + v - x(/ + u)-1 x')-ra X((l + u) - ' - /)} . 
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. [(/ + u)-1 + ((/ + u)-1 - I) X'(XX + V - X(l + u)-1 x%m. 

.X((/ + U)-' - / ) ] + . 

and 

b0 = (l-AX)p. 

Proof. Due to Lemmas III.l, III.2 and Corollaries III.l and III.2, the vector fkfi 

(cf. (19)) is the minimum mean square error estimator of /?. The risk matrix with the 
minimum norm is easily obtained from (10), (11), (13) and (18). The proof is complete. 

Corollary IIL3. If the matrices U and V are positive definite then 

A = UX(XUX' + V)" 1 . 

The above corollary has been obtained by Chipman [2], Hence our Theorem III.l 
is a generalization of Chipman's result for singular matrices U and V. In practically 
relevant situations, the new information concerning the parameters p and s usually 
causes a restriction of their respective ranges. Consequently, the occurence of sin­
gular matrices U and V is quite natural in such problems. 
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S ú h r n 

ODHAD S NAJMENŠÍM RIZIKOM 

GEJZA WIMMER 

V mnohých prípadoch regresnej analýzy móžeme parametre regresnej závislosti 
považovat' za náhodné premenné. Dóležitým a užitočným sa tu ukazuje odhad s naj-
menším rizikom. V práci sa našiel explicitný tvar odhadu v případe, že variačné obory 
náhodného parametra aj chybového vektora nevyplňujú celý parametrický resp. 
chybový priestor. 

Author's address: RNDr. Gejza Wimmer, Ústav merania a meracej techniky SAV, Patrónka-
Dúbravská cesta, 885 27 Bratislava. 
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