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1. INTRODUCTION

Let X, Y be real separable Hilbert Spaces and let Te [X, Y] be a compact linear
operator. Let us consider y € R(T). Then the problem
(1.1) Tx =y
has a solution, which need not be uniquely determined in general. A vector x; € X
is called the normal solution to (1.1), if the following conditions are satisfied:

Txy =y
and
|xo] x = min {Ix]x:Tx=»y}.

Obviously, x, is uniquely determined. In practical calculations it is quite usual that
the right hand side in (1.1) is not known exactly; we are given a vector y* = y + ¢
such that e e Yand ||a||y < 4,where 4 = 0 isana priorigiven bound. Our aim is to
determine an approximation of the normal solution x,. We denote

N ={yeR(T): |y - y*y < 4}.
Definition 1.1. The set {‘Jl,} iwep is called an a priori decomposition of M, if
D)0+ N, =N for ieP,
(i) M, = N, for i <, i,jeP,
(iii) (U ) =29,
ieP

where O = P < N and N is the set of positive integers.

It is well known (see [1, p. 328]) that the operator Thas a canonical decomposition:
(1.2) T=73 df,v)xu;,
iexX
where d; = 0 are the singular values of T(with out loss of generality we assume that
d;2d;ifizjand i,jeX), u;and v; (for i € &) are the corresponding singular

*) See [2].
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vectors which are constructed so that {u,} ier and {v;} .., respectively form complete
orthonormal bases of X and Y while #” = I n J, where I (and similarly J) is either
a set of the type I = {I, 2,..., m}, where me N, or I = N. Further, let us define

an operator T* : R(T) > X as follows:
(1.3) T =% di (" ugy v,

iexX”
where

=10 i d;=0.
Definition 1.2. Let {N,},.» be an a priori decomposition of N. Then we denote:
(i) (W, %) = sup {||[Wy* — T*y|x:ye R},
where We[Y, X], see [3],
(i) QM) = inf {w(W,N,) : We [Y, X]}.
Definition 1.3. A vector £ € X is called a universal approximation to the normal
solution x, if :
(i) £ = Wy*, We[Y,X],
(ii) there exists i(0) €1 so that w(Wy,) = QW) < AN,) for jeP,
(iii) (W, N,) < d QAN,) for i€ P, where d = 1 is a constant independent of i.

{d;l if d;>0,

2 A SPECIAL CASE OF AN A PRIORI DECOMPOSITION OF 0

Let j e I. Let A(j) = I be the sets such that

(i) j e A(j) and A(j) v B(j) = I,

(ii) if i€ A(j) then i < j,
(iii) if ke B(j) then j < k.
Let us define the set R; (j 1) by setting

R, ={yeN:(yu)y =0, ieB(j)}.

For B(j) = 0 we put ®; = N. Let us assume that there exists an index k(4) e &
such that d,4, + 0 and

Il

(2.1) > |Oo*u)y | = 42,
ieB(k(4))
(22) if pel issuchthat Y |(y* u)y|* < 4% then k(4)<p.
ieB(p)

Remark. In this paper we use the following notation:
> (¥ u)y|> =0 if B(p)=9.

ieB(p)
Now, let us introduce the set P = B(k(A) — 1) n A", P is not empty in the case
of the best determined terms method.
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Theorem 2.1.
(i) If A(k(4) — 1) + 0 then R, = 0 for i e A(k(4) = 1),
(i1) {R;}ip is an a priori decomposition of N.

Proof.
(i) Let i€ A(k(4) — 1). For ye®R,; we have ye RN and (y,u,)y = 0 for je B(i).
This implies
(2.3) ly* = |7 = _Z‘)‘(J’* — youpy|? +

JeA(i
By (2.1), (2.2) and by the assumption A(k(4) — 1) =% 0 it follows that
>0 uyly|* > 47
JeA(i)
Thus we obtain a contradiction with (2.3).

. B(_)I(}’*, uf)y|z = 4%,

JjeB(i

(ii) Evidently, (ii) of Definition 1.1 holds and ®; = 9 for i e P. Let us show that
R; + 0. We define § = Y (y* u)yu;. Then je R, = R,.

jeAk(4))
Now, let us prove (iii) of Definition 1.1. It is easy to verify that (iii) holds if card P <
< 0. Let yo € M be such that y, ¢ ( (J R;)°. Then there exists § > 0 so that
ieP
inf {[yo — ¥y :ye(UR)}26>0.
ieP
Obviously,
Yo = Z (J’o,“j)y u; + Z (J’o» “j)y u;
JeA(i) JjeB(i)
and
im || Y (vo. uy)y ujlly = 0.
ivoo jeB(i)
This completes the proof.
We denote
AJZ = Az - Z ‘(,V*, ui)le fOr jEP,
ieB(j)
and
V=Y d/(-,u)yv;, for jeP.
i€A(j)
Theorem 2.2. For jeP,
QR;) = djy dj0) »

where j(o)e P is such that dj,, = max{d] :ie A(j)\ A(k(4)) — 1)} and if pe
€ A(j)N A(k(4) — 1) is such that d},, = d, then p < j(o).

Proof. First we prove that for j € P it holds

(2.4) T, R;) = dji) 40 -

Obviously,

(2.5) (T, R)? = (dj,)?sup{ Y |(0* — yvoudy|? :yeR}.
ieAG(0))
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It is easy to verify that

(2.6) sup{ Y |(v* = youy] i yeR) =
ieA(j(0))
=sup{ Y |0* = you| 1y e R0}
ied(j(0))
and for all y € R, it holds Y ‘(y* -, u,-)y| < Af(a) It follows that
ied(j(0))
27) (T, R)) = djioydjo) -

Let us denote
F= Y (Huyui+ o -

ied(i(o),
Evidently j € R;,, = R; and thus (2.4) is fulfilled because
(2.8) [Tiy* = T*5|x = djo) djior -
Now let us prove Theorem 2.2. For We[Y, X] and y € R; we have
(2.9) [y — Tyl = % (W™, o)x|* +

ieB(j(0))
‘(Wy*, v)x — di (y, “i)YIZ :

ieA(j(0))

We denote
B = z T(W.V*; UI)X U;

ieA(j(0))

and for t = 0,
(1) = B+ tujg, -

We put

o= Y % u)yus — sgn {dj(Wy*, vj)x — (0% wj)x} Aot »
ieA(j(0))
where we use the notation sgn 0 = 1.
Obviously y’ € R;,, = R;. We choose t, = 0 such that

j(o
(2'10) “Wy* - T )’(to)Hx = H Wy* — T+)"‘x
By (2.10) we obtain
(2'“) to(dj(ﬂ) = Z H(WY*’ Ui)x v, —d; (y u ‘]x
ied(j(0))

Evidently d;,, > 0. By (2.11),
tf = Z df(,,)dfz\di(Wy*, Ui)X - ()", “.’)Y\l 2
ieA(i(0))

dj(o)(WY*’ ”j(o))x - (.V" “j(o))Y\Z 2 Ajz'(o)

and therefore

(2.12) 2z A2,

By (2.12) and (2.10) we have

(2.13) Wy — Ty 2 (df))? 4%, + .GBZ‘W)‘(Wy*’ CAM

By (2.12) and (2.13) we obtain

(2.14) (T4, R)) < 43,(d]),) le}%‘lu))l(Wy*, v)x> £ W’ (W, R),
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because y' € M. Then it is easy to verify
(2.15) o(T’, R;) = inf {o(W, R)) : We [Y, X]},
which completes the proof.
Corollary 2.1. Let j, k € P be such that j < k. Then Q(R;) < Q(R,).
Proof. We have d},, 4;,, = di(,) Ai because j(o) = k(o), where j(o0) (and simi-
larly k(o)) satisfies
(i) dj,y = max {d} :ieA(j)\ A(k(4) — 1)};
(i) if d, = d},, forsome pe A(j)\ A(k(4) — 1) then p < j(o).
Thus, the validity of the relation Q(R;) < Q(R,) is a consequence of Theorem 2.2.

Theorem 2.3. The element £ = T*®y* is a universal approximation to the
normal solution x,.

Proof. With respect to the above results and to (2.15) it is enough to show that
there exists a constant d > 1 independent of j € I such that o(T*®, R;) < d Q(R;).
Since
(2.16) (T", R, < ”T"(")y* - Tj}’*”x + sup {” Tiy* — T+y”x tyeR},
we obtain by (2.6), (2.7) that

(TG, R)) < 2dj) 40 -
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Souhrn

UNIVERZALITY METODY NEJLEPE URCENYCH TERMU
Jiki NEUBERG

Jsou studovdny vlastnosti metody nejlépe urcenych termt vzhledem k jednomu
apriornimu rozkladu R(T) s cilem uréit univerzdlni aproximaci normdlniho Feseni
Fredholmovych integrédlnich rovnic prvniho druhu.
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