Marie Hušková Simultaneous rank test procedures

Aplikace matematiky, Vol. 25 (1980), No. 1, 33-38

Persistent URL: http://dml.cz/dmlcz/103835

Terms of use:

© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

SIMULTANEOUS RANK TEST PROCEDURES

Marie Hušková

(Received February 15, 1978)

1. INTRODUCTION

Let $\mathbf{X}_j = (X_{1j}, ..., X_{pj})'$, j = 1, ..., N, be independent *p*-dimensional random variables with continuous distribution functions. Consider the hypotheses of randomness associated with some marginal distributions:

$$H_{v}: F_{j}^{v}(\mathbf{x}^{v}) = F^{v}(\mathbf{x}^{v}), \quad j = 1, ..., N, \quad v = 1, ..., r,$$

where $F_j^{v}(\mathbf{x}^{v})$ is the marginal distribution of the subvector \mathbf{X}^{v} , $v = 1, ..., r, \mathbf{x}^{1}, ..., \mathbf{x}^{r}$ is a partition of the vector \mathbf{x} , i.e., $\mathbf{x} = (\mathbf{x}^{1'}, ..., \mathbf{x}^{r'})'$. We are interested in testing hypotheses $H_1, ..., H_r$ and $H_0 = \bigcap_{v=1}^{r} H_v$ against alternatives $A_1, ..., A_r$ and $A_0 = \bigcup_{v=1}^{r} A_v$, resp., where $A_v : F_j^{v}(\mathbf{x}^{v}) = F^{v}(\mathbf{x}^{v}; \theta_j^{v})$, j = 1, ..., N, v = 1, ..., r, with $\theta_j = (\theta_1^{i'}, ..., \theta_j^{r'})'$ being a vector of unknown parameters.

Krishnaiah and some others (see [5]-[8]) developed several simultaneous test procedures for the classical multivariate normal theory. As for simultaneous rank test procedures, Krishnaiah and Sen [9] dealt with this problem for some MANO-COVA models, Jensen [3] for multivariate random blocks, Hušková [2] suggested a method for the problem considered in the present paper (see method I below).

Here we give three test procedures analogous to those proposed by Krishnaiah in [5-6] and based on the asymptotic distributions of quadratic rank statistics (for definition see (3) below).

Put

(1)
$$\mathbf{S}_c = (S_{c1}, \dots, S_{cp})',$$

(2)
$$S_{ci} = \sum_{j=1}^{N} (c_{ij} - \bar{c}_i) a_{Ni}(R_{ij}), \quad i = 1, ..., p$$

with R_{ij} being the rank of X_{ij} in the sequence $X_{i1}, ..., X_{iN}, c_{ij}$ regression constants, $a_{Ni}(j)$ scores and $\bar{c}_i = N^{-1} \sum_{j=1}^{N} c_{ij}$. Denote by \mathbf{S}_c^{ν} the subvector of \mathbf{S}_c corresponding to $\mathbf{X}^{\nu}, \nu = 1, ..., r$. Define

(3)
$$Q_c = \mathbf{S}'_c (\operatorname{var}_p \mathbf{S}_c)^{-1} \mathbf{S}_c,$$

(4) $Q_c^{\nu} = \mathbf{S}_c^{\nu\prime} (\operatorname{var}_p \mathbf{S}_c^{\nu})^{-1} \mathbf{S}_c^{\nu}, \quad \nu = 1, ..., r,$

- 2	2
- 1	- 1
~	-

where the matrix $\operatorname{var}_{p} \mathbf{S}_{c}$ is regular with elements

$$(N-1)^{-1}\sum_{j=1}^{N} (c_{ij} - \bar{c}_i) (c_{tj} - \bar{c}_t) \sum_{m=1}^{N} (a_{Ni}(R_{im}) - \bar{a}_{Ni}) (a_{Nt}(R_{tm}) - \bar{a}_{Nt})$$

if

$$i, t \in \mathbf{I}_k, \quad k = 1, \dots, r,$$

and if

$$\sum_{j=1}^{N} (c_{ij} - \bar{c}_i) (c_{tj} - \bar{c}_t) (a_{Ni}(R_{ij}) - \bar{a}_{Ni}) (a_{Nt}(R_{tj}) - \bar{a}_{Nt})$$

$$i \in I_k, \quad t \notin I_k, \quad k = 1, ..., r,$$

where $I_1, ..., I_r$ is the partition of the set $I = \{1, ..., p\}$ considered in hypotheses H_v and $\operatorname{var}_p \mathbf{S}_c^v$ is the submatrix of $\operatorname{var}_p \mathbf{S}_c$ corresponding to \mathbf{S}_c^v and $\bar{a}_{Ni} = N^{-1} \sum_{j=1}^N a_{Ni}(j)$. Denote by m_v the number of components of \mathbf{x}^v , v = 1, ..., r.

We shall impose usual conditions on scores, regression constants and the matrix $\operatorname{var}_{p} \mathbf{S}_{c}$:

a. The scores $a_{Ni}(j)$ are generated by a nonconstant square integrable functions φ_i , i = 1, ..., p, i.e.,

$$\int_{0}^{1} (\varphi_{i}(u) - a_{Ni}([uN] + 1))^{2} du \to 0 \text{ for } N \to \infty, \ i = 1, ..., p.$$

b. The regression constants fulfil:

(5)
$$\max_{1 \le j \le N} (c_{ij} - \bar{c}_i)^2 \left(\sum_{j=1}^N (c_{ij} - \bar{c}_i)^2 \right)^{-1} \to 0, \quad i = 1, ..., p.$$

c. The matrices $\operatorname{var}_{p} \mathbf{S}_{c}$ are regular and any accumulation point of the set $\{E \operatorname{var}_{p} \mathbf{S}_{c}; c_{ij} \text{ 's satisfy (5)}\}$ is a regular matrix.

In the sequel we shall often use the following results:

A. Under hypothesis H_0 and assumptions a, b, c the asymptotic distribution of S_c is multivariate normal $\mathfrak{N}(\mathbf{0}, \operatorname{var} S_c)$, where $\operatorname{var} S_c$ is the variance matrix of S_c under hypothesis H_0 (see [2]).

B. Under hypothesis H_0 and assumptions a, b, c the asymptotic distributions of Q_c and Q_c^1, \ldots, Q_c^r are χ^2 with p and m_1, \ldots, m_r degrees of freedom, resp. (see [2]).

C. Under hypothesis H_0 and assumptions a, b, c the matrix $\mathbf{S}_c \mathbf{S}'_c$ has asymptotically central Wishart distribution with 1 degree of freedom and positive definite matrix var \mathbf{S}_c (it follows from A).

D. Under hypothesis H_0 and assumptions a, b, c the joint asymptotic distribution of Q_c^1, \ldots, Q_c^r is the generalized multivariate χ^2 -distribution defined by Jensen in [4], where the corresponding density is derived (it follows from C and [4]).

E. For an arbitrary subvector S_c^* of S_c the relation

$$\mathbf{S}_{c}^{*'}\left(\operatorname{var}_{p} \mathbf{S}_{c}^{*}\right)^{-1} \mathbf{S}_{c}^{*} = \max_{\boldsymbol{u}\neq 0} \frac{(\boldsymbol{u}'\mathbf{S}_{c}^{*})^{2}}{\boldsymbol{u}'\operatorname{var}_{p} \mathbf{S}_{c}^{*} \boldsymbol{u}},$$

where \boldsymbol{u} are nonzero real vectors, holds and thus

$$\mathbf{S}_{c}^{*'}(\operatorname{var}_{p} \mathbf{S}_{c}^{*})^{-1} \mathbf{S}_{c}^{*'} \leq Q_{c}$$

(as follows by Schwarz inequality).

F. Bonferroni inequality: For arbitrary events A_1, \ldots, A_r the inequality

$$\mathsf{P}\big(\bigcap_{i=1}^{r} A_i\big) \ge 1 - \sum_{i=1}^{r} (1 - \mathsf{P}(A_i))$$

is true.

G. Let a random *p*-vector $\mathbf{Y} = (Y_1, ..., Y_p)' = (\mathbf{Y}^{1'}, ..., \mathbf{Y}^{r'})'$ have the normal distribution $\Re(\mathbf{0}, \Sigma)$, where

$$\Sigma = \begin{pmatrix} \Sigma_{11}, \dots, \Sigma_{1r} \\ \vdots & \vdots \\ \Sigma_{r1}, \dots, \Sigma_{rr} \end{pmatrix}.$$

Assume that there exist vectors \boldsymbol{b}_i with m_i components, $i = 1, ..., r, \sum_{l=1}^{r} m_l = p$, such that

such that

(6) $\Sigma_{ij} = \boldsymbol{b}_i \boldsymbol{b}'_j, \quad i \neq j, \ i, j = 1, ..., r ,$

(7)
$$\Sigma_{ii} - \boldsymbol{b}_i \boldsymbol{b}'_i \geq \boldsymbol{0}, \quad i = 1, ..., r,$$

then for arbitrary convex sets $C_1, ..., C_r$ symmetric about origin, $C_i \subset R_{m_i}$, the inequality

$$\mathbf{P}(\mathbf{Y}^i \in C_i, i = 1, ..., r) \ge \prod_{i=1}^r \mathbf{P}(\mathbf{Y}^i \in C_i)$$

holds (see [1]).

The inequality always holds for $m_i = 1, i = 1, ..., r$ (see [10]).

2. TEST PROCEDURES

Procedure I. The author [2] proposed the test procedure with critical regions

$$(8) Q_c > \chi^2_{\alpha}(p) \,,$$

where $\chi^2_{\alpha}(p)$ is 100 α^{0}_{α} critical value of the central χ^2 -distribution with p degrees of freedom. This test can be used for a class of hypotheses that contain H_0 as a sub-hypothesis, e.g. for hypothesis that all X_j , j = 1, ..., N, have the same distributions.

Procedure II. We base the test procedure on the statistics Q_c^1, \ldots, Q_c^r given by (4). We reject the hypothesis H_v if

$$Q_c^{\nu} > d_{\nu}$$
,

where the d'_{v} s are chosen so that

$$\lim_{c} P(Q_{c}^{v} < d_{v}, v = 1, ..., r) = 1 - \alpha.$$

The total hypothesis H_0 is rejected if at least one of the hypotheses H_1, \ldots, H_r is

rejected. The optimal choice of the d'_v s is not known. Consistently with the classical normal case the values d_1, \ldots, d_r are chosen either to be equal (i.e. $d_1 = \ldots = d_r = d$) or the individual critical regions are of equal sizes (denote them by d_1^*, \ldots, d_r^*). When $m_v = m$, $v = 1, \ldots, r$ then $d_v^* = d_v$, $v = 1, \ldots, r$. To find d, d_1^*, \ldots, d_r^* with the requested properties is also very difficult for the asymptotic distribution of (Q_c^1, \ldots, Q_c^r) includes numerous parameters. This problem was discussed by Jensen in [4] where some approximations are suggested.

We shall suggest here three approximations of $d, d_1^*, ..., d_r^*$. First consider the approximation of d. Using Bonferroni inequality we get an approximative value $\chi^2_{\alpha/r}(\max_{1 \le i \le r} m_i)$ and the critical region for testing H_{ν} against A_{ν}

(9)
$$Q_c^{\nu} > \chi_{\alpha/r}^2(\max_{1 \le i \le r} m_i).$$

When the assumptions in G are satisfied then the critical region is

(10)
$$Q_c^{\nu} > \chi_{1-(1-\alpha)^{1/r}}^2 (\max_{1 \le i \le r} m_i)$$

Utilizing assertion E we get the third possible approximation of d. Then we reject the hypothesis H_{ν} if

(11)
$$Q_c^{\nu} > \chi_{\alpha}^2(p) \,.$$

Similarly we obtain the approximations of $d_1^*, ..., d_r^*$. By Bonferroni inequality and by G (if possible) we have the critical regions for testing H_v against A_v

(12)
$$Q_c^{\nu} > \chi_{\alpha/r}^2(m_{\nu})$$

and

(13)
$$Q_c^{\nu} > \chi_{1-(1-\alpha)^{1/r}}^2(m_{\nu}),$$

respectively.

If $m_i = 1, i = 1, ..., p$, the test procedure can be based on the statistics $S_{c1}, ..., S_{cp}$. Similarly, as in the general case we get critical regions

(14)
$$|S_{ci}| > (\sum_{j=1}^{N} (c_{ij} - \bar{c}_i)^2 (N-1)^{-1} \sum_{v=1}^{N} (a_{Ni}(v) - \bar{a}_{Ni})^2)^{1/2} u \left(1 - \frac{\alpha}{2p}\right),$$

(15)
$$|S_{ci}| > (\sum_{j=1}^{N} (c_{ij} - \bar{c}_i)^2 (N-1)^{-1} \sum_{v=1}^{N} (a_{Ni}(v) - \bar{a}_{Ni})^{1/2} u(\frac{1}{2} + \frac{1}{2}(1-\alpha)^{1/p}),$$

(16)
$$|S_{ci}| > (\sum_{j=1}^{N} (c_{ji} - \bar{c}_i)^2 (N-1)^{-1} \sum_{v=1}^{N} (a_{Ni}(v) - \bar{a}_{Ni})^2)^{1/2} (\chi^2_{\alpha}(p))^{1/2},$$

where $u(\cdot)$ is the 100 α % quantile of the normal distribution (0, 1).

As for the comparison of the critical regions (9-10), (12-13), we can easily get the following relations among the approximations of d_1, \ldots, d_r

$$\chi^{2}_{1-(1-\alpha)^{1/r}}(\max_{1 \le i \le r} m_{i}) \ge \chi^{2}_{1-(1-\alpha)^{1/r}}(m_{\nu}),$$

$$\chi^{2}_{\alpha/r}(\max_{1 \le i \le r} m_{i}) \ge \chi^{2}_{\alpha/r}(m_{\nu}) \ge \chi^{2}_{1-(1-\alpha)^{1/r}}(m_{\nu}), \quad \nu = 1, ..., r$$

36

Thus the critical region (13) is larger then (9), (10) and (12). The comparison of (11) with the other critical regions is more complicated, e.g.

if
$$\alpha \leq 0.05$$
, $p - \max_{1 \leq i \leq r} m_i \geq 5$ then $\chi^2_{\alpha}(p) > \chi^2_{\alpha/r}(\max_{1 \leq i \leq r} m_i)$,

if $\alpha = 0.05$, p = 22, $\max_{1 \le i \le r} m_i \le p - 2$ then $\chi^2_{0,05}(p) < \chi^2_{1-(0,95)^{1/r}}(\max_{1 \le i \le r} m_i)$. When $m_i = 1$ then the largest critical region is (15).

Procedure III. Define

$$Q_{cv}^{*} = \mathbf{S}_{cv}^{*'} (\operatorname{var}_{p} \mathbf{S}_{cv}^{*})^{-1} \mathbf{S}_{cv}^{*}, \quad v = 1, ..., r,$$

where

$$\begin{split} \mathbf{S}_{c1}^{*} &= \mathbf{S}_{c}^{1}, \\ \mathbf{S}_{cv+1}^{*} &= \mathbf{S}_{c}^{v+1} - \operatorname{cov}_{p}\left(\mathbf{S}_{c}^{v+1}; \mathbf{S}_{c}^{1}, ..., \mathbf{S}_{c}^{v}\right) \left(\operatorname{var}_{p}\left(\mathbf{S}_{c}^{1\prime}, ..., \mathbf{S}_{c}^{v\prime}\right)'\right)^{-1}. \\ &\cdot \left(\mathbf{S}_{c}^{1\prime}, ..., \mathbf{S}_{c}^{v\prime}\right)', \quad v = 1, ..., r - 1, \\ &\operatorname{cov}\left(\mathbf{S}_{c}^{v+1}; \mathbf{S}_{c}^{1}, ..., \mathbf{S}_{c}^{v}\right) = \left(\operatorname{cov}_{p}\left(\mathbf{S}_{c}^{v+1}, \mathbf{S}_{c}^{1}\right), ..., \operatorname{cov}_{p}\left(\mathbf{S}_{c}^{v+1}; \mathbf{S}_{c}^{v}\right)\right). \\ \cdot \operatorname{var}_{p} \mathbf{S}_{cv+1}^{*} = \operatorname{var}_{p} \mathbf{S}_{c}^{v+1} - \operatorname{cov}_{p}\left(\mathbf{S}_{c}^{v+1}; \mathbf{S}_{c}^{1}, ..., \mathbf{S}_{c}^{v};\right) \left(\operatorname{var}_{p}\left(\mathbf{S}_{c}^{1\prime}, ..., \mathbf{S}_{c}^{v\prime}\right)'\right)^{-1}. \\ &\cdot \left(\operatorname{cov}_{p}\left(\mathbf{S}_{c}^{v+1}; \mathbf{S}_{c}^{1}, ..., \mathbf{S}_{c}^{v}\right)\right)', \end{split}$$

with $\operatorname{var}_{p}(\ldots)$ and $\operatorname{cov}_{p}(\ldots)$ denoting the corresponding submatrices of $\operatorname{var}_{p} \mathbf{S}_{c}$.

The assertion A implies that the asymptotic distribution of S_c (under hypothesis H and assumptions a, b, c) is multivariate normal with mean 0 and the variance matrix

$$\operatorname{var} \mathbf{S}_{c\nu+1}^{*} = \operatorname{var} \mathbf{S}_{c}^{\nu+1} - \operatorname{cov} \left(\mathbf{S}_{c}^{\nu+1}; \mathbf{S}_{c}^{1}, ..., \mathbf{S}_{c}^{\nu} \right) \left(\operatorname{var} \left(\mathbf{S}_{c}^{1}, ..., \mathbf{S}_{c}^{\nu} \right)' \right)^{-1} . \\ \left. \left(\operatorname{cov} \left(\mathbf{S}_{c}^{\nu+1}; \mathbf{S}_{c}^{1}, ..., \mathbf{S}_{c}^{\nu} \right) \right)' \right.$$

and Q_{cv}^* has asymptotically χ^2 -distribution with m_i degrees of freedom. By direct computations we get that $\mathbf{S}_{c1}^*, \ldots, \mathbf{S}_{cr}^*$ are asymptotically independent and thus so are $Q_{c1}^*, \ldots, Q_{cr}^*$.

Using these arguments one can assert that

$$\lim_{c} P(Q_{cr}^* < \chi_{1-(1-\alpha)^{1/r}}^2(\max_{1 \le i \le r} m_i), \quad v = 1, ..., r) \ge$$

$$\ge \lim_{c} P(Q_{cv}^* < \chi_{1-(1-\alpha)^{1/r}}^2(m_v), \quad v = 1, ..., r) = 1 - \alpha.$$

Thus the critical region for testing the hypothesis H_{ν} against A_{ν} can be chosen in either of the following ways:

(17)
$$Q_c^* > \chi_{1-(1-\alpha)^{1/r}}^2 (\max_{1 \le i \le r} m_i),$$

(18)
$$Q_c^* > \chi_{1-(1-\alpha)^{1/r}}^2(m_v) \,.$$

Obviously, the critical region (18) contains (17).

We reject the hypothesis H_0 if we reject at least one of H_1, \ldots, H_r .

If $m_i = 1$, i = 1, ..., p the test procedure can be based on the statistics S_{cv}^* , v = 1, ..., p. We reject the hypothesis H_v if

$$|S_{cv}^*| > (\operatorname{var} S_{cv}^*)^{1/2} u(\frac{1}{2} + \frac{1}{2}(1 - \alpha)^{1/p}).$$

References

- Gupta, D. S.: On a probability inequality for multivariate normal distribution, Aplikace Matematiky 21 (1976), 1-4.
- [2] Hušková, M.: Multivariate rank statistics for testing randomness concerning some marginal distributions, J. Multivariate Anal. 5 (1975), 487–496.
- [3] Jensen, D. R.: The joint distribution of Friedman's χ_r^2 -statistics, Ann. Statist. 2 (1974), 311-323.
- [4] Jensen, D. R.: The joint distribution of traces of Wishart matrices and some applications, Ann. Math. Statist. 41 (1970), 133-145.
- [5] Krishnaiah, P. R.: On the simultaneous ANOVA and MANOVA tests, Ann. Inst. Statist. Math. 17 (1965), 35-53.
- [6] Krishnaiah, P. R.: Simultaneous test procedures under general MANOVA models. In Multivariate Analysis – II (P. R. Krishnaiah, Ed.) pp. 121–143, Academic Press, New York (1969).
- [7] Roy, J.: Step-down procedure in multivariate analysis, Ann. Math. Statist. 29 (1958), 1177-1187.
- [8] Roy, S. N., and Gnanadesikan, R.: Further contributions to multivariate confidence bounds, Biometrika 45 (1957), 581.
- [9] Sen, P. K. and Krishnaiah, P. K.: On a class of simultaneous rank order tests in MANOCO-VA, Ann. Inst. Statist. Math. 26 (1974), 135-145.
- [10] Šidák, Z.: Rectangular confidence regions for the means of multivariate normal distributions, J. Amer. Stat. Assoc. 62 (1967), 626-633.

Souhrn

MARIE HUŠKOVÁ

SIMULTÁNNÍ PROCEDURY POŘADOVÝCH TESTŮ

Nechť X_j , j = 1, ..., N jsou nezávislé p-rozměrné náhodné vektory se spojitou distribuční funkcí F_j . V článku jsou navržena tři testová kritéria založená na pořadích pro test nezávislosti marginálních rozdělení X_j na indexu j. Výchozím bodem pro konstrukci testových kritérii byl článek P. R. Krishnaiaha (Ann. Inst. Statist. Math. 17, 35–53, 1965).

Author's address: RNDr. Marie Hušková, CSc. Matematicko-fyzikální fakulta Karlovy univerzity, Sokolovská 83, 186 00 Praha 8.