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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

SIMULTANEOUS RANK TEST PROCEDURES 

MARIE HUSKOVA 

(Received February 15, 1978) 

1. INTRODUCTION 

Let Xj = (Xlj9 ..., Xpj)
f
9 j = 1, ..., N, be independent p-dimensional random 

variables with continuous distribution functions. Consider the hypotheses of random
ness associated with some marginal distributions: 

Hv : F](xv) = Fv(xv), j = l , . . . , N , v = 1 , . . . , r , 

where FJ(xv) is the marginal distribution of the subvector Xv, v = 1, ..., r, x 1, ...,x r 

is a partition of the vector x, i.e., x = (x 1 ' , ..., x r ') ' . We are interested in testing 
r 

hypotheses Hl9 ..., Hr and H0 = f] Hv against alternatives Al9 ..., Ar and A0 = 
r v = l 

= U Av, resp., where Av : FJ(xv) = Fv(xv; 0V), j = 1, ..., N, v = 1, ..., r, with 0j = 
v = 1 

= (9j9 ..., 0rj'y being a vector of unknown parameters. 
Krishnaiah and some others (see [5] —[8]) developed several simultaneous test 

procedures for the classical multivariate normal theory. As for simultaneous rank 
test procedures, Krishnaiah and Sen [9] dealt with this problem for some MANO-
COVA models, Jensen [3] for multivariate random blocks, Huskova [2] suggested 
a method for the problem considered in the present paper (see method I below). 

Here we give three test procedures analogous to those proposed by Krishnaiah 
in [5 — 6] and based on the asymptotic distributions of quadratic rank statistics (for 
definition see (3) below). 

Put 

(1) Sc = (Scl9...9Scp)', 
N 

(2) Sci = X (Cij - ct) aNi(Rij) , i = 1, ..., p , 
1-i 

with Rjj being the rank of Xtj in the sequence Xil9 ..., XiN9 c{j regression constants, 
N 

aNi(j) scores and ct = N"1 ^ c{J. Denote by Sv the subvector of Sc corresponding 
1 = i 

to Xv, v = 1, ..., r. Define 

(3) Qc~ S'c(vzrpSc)-lSe9 

(4) Ql = S r ( v a r p S ; ) - 1 S c
v , v = l , . . . , r , 
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where the matrix varp Sc is regular with elements 
N N 

(N - 1 ) _ 1 X(c 0- ~ ct)(ctJ - ct) X (aNi(Rim) - aNi)(aNt(Rtm) - aNt) 
j = 1 m = 1 

if 

and 

х,1е1к, к = 1, ..., г , 

Z (c«7 ~ £») (ctj ~ f̂) (am(^u) ~ «ivO (aNt(RtJ) - aNt) 
j = i 

if ielk, t$Ik, k = l,...,r, 

where Ix, ..., / r is the partition of the set / = {1, .. . , p] considered in hypotheses Hv 
N 

and varp Sc is the submatrix of varp Sc corresponding to Sv and aNi = N~l ]T aNi(j). 
j=i 

Denote by mv the number of components of xv, v = 1, .. . , r. 

We shall impose usual conditions on scores, regression constants and the matrix 

Г. 

a. The scores aNi(j) are generated by a nonconstant square integrable functions 

(pi9 i = 1, ..., p, i.e., 
•I 

(<Pf(w) - ^/([uN] + l )) 2 du -> 0 for N -> oo, i = 1, ..., p . 
I o 

b. The regression constants fulfil: 

(5) max (Cij - c)2 ( % (ctj - ctf)~1 -> 0 , i = 1, ..., p . 
l ^ j ^ i V j=i 

c. The matrices varp Sc are regular and any accumulation point of the set 
{E varp Sc; c^'s satisfy (5)} is a regular matrix. 

In the sequel we shall often use the following results: 

A. Under hypothesis H0 and assumptions a, b, c the asymptotic distribution of 
Sc is multivariate normal $1(0, var Sc), where var Sc is the variance matrix of Sc 

under hypothesis H0 (see [2]). 

B. Under hypothesis H0 and assumptions a, b, c the asymptotic distributions 

of Qc and Q], ..., Qr

c are / 2 with p and m 1 ? ..., m r degrees of freedom, resp. (see [2]). 

C Under hypothesis H0 and assumptions a, b, c the matrix SCSC has asymptotically 
central Wishart distribution with 1 degree of freedom and positive definite matrix 
var Sc (it follows from A). 

D. Under hypothesis H0 and assumptions a, b, c the joint asymptotic distribution 
of Qc, ..., Qr

c is the generalized multivariate ^-distribution defined by Jensen in [4], 
where the corresponding density is derived (it follows from C and [4]). 

E. For an arbitrary subvector Sc of Sc the relation 

("'S?)2 

' — m a v _> L:_Z S*'(var, Sc* * . 
i*o u' varp Sc u 
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where u are nonzero real vectors, holds and thus 

S*'(varp S C V ST g Qc 

(as follows by Schwarz inequality). 

F. Bonferroni inequality: For arbitrary events A1; ..., Ar the inequality 

p(nA,)s i - t ( i -p(^0) 
is true. 

G. Let a random p-vector Y = (Y1? ..., Yp)' = (Yl\ ..., y r ') ' have the normal 
distribution 91(0,1), where 

* - ( ? • : • ' ) . 
\ 2 r l , ..., 2 r r j 

r 

Assume that there exist vectors b- with mf components, i = 1, ..., r, ]T mf = p, 
/ = I 

such that 
(6) I l 7 = b # , / 4 - j , i,j= 1, . . . , r , 

(7) X,-,- - b-b; ^ 0 , / = 1, ..., r , 

then for arbitrary convex sets Cu ..., Cr symmetric about origin, Ct c RmJ the 
inequality 

P(r 'eC l . , / = l , . . . , r ) ^ n P ( y ' e C I ) 
i— 1 

holds (see [1]). 
The inequality always holds for mi = 1, / = 1, ..., r (see [10]). 

2. TEST PROCEDURES 

Procedure I. The author [2] proposed the test procedure with critical regions 

(8) Qc > XI{P) , 

where xl{p) *s 100a% critical value of the central ^-distribution with p degrees of 
freedom. This test can be used for a class of hypotheses that contain H0 as a sub-
hypothesis, e.g. for hypothesis that all X^, j = 1, ..., N, have the same distributions. 

Procedure II. We base the test procedure on the statistics Q]9 ..., Qr
c given by (4). 

We reject the hypothesis Hv if 

Q: > dv, 

where the d'vs are chosen so that 

\\m?(Ql < dV9 v = V ..., r) = 1 - a . 
c 

The total hypothesis H0 is rejected if at least one of the hypotheses H1? ..., Hr is 
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(10) Qv

c > x2_(i_a)iл-( max m) . 

rejected. The optimal choice of the d'vs is not known. Consistently with the classical 
normal case the values dl9 ..., dr are chosen either to be equal (i.e. d1 = ... = dr = d) 
or the individual critical regions are of equal sizes (denote them by d*, ...,d*). 
When mv = m, v = 1, ..., r then d* = dv, v = 1, ..., r. To find d, d*, ..., d* with 
the requested properties is also very difficult for the asymptotic distribution of 
(Ql, ..., Q[) includes numerous parameters. This problem was discussed by Jensen 
in [4] where some approximations are suggested. 

We shall suggest here three approximations of d, d*, ..., d*. First consider the 
approximation of d. Using Bonferroni inequality we get an approximative value 
xlfr ( max m() and the critical region for testing Hv against Av 

1 ^ i ^ r 

(9) Ql > xllr( max m,) . 
1 _ i _ r 

When the assumptions in G are satisfied then the critical region is 

_ ( 1 _ a ) i / , \ 

!_.'_»• 

Utilizing assertion E we get the third possible approximation of d. Then we reject 
the hypothesis Hv if 

( i i ) Q:>XKP)-

Similarly we obtain the approximations of d*, ..., d*. By Bonferroni inequality and 

by G (if possible) we have the critical regions for testing Hv against Av 

(12) Ql > X2«/r(rnv) 

and 

( B ) e ; > z 2 - ( i - a ) . / ^ v ) , 

respectively. 
I fm ; = 1, i = 1, ..., p, the test procedure can be based on the statistics Sci, ..., Scp. 

Similarly, as in the general case we get critical regions 

(i4) \sci\ > (i(Cy - Ciy(N- i)--i(aNi(v) - amyy>u(l- f], 
j=i v=i \ 2pJ 

(15) \Sci\ > ( i (cu - c,.)2 (JV - 1)- 1 £ (am(v) - «N , )" 2 u(i + i ( l - «) 1 / p ) , 
7 = 1 y = 1 

(16) |SC.| > ( I ( c y i - Q)2(iV - l ) " 1 Z(am(v) ~ aNify<2 (xKp))'12, 
j=l u = 1 

where w(-) is the 100a% quantile of the normal distribution (0, 1). 
As for the comparison of the critical regions (9 — 10), (12 — 13), we can easily 

get the following relations among the approximations of dl9 ..., dr 

Xi- ( i-a ) i /r( max mt) = z?_ ( 1_a ) i / ,(mv), 
1 _ i _ r 

X2
alr( max mf) ^ xl,r{™v) ^ Z?-(i..«)i/r(wv) , v = 1, .. . , r . 
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Thus the critical region (13) is larger then (9), (10) and (l2).The comparison of (11) 
with the other critical regions is more complicated, e.g. 

if a ^ 0-05 , p — max mi ^ 5 then xl(p) > xl/X max mi) > 

if a = 0-05 , p = 22 , max mt <£ p - 2 then xl,os{p) < Zi-(o,95)-/r( max /H(). 
H i ^ 1 £ i g r 

When mt — 1 then the largest critical region is (15). 

Procedure III. Define 

e*v = S:v(varpS*)-<S*v , v = l , . . . , r , 

where 

s*, = si, 
S*v+1 = S ; + 1 - c o v p ( S r 1 ; S c

1 , . . . , S c ) ( v a r p ( S c ' , . . . , S c ' ) ' ) - 1 . 

.(SC',...,SC')\ v = l , . . . , r - 1 , 

c o v ( S r 1 ; Sc, ..., Sc) = ( c o v p ( S r S Si), ...,covp(Sr1; Sc)). 

• var, S*v+, = varp S^+ ' - ™ v , (sl+'; s ' , • - -,SC;) (varp (S1 ' , ..., S c ' ) ' )" ' . 

. ( c o v p ( S r ' ; S c , . . . , S c ) ) ' , 

with varp (...) and covp (...) denoting the corresponding submatrices of varp Sc. 

The assertion A implies that the asymptotic distribution of Sc (under hypothesis H 
and assumptions a, b, c) is multivariate normal with mean 0 and the variance matrix 

varSc*v+1 = var s r 1 - c o v ^ 1 ; S 1 , . . . . S c ) (var(S 1 ' , . . . , S*')')-1 . 

.(cov(sr1;SL....s;))' 

and Qcv has asymptotically ^-distribution with mt degrees of freedom. By direct 
computations we get that S c l , . . . , S*r are asymptotically independent and thus so are 

e*„...,e*. 
Using these arguments one can assert that 

lim P(Q* < xl-a-«)i/r( max m,.), v = 1 , . . . , r) ^ 
c 1 ^ i £ r 

^ lira P(Q*. < *, _ ( 1 „ a ) 1 / , . (m v ) , v = 1, . . . , r) = 1 - a . 
c 

Thus the critical region for testing the hypothesis Hv against Av can be chosen in 
either of the following ways: 

(17) g* > x?-(i-a)i/r( max m t ) , 
1 £ i ^ r 

(18) e?>Z?-(i-.)./-('nv). 

Obviously, the critical region (18) contains (17). 

We reject the hypothesis H0 if we reject at least one of Hl9 ..., Hr. 
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If mf = 1, i = 1, . . . , p the test procedure can be based on the statistics S*v, 
v = 1, . . . , p. We reject the hypothesis Hv if 

|S?v |>(varS*)1'Mi + i( l-«) 1 / P )-
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Souhrn 

MARIE HUŠKOVÁ 

SIMULTÁNNÍ PROCEDURY POŘADOVÝCH TESTŮ 

Nechť Xj, j = 1, . . . , N jsou nezávislé p-rozměrné náhodné vektory se spojitou 
distribuční funkcí Fy. V článku jsou navržena tři testová kritéria založená na pořa
dích pro test nezávislosti marginálních rozdělení Xj na indexuj. Výchozím bodem pro 
konstrukci testových kritérii byl článek P. R. Krishnaiaha (Ann. Inst. Statist. Math. 
17, 35-53, 1965). 
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