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SVAZEK 25 (1980) APLIKACE MATEMATIKY člSLO 5 

ALGORITMUS 

45. BAYES FACTOR TEST 

AN ALGORITHM GIVING TABLES FOR A NON-PARAMETRIC TWO-SAMPLE 
TEST OF THE BAYESIAN DISCRIMINATION POWER OF AN OBSERVED FACTOR 

Ing. ZDENČK REŽNÝ, C S C , 

Ústav biofyziky a nukleární medicíny Fakulty všeobecného lékařství Karlovy university, 
Salmovská 3, 120 00 Praha 2 

The algorithm suggested in this paper concerns the Bayesian statistical decision 
problem (see [ l ] , §8.8) with the parameter space Q = {wl,\v2}, decision space 
D = [d_, d2}, some loss function L(wt, dj) and decision functions defined by 

0 ) S(x; i9c) = dt for x g c , 

= c/3_/ for x > c (i = 1, 2; c real). 

The only assumed known property of the two conditional distribution functions of 
the observed variable X is their continuity, and therefore they are replaced by the 
sample distribution functions from random samples of sizes n[\] and n[2] made 
under the conditions W = wx and w2 respectively; thus, the resulting Bayes risk is 
a random variable (which we shall call sample B. risk), and its distribution function, 
under the hypothesis H0 that both conditional distributions are identical, can then 
be looked on as the significance level in testing the contrast between the two samples, 
or, in other words, the discrimination power of the variable X. 

The apriori probabilities and loss values are postulated to be fractions with 
integer numerators nprob[i] ^ 0 and nloss[_i,j_\ respectively so that 

(2) Ci : £2 = nprob\\] : nprob\2] {£_ + £2 = 1), 

L(wh dj) = nloss[i,j]jdloss (i,j = \, 2) , 

and dlOss > 0. The algorithm, without exercing any side effect on the input para
meters, calculates first the Bayes risk apr Q based exclusively on the apriori proba
bilities, i.e. without considering the observation X, and the number imax of values 
O[/] which have positive probabilities of being taken on by the sample B. risk. In 
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the trivial case (£,• = 0 or //[/] = 0 for some / or one of the decisions d{, d2 is 
inadmissible or both are equivalent) imax turns out to be zero and the algorithm stops 
working. Otherwise, there are calculated the g\i] (O[l] < O[2] < . . . < g\imax]) 
and the probabilities a[/] that, under the above hypothesis H0, the sample B. risk 
will not be greater than g\i] (/' = 1, ..., imax; a\imax] = 1). The a's are fractions 
with integer numerators noc\i] and integer common denominator da, which are also 
given. Finally, integer quantities r[j1J2](\ = r\jl9j2] = r[t/[1] - j \ , n\2]- j2] = 

= imax -f 1 for jk = 0, ..., n\k]; k = l, 2) are calculated for the purposes oi' 
processing a single case, i.e. for determining the subscript / of the sample B. risk g\i] 
and its significance level a[/] or, more generally, the bounds within which it lies. 
Namely, if {xk: 1 ^ k ^ /} is the ordered set (xx < x2 < . . . < xt) of mutually 
different measurements from the combined sample (of n\l] + n\2] values of X) 
and mJk the number of such values from the j-th sample which are not greater than xk, 

*]} = 

™jo = = o( j = l ,2 ; l ^ k ^ /), the relations 

(?) ' i = Min Min {r\mìk, m2k^{], r\mík„íђ m 
1 źkźl 

ѓ= ì ѓ Һ ~ ^ І П Г\m\k-> m2k] •> 
1 йkйl 

i ^ imax , ix ^ 1 , i2 = imax 4- 1 

hold. The case it < i2 occurs if and only if there are some mixed ties in measured 
values of the combined sample, or, equivalently, if mj k_1 < mJk for some k and 
both j = 1, 2. (With probability one, some higher precision of measurements of the 
same values of X would then lead to the equality ix = i2.) If i2 = imax + 1, then 
the Bayesian decision rule constructed on the basis of the actual measurements would 
be worse than that in the case of the most unfavorable arrangement of the combined 
sample values without ties. 

The algorithm is based on the familiar Bayesian decision calculus (see [ l ] , loc. cit.) 
as well as on some elementary number theory; moreover, the problem of evaluating 
the probabilities a[/] could be solved as a slight generalization of some discrete 
random walk models treated in [2], Ch. III. 

procedure BAYES FACTOR TEST(nprob, nloss, dloss, n) 

results: [apr rho, imax, rho, nalpha, dalpha, alpha, r); 

integer imax, dalpha; real dloss, apr rho; array rho, alpha; 

integer array nprob, nloss, n, nalpha, r; 

begin 

integer i,j, k, m, p, q; real a, b; integer array 5, v, w, x\\ : 2], d\— 1 : n\\], — 1 : «[2]], 
h\\ : 2, 0 : if n\\] > 2 then n\\] else 2]; 

procedure E(j, k); integer j , k; for / : = 1, 2 do j : = k; 

procedure A D D(/0, i 1, jO); 

391 



value /"O, /I; integer iO, /l,j '0; 

begin integer j ; 

for / : = iO step 1 until /1 do 

for j := jO step 1 until //[2, /] do d[ij] := d[i - \j] + d[/\ j - 1] 

end ADD; 

imax := 0; b := (>?OrOb[l] + /?prOb[2]) x d/O,s\s; 

for j : = 1, 2 do 

begin £(//[/ , j], r/prOb[/] x nloss[ij]); x[j] := b[Vj] + h[2j] end; 

apr rho := x[if x [ l ] < x[2] then 1 else 2]/b; 

E(w[/], //[3 - /] x ( 4 i , 3 - i ] - 4 i , i ] ) ) ; 
if vv[l] x vv[2] > Othen 

begin comment non-trivial case; 

j:= w[l] ; k:= w[2]; 

for / : = j while k + 0 do begin j : = k; k : = i — i — j x j end; 

E(w[i], w[i] + j ) ; 

a := abs(j)j(b x r/[l] x /i[2]); 

b := (iff > 0 then b[l, 1] + b[2, 2] else fc[l, 2] + b[2, l])/b; 

k : = - 1; 

for / : = 1 step 1 until w[2] do 

begin k := k + w[l] ; j := k -r w[2]; if k = j x M^[2] then go to A1 end; 

Al: x [ l ] := 0; 

x[2] :=42]; 

5 [ l ] := i ; 

£(v[i], w[3 - /] - ,[/]); 

forj := 0 step I until n[l] do begin J[j, - 1 ] := 0; E(h[ij], x[/]) end; 

for j := 1 step 1 until /i[2] do d[— \j] := 0; 

4-1,0 ] := 1; 
ADD(0, n[\], 0); 

dalpha := d[w[l], «[2]]; 

for k : = 0, k + 1 while m > 0 do 

begin 

if x[2] > /?[2] then go to A2; imax := imax + 1; j := x[2]; 

for / := x [ l ] , / + w[2] while / ^ n [ l ] A j ^ n[2] do 
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begin 

p : = n[\] - /; q := n[2] - j ; r[ij] : = r[p, O] : = imax; 

d[ij] :=d[p,q]:=0; h[2j] := h[2j] - 1; /.[l,p] : = ft[l, p] + V 

j:=j + w [ l ] 

end /; 

if O > x[2] then p : = w[l] - (k - x[2] x w[2]) ~ w[\]; 

ADD(x[l] + 1, p - l ,x [2]) ; 

ADD(p, w[l], h[l, /]); 

m : = d [ n [ 1 ] , n [ 2 ] ] ; 

rhO[/max] := a x k + b; 

nalpha[imax] := dalpha — m; 

alpha[/max] : = 1 — mjdalpha; 

A2: if x [ l ] < v[l] then F(x[/], x[/] + s[i]) else F(x[/], x[/] - v[i]) 

end k; 

for / : = 0 step 1 until n[\] do 

for j : = h[\, i] step 1 until /?[2, /] do r[ij] := imax + 1 

end non-trivial case 

end BAYES FACTOR TEST 

The application of the algorithm is connected with the single constraint that the 

binomial coefficient [ L J .- -, L J ), which gives the value of da, will not exceed 
V "M / 

the maximum integer permitted by the individual compuitng device. Further, as to 
setting the upper subscript bound in declarations of the actual parameters cor
responding in the main program to Q, a and «a, we may use the inequality 

(4) imax S ("[1] + 1)("[2] + 0/2 

or, if desirable, a stronger upper estimate, which is established in the following 
manner: Let j i = nprob[f] n[3 — /] (nioss[i, 3 — /] — nloss[i, /]) for i = 1,2. 
If jj2 :g 0 then imax = 0 (trivial case). Otherwise, let kf denote positive integers 
with the greatest common divisor one and such that k1 :k2 = j i :j2. Then, if 
ktn[i] ^ k3^tn[3 - /] and h = Min {kt, [fel-(n[i] + l)//<3-,] + 1}, it may be 
shown that 

(4') ř m a x ^ A ( n [ i ] + l ) - Q ( A 3 _ ; + l)/fc;. 
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Check example: Given values according to following table 

nprob[i] 

5 
15 

nloss[i, j] 
n[i] 

7 = 1 j= 2 

; 5 15 4 
4 í 6 

L_ __ __ 

the statement BÄYES FACTOR TEST (nprob, nloss, 10, n, apr rho, imax, rho, 
nalpha, dalpha, alpha, r) leads to the results 

apr rho = .425 , imax = 12 , dalpha = 210 , 

i 
| rho[il 

nalpha[i] 

1 
.2000 

2 
.2375 

3 
.2625 

4 
.2750 

5 L iL 12 
.0125i4~ .2375 

2 
10 

3 
20 

4 ! 5 
38 I 62 

alpha\f\ = nalpha\i\\2\0, 

'['./] 

i= 0 

j=0 

13 

1 2 3 4 5 6 

i= 0 

j=0 

13 12 9 6 4 2 1 
1 12 13 13 11 8 5 3 
2 7 10 13 13 13 10 7 
3 3 5 8 11 13 13 12 
4 1 2 4 6 9 12 13 

6 7 8 9 10 11 12 
93 116 146 174 194 206 210 

The algorithm has been tested in its transcription from the presented version 
into FORTRAN IV and implemented in the Institute of Biophysics and Nuclear 
Medicine, Faculty of General Medicine, Charles University for the computer 
ICL-4/72. 

[ll M. H. DeGroot: Optimal Statistical Decisions, McGraw-Hill Co., New York 1970. 
[2l W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1, 3rded., 

J. Wiley, New York 1967. 
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