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OF IMPLICIT ORDINARY DIFFERENTIAL EQUATIONS

ZDZISEAW JACKIEWICZ, MARIAN KWAPISZ

(Received Januar 15, 1979)

1. INTRODUCTION

Consider the initial-value problem for the implicit ordinary differential equation
(IODE)

(1) V' (x) = f(x, y(x), y'(x)), xel:=[xg,x0 + a],
¥(x0) = yo -
The initial-value problem of the form
Fx, y(x),'(x)) = 0, xel,
¥(xo) = o

under a suitable assumption on F can be reduced to the problem (1).

Assume that B is a Banach space with a norm H . H and
(H;) the function f:I x B x B— B is continuous and satisfies the Lipschitz
condition

”f(x7 Y, Z) _f(x* V. Z)H = Ll“,\" - f” + LZHZ — Z“

withsome L, 2 0,0 £ L, < 1, forxel, y, , z, Z € B. The problem (1) has a unique
solution Ye C'(I, B)(C'(I, B) denotes the space of all functions from I into B
with a continuous first derivative). Indeed, in view of (H,) and the Banach contraction
principle there exists a function g :1 x B — B such that (1) is equivalent to the
probiem

0) YW= e, xel,
)'(xo) =DYo-
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It is easy to check that g is continuous and satisfies the Lipschitz condition with the
constant L;[(1 — L,). From this existence and uniqueness follow by the well known
Picard theorem (see for example [2]). A straightforward proof of this fact is also
quite easy. Put y'(x) = z(x). Then (1) is equivalent to the equation

2(x) = f(x, yo + v[ z(s)ds, z(x)), xel,
which can be considered in the Banach space C(I, B) with the norm

ci={exp(=A(x = xo)) |z(x)]| : xel}, Z>0.

By (H,), the operator defined by the right hand side of the above equation is a con-
traction for sufficiently large 2. Now the Banach contraction principle proves our
assertion.

Existence and uniqueness of the solution of (1) is implied also by many more
general results published before (see for example [5]).

Note that although the problem (1) can be reduced to (2), the function g appearing
in{(2) is not known explicitly. Therefore (1) cannot be solved numerically by solving
2).

For computing a numerical approximation to the solution of (1) a uniform step
size h is used. Put x; = xo + i, i =0,1....,N, Nh = a, I, := [0, ho], ho > 0.
Suppose we are given functions o, : A" — R, s = 0,1, ..., k,and ¢, : I*'' x B*"! x
x B**Y x I, > B, ie# ={0,1,...}. Assume that

1
| >
iz
I

(H,) the family {¢; : i € 4"} is equicontinuous;
(H3) the family {¢, : i e #7} satisfies the Lipschitz condition (uniformly in i)
“(j)i(uo, ceey Upy Doy <oy Uy Wos vey Wy 1) —

— (f)i(uo, ooy Upy Doy ooy s WO’ oo W h)“ =
X k
st( Sl -l 43 -5,
j=0 j=0

foru;el, v;, v;, w;, w;€B,j=0,1,....,k, hel,, iet;
(H,) the functions «;, j = 0, 1, ..., k, are bounded and o, = 1.

For the numerical integration of the problem (1) consider a general nonstationary
quasilinear multistep method of the form

k
(3) .Zoas(i) YVits = h¢i(xi+k’ ces Xis Vidto o5 Vis Zits o5 Zis h) 5

Zitk =.f(xi+k’yi+kazi+k)s

i=0,1,...,N — k, where y;, z, for s =0,1,..., k — 1 are given. Here y; and z;
are numerical approximations to Y(x;) and Y’(x;), respectively (Y is the solution

of (1)).
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A special case of the method (3), namely the Euler method, was considered by
Mamiedow [8]

Note that if the function f appearing in (1) does not depend on y’ then (3) reduces
to the method considered in [4].

In this paper a general convergence theorem is stated for the method (3}. Next
we quote special cases of (3), namely the linear multistep methods, Runge-Kutta
methods, Rosenbrock methods and second derivative methods. The theory of these
methods in the case of ordinary differential equations (ODEs) may be found in [3].
[6], [7]; the second derivative methods are considered in [1]. In this paper it is
shown that all these methods can be adapted in a simple way to the case of IODEs.
Moreover, the resulting methods are of the same order as the corresponding methods
for ODEs.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF (3)
Later on we shall need the following

Lemma 1. Assume that G : B x B — B satisfies the inequality

(4) [G(x, y) = G(%, P)| = ¢.max {|x — x|, [y - 7|}

with some 0 < g < 1. Then the sequences
Xn+1 = G(xm Xn) s Xo € B >
f”+1 = G(in’ Xn—l)s }NCO’ )Ncl EBy

are convergent fo the unique solution x* of the equation x = G(x, x). Moreover,

() |

5o =2 £ =1y = x,
l—q

s ”203

Xn X2 — Xy

- x*H < M)g max {‘

1 —Jq

Proof. The existence of a unique solution x* of the equation x = G(x, x), the
convergence of {x,,};,";o to x* and the inequality (5) follow from the Banach contrac-
tion principle. To prove that the sequence {)?,,};’,":0 is convergent note that

(6) |

R H\Tl — fon} , nz=1.

n/2

IIA

max {

X;Z_il

”fnn - inH q X - .‘?OH} for n even,

’

(n—1)/2

IIA

q

)

Ixn+1 — Xn

max {|[%, — %]

%y — %||} for n odd.

These inequalitics leads to

|

2
(u~1)/21 - qm/

1 — q1/2

IIA

ill*r"l - ')‘éll” q max {HXZ — X || X1 T XO“}
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for all neA”, m Z n. This proves the convergence of {%,},_,. Now if m passes
to the infinity we obtain (6). This completes the proof.

Rewrite the system (3) in the form

Vit = l//(yi+k’ Zi+k) >

(7)

i=0,1,...,N — k, where

Zivk = F(yi+k’ Zi+k) s

-1
l//(yi+k’ Zi+k) = Zoas(i) Yigs T h¢i(xi+ks e Xy Vit coos Yis Zivko 05 Zi h) >
s=

F(yi+k’ Zi+k) = f(xiwcs Vit Zi+k) .
We have the following
Lemma 2. Assume that (H,), (H,) and (H;) hold. Then the system (3) has a unique

solution (y;yy, z;+x) for sufficiently small h. This solution can be determined as
the limit of the simple iterations

[n+1] __ [n] [n] [0]
(8) Vit ‘//(yl':rk s I'Lk) s Yivk = Yivk—1>
[n+1] _ [ [n] [0]
Zi%k F(yx'gk 2 Zivk) s Zidk = Zitk=1 >

n=0,1,..., oras the limit of the modified iterations

sin+1] [n] ~["] ~[01]
Vitk '//(,V.nwc, i+k)>  Vitk = Vitk-1>

©)

sn+1] _ [n+1] z[n] 5001 _
Zitk F( Yit+k "1+k) Zitk = Zitk—1>

n=20,1,...
Proof. Clearly (7) is equivalent to the system
Virw = Y(Vive Zivi) »
Zivk = F\W(Vivio Zivn)s Ziv) -
Define a function G : (B x B) x (B x B) - B x B by
Gl 0) = (V). FG(0), 1)

for u,ve B x B, where 1 : B x B — Bis given by A(u) = uy, u = (uy, u,)’, u, uy €
€ B and T, stands for transportion. Now the system (10) can be written in the form

(”) Uivpg = G( Ujppo U Hk)v

where ., = (Visr Zi4x)'- It follows from (H,) and (H;) that for sufficiently small
h the function G satisfies the condition (4), so the equation (11) has a unique solution

(10)
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(¥i+4 Zivx)- This solution can be determined by two-point iterations

W = Gl W),
u[.'er]k = (}’i+k—1» Zi+k-1)T P
A = (O 20, FOI 2

n =0, 1,..., which correspond to the simple iterations defined by (8), or by the
simple iterations

~| 1 ~ ~

A = G, 7l

~[0] _ T
Uiyk = (yi+k—1a Zi+k—1) >

n =0, 1, ..., which correspond to the modified iterations defined by (9). Now Lemma
2 follows from Lemma 1.

Remark 1. In view of the estimates given in Lemma 1 we can expect that in order
to find a solution of (3) it is better to use the modified iterations defined by (9)
(they should converge more rapidly).

Remark 2. If the functions ¢;, i € A", appearing in (3) do not depend on y;,
z;4x (this corresponds to the explicit methods for ODEs), the system (3) becomes
simpler. In this case y;,, is given explicitly by the first equation and z,,, is uniquely
determined by the second equation.

3. CONVERGENCE, CONSISTENCY AND STABILITY
Similarly as in the case of ODEs (see [4]) we introduce
Definition. The method (3) is convergent to a solution Y of (1) if max {

— ¥,| :0 = s £ N} —>0as h - 0. The order of convergence is p if max {
— 30 s <N} =0(h?) as h 0.

Y(x,) —
Y(x,) —

Definition. The method (3) is consistent with the problem (1) on the solution Y if

™M=

a,(i) Y(x + sh) = h¢(x + kh, ..., x, Y(x + kh), ..., Y(x),
0]

]

s

Y'(x + kh), ..., Y'(x), h) + hn(x, h, i)
and n(h) = 0 as h — 0, where n(h) is defined by
n(h) == sup {n(x, h,i)| :xe[xg,xo + @ — kh], 0 i< N —k}.
The method (3) is of an order p if n(h) = O(h”).

We have the following
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Theorem 1. Assume that Y # 0, (H,) and (H,) hold. Then the method (3) is cons-
sistent with the problem (1) on the solution Y if and only if
k

(12) Toi)=0, ied,
s=0
and

(13) sgk:os a (i) f(x, Y(x), Y'(x)) = ¢pi(x. ..., x, Y(x), ..., Y(x),Y'(x),..., Y'(x),0),
for xel, ieAN.

The proof of this theorem is almost identical to that in the case of ODEs (see [4])
and is therefore omitted.

Remark 3. It is obvious that (13) holds if

k
ZOS a (i) f(x, 9, 2) = ulx, .., x, ¥ ooy ¥, 2,00, 2, 0)

for xel, ie# and for any (y, z) belonging to a set 2 = B x B which contains
the values of (Y, Y").

To introduce the definition of stability of the method (3) we need some notions
from the theory of recurrent equations. All these notions can be found in [9] or
in condensed form in [4].

Definition. The method (3) is stable if the trivial solution of the scalar recurrent
equation

(14)

is uniformly stable.

M=

oi)ciys =0, i€,

i}

s=0

Remark 4. In the case when the method (3) is stationary, i.e. o, s = 0, 1, ..., k,
do not depend on i, the stability defined in this way is equivalent to the well known
root condition. This means that no root of the polynomial

k
p(2) = Yol
s=0
has modulus greater than one and every root with modulus one is simple.

In the proof of the convergence theorem the lemma given below plays an important
role (see [4]).

Lemma 3. Assume that the trivial solution of (14) is uniformly stable. Then there
exists a constant C > 1 such that every solution of the equation

k
Zas(i)di+s= hiv iE-/V,
s=0
(considered in the space B) satisfies the inequality

i—-1
max |d;,| < C[osTff_l“dsu +s;)||hs||], e .

-1 0<sgk—1

(we set ;::0: 0).
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4. THE CONVERGENCE THEOREM

Let (§;, Z;) denote the solution of the system
K
Z, ()f’Hs = h¢'(xi+kv coos Xy Viteo ooos Vio Zigps oo 24 h) + p,(-i),( s

(1s)

Zivk f(xl+k Vit 2 1+k)+pz+ka

i=0,1,...N — k, where j, =y, Z, =z for s=0,1,....,k — 1. Here p{ =
=+ q(“ j=1,2,1 1%, are local round-off errors and ¢{", 4* arise as

a result of the fact that the system (3) cannot be solved exactly. We have r{") =
= =40 =¢® =0 for s =0,1,...,k — |. Denote the global error of the

method (3) at the point x; by ¢; := Y(x;) — §,, i = 0,1, ..., N. Put
p¥ 1= max [pP|, j=1,2,
0sEN

= Y’(xi) —Z;, i=0,1,...,N.

We have the following

Theorem 2. Suppose that

1° the conditions (H;)—(Hs) hold,

2° the method (3) is stable and consistent with (1) on the solution Y,

=o(1), max [Y'(x,) =z =o(1), p =o(h), p? =
0<s<k—1

3°  max HY(x — v,
0<s=sk—

= o(]) ash - 0.

Then the method (3) is convergent to the solution Y of (1), i.e. lim max H Y(x,) —
-y O h—>0 0<ss<N

Proof. By consistency,
(16) é:o (1) Y(xi0g) = hi(Xispo oo X0 Y(Xi44), -, Y(x,),
Y'(Xi14)s - Y(x5), h) + hn(x;, b, D).

Subtracting (15) from (16) we get

(17) Y i) orvs = by + (i i) — 0%
i=01,..,N —k, vsv;(;re

Vii= Gl(Xiv o Xi Y(Xigi)s oo Y(X0), Y(Xi4a) ooy YV(x,), B) —
— PiXitkr o es Xis Fiktor o3 Vi Zivsoo o-or Zis h) .
Define e;, i =0,1,...,N — k + 1, by e; := max “a,HH Then “g_‘““ < e, for

0<s<k—1

j=0,1,.., k=1, 5s=01,..,N—k+1, and [eg| S e,y; for s=0,1,...
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— k. Applying Lemma 3 and the condition (H3) to (17) we obtain
< Cleg + hLZ Z tangl| + b)) + Z (s 1 )]+ [ p52)]

fori =0,1,...,N — k + 1. Denote the right hand side of the last inequality by w;,
Then e; S w;, i = 0, I,...N—k+ 1, and

giajl)) + hn(xi b)) + i8]
fori =0,1,...,N — k. We now estimate | ¢j|. Since
Vi) = £ Y(57). Y (5).
;= f(x; 35 ) + i

for j = k, k + 1, ..., N, subtracting these equations and using (H,) we arrive at the
inequality

(19)
j=kk+1,..,N. Assume that i = k. Using (19) in (18) we get

B e+ h i
— L,/ j=o o 1 j

- L21=0

(18) Wiy — W; = C[thio(lg. .

- 1
|2 ”81“ + P 15”1

s

I_A

Wivr S w; + C[lzL(l + 1— 51)1“ +

+ Wn(eo by )] + ups:zu]-
Consequently

Wir £ Wit hA,(wiey + w) + hBD + hi(h) + 5D,

A, = kCL Pyt ,

13(2) = (Iii 1) CLP(Z) ,
1-1L,
ii(h) = Cn(h),
13(1) — Cp(l) i

where

For 0 £ i < k we obtain
Wiry S wi + hA;(winy + W) + hkCLfy + hp® + h#(h) 4+ p0,

where f, := max
0=<s=<k-1

Wirs S w; + hA;(wiyy + wi) + hkCLfy + hp® + hij(h) + p*V

foralli=0,1,...,N — k. Let hel,, be such that A, := 1 — hA; < 0. Provided
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0 £ h £ h, routine manipulations yield
wisr < (1 4+ hds)w; + hfy + hp® + hij(h) + pV,

i=0,1,...,N — k, where A5 = 24,45", f, = kCLA; 'f,, p® = 45'p®, and so
on. Using Lemma 1.2 of [3] we conclude

(20) e; = wi = woexp (43(x; — xo)) + AL(CXP (As(xi = x0)) = 1) .

3

- _ 1
o+ (k) + - p)
i=0,1,...,N — k + 1. Now in view of the assumption 3° the theorem follows.

Corollary. Instead of 3° assume that e, = O(h®), fo = O(h?), pV = O(h?*"),
n(h) = O(h?), p'® = O(h?). Then the order of convergence is p.

5. THE SPECIAL CASES OF THE METHOD (3)

Linear multistep methods and Runge-Kutta methods can be easily adapted to the
case of IODEs. We now present these adaptations:

1. Linear multistep methods:

k k
(21) Zoasyi-fs =h Zoﬂszi+s s

Zivk = f(xi-Hv Yitr Zi+k) 5
i=0,1,...,N — k. For these methods the consistency and order conditions are the
same as in the case of ODEs (sce [6]).

2. Runge-Kutta methods:

R
(22) Vier=Yi+hYwk, i=0.1_.,N—1,

r=1 R

kr=f(xi+haiayi+hzbrsks!kr)7 r:l,2,...,R,
s=1
where
R
a,=Yb,, r=12..,R.
s=1

Also for these methods the consistency and order conditions are the same as in the
case of ODE:s (see [6]).

A more complicated situation arises in the case of Rosenbrock methods and second
derivative methods.
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3. Rosenbrock methods.

For the equation )’ = g(y) these methods assume the form (see [7] [10])

R
yi+l=yi+hzwrkr7 i:()’la'-'aN_l,
. r=1
(23) r—1 ag r—1
k, = g(y; + h Y bk + ha,a—(yi + hY ek k,,
s=1 y s=1

r=1,2,...,R. Here dg/dy is the Frechet derivative. The parameters w,, 4,, b,, ¢,,
can be evaluated via the Taylor series comparison. For the equation y’ = g(x, y)
the method (23) can be rewritten in the form

R
Yi+1 =.Vi+hZW,k,., i=01,..,.N—1,
r=1

r—1 r—1

r—1
(24) k,=g(x; + hY. by, y; + hY bk,) + ha, (gg (xi + hY ¢,
’ s=1 s=1 X s=1

r—1 r—1 r—1
0
Vi + hzcsks) + _g(xi + hzcsaYi + hzcsks) kr)’
s=1 ay s=1 s=1
r=12,...,R.
Consider now the problem (1) or equivalently the problem (2). From the relation

v = g(x, y) = f(x, y, ') it follows that
0 0 of\"t/o )
(25) y”:ﬁ_;__“zy’: ]__L l.*__[y’.
ox 0dy ay’' ox 0dy
Here I is the identity operator. On the basis of this relation and (24) we propose
the method
R
Viser=Yi+hYwk, i=01..,N—-1,
r=1
r—1
Vi + h Z bsks )
s=1
r—1
Zip = f(xi + h Z b Virs Zi,.-) s
s=1
r—1

(26) Fir =vi+hY ek,

s=1

r—1
Ei,r = f(xi + h Zlcs, yi,n 2i,r) >
s=

-1 r—1
i,r+har I‘“a—f“ a_f(xi—{"hzcs’)—]ir’iir)+
ay’ 0x s=1 o

—1 r—1
+ I__—-ai g xi+hzcs,)—’u,5ir k" ’
ov) oy S

Il

yi,r

k, =

r

Ny
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r=1,2,..., R. The convergence of the method (26) follows from Theorem 2 if we
assume in addition that the functions df/dx, df|dy, of [dy’, are bounded and satisfy
the Lipschitz condition with respect to the second and third arguments.

4. Second derivative methods.

For the problem y’ = g(x, y) these methods assume the form

k k k

(27) Z asyi-f-s = h Z‘:)ﬁsyliJrs + hZ ;)ysyli’Jrs >

s=0 s=

i=0,1,...,N — k (see [1]). On the basis of (25) and (27) we propose the method

k k
Zasyi+s = hzﬁs2i+s +
s=0 s=0

2 : — O_f - (3_f g Zi
(28) +h s;)’ys <1 (6Z)i+s> <<ax)i+s " <ay>i+5 ‘+s) ,

Zitk = f(xi+k’ Vit Zi+k) >

i=0,1,...,N — k. Here (0f/0x),, (0f[0y), (0f [0z); are abbreviations of (df [dx) .
(xi» yir z0), (9fJ0y) (xi, ¥ir z;) and (9f [0z) (x;, ¥, z;), respectively. The convergence
of these methods follows from Theorem 2 under the same conditions as in the case

of Rosenbrock methods.
Note that all the methods considered in this section are of the same order as the

corresponding methods for ODEs.

6. NUMERICAL RESULTS
Consider the problem
(29) y(x) = i(sin (x%y") — sin (exp ())) + l, 1<x<4,
X

y(1)=0.
The theoretical solution of this problem is Y(x) = In (x).
This problem has been solved by the following methods:

1. Adams-Bashforth method (A — B):
h
Yirs = Vit2 T E(Z3Zi+2 — 162;,, + 5z;),

Zi+3 =f(xi+37 Vi+3s Zi+3) »
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2. Adams-Moulton method (A—M):
h
Yie2 = Yirr t+ E(Sznz + 82141 — 23),
Ziva = [(Xis2s Vit Ziv2) s
i=01,..,N—2.
3. Explicit Runge-Kutta method (ERK):

h
yi+1=yi+‘6-(k1+4k2+k3), i=2,3,...,N—1,

ky = f(xi, vis kq) s

ky = f(x; + 3h, y; + thky, ky),

ky = f(Xi+1, yi — hky + 2hk,, ks) .
4. Implicit Runge-Kutta method (IRK):

h
Vit =y.-+z(k1 +3ky), i=23..,N~-1,

ki = f(xi yi ki),
ky = f(x; + %h, y; + 3hk, + %hk,, k,) .
5. Rosenbrock method (ROS):
Vier = Vi + h(wiky + woky), i=2,3,..,N—1,
Zivg = f(Xiv1s Vier Ziva) s

o of

X L ay
of " o
0z 0z

(xi’ Vi Zi) k],

Y2 = y; + byhk,,

2y = f(x; + byh, y,, 23),

V2 = )i+ cihky,

Zy = f(x; + ¢1h, 52, 25)
of of

& dy

k, = Z, + ha, (xi + c1h, 7y 25) + — (xi + cyh, 52, 2) ks |

1-= 1-=
0z 0z

where w, = —0.41315432, w, = 1.41315432, a, = 1.40824829, a, = 0.59175171,
b, = ¢, = 0.17378667.
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All these methods have the order 3. Starting values are given by )o = |, y; =
=1In(xy), y, =1In(x,), zo = 1, z; = 1/xy, z, = 1/x,. The iterations were running
until two successive approximations differed by less than h®. The computations
were carried out on the Polish computer ODRA 1204. The errors at the point x = 4
and the computational time are given in the table below.

Table 1. Computational time and errors at the point x = 4.

h A—B A—M IRK ERK ROS

01000 T 6-03 761 12-05 10-77 1575
error —6206 107% 6436 107° —6:377 107° 3706 107° 2256 1074
00500 T 1586 2028 33-86 28-64 4359
error —1-018 1074 8547 107® —8481 10°® —3.028 10°¢ 8758 107°
00250 T 39-10 49-99 8663 70-84 108-66
error —1458 1075 3640 1077 3300 1077 —1-149 107% —7-630 1077
T 93-08 119-11 210-96 173-70 258-89

00125 ror —1-683 1076 1060 10°7 0880 10~7 —1-550 10~7 1050 10~7
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Souhrn
ZDZISLAW JACKIEWICZ, MARIAN KWAPISZ

O NUMERICKE INTEGRACI NEROZRESENYCH
OBYCEJNYCH DIFERENCIALNICH ROVNIC

V &lanku se ukazuje, jak je moZno numerické metody feseni obyCejnych diferencial-
nich rovnic upravit pro feSeni nerozieSenych obydejnych diferencidlnich rovnic.
Upravené metody jsou téhoz fadu jako odpovidajici metody pro obycejné diferencial-
ni rovnice. Je dokdzana véta o konvergenci a uvedeny numerické ptiklady.

Author’s addresses: Dr. Zdzistaw Jackiewicz, Dr. Marian Kwapisz, Institute of Mathematics,
Gdansk University, Wita Stwosza 57, 80— 952 Gdarnsk, Poland.
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