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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

A FINITE ELEMENT ANALYSIS FOR ELASTO-PLASTIC BODIES 
OBEYING HENCKY'S LAW 

IVAN HLAVACEK 

(Received January 30, 1980) 

INTRODUCTION 

One of the simplest mathematical models describing the elasto-plastic behaviour 
of solid bodies is the constituent law of Hencky (see e.g. [1]). The classical boundary 
value problems allow a variational formulation in terms of stresses, known by the 
name of Haar-Karman principle. In the papers by Mercier [2] and Falk [4], [5], 
approximate solutions of the boundary value problems have been studied, which 
consists of piecewise constant stress fields. It is the aim of the present paper to employ 
piecewise linear approximations of stress fields and to give some convergence results 
for them. 

Using some results of C. Johnson and Mercier [7], we define both external and 
internal approximations of the set of statically admissible stress fields. The set 
of plastically admissible stress fields is approximated by the requirement that only 
the mean values of stresses over any finite element have to be plastically admissible. 

The torsion problem of a twisted cylindrical bar (under Saint-Venant hypotheses) 
is solved in terms of stresses by a quite analogous manner. Here we apply piecewise 
'"quasi-linear" approximations introduced by Raviart and Thomas [11]. 

1. PRELIMINARY DEFINITIONS 

Let Q be a polyhedral bounded domain in U"9 n ~ 2, 3; x = (x l 9 ..., xn) a Cartesian 
coordinate system. Let Ua be the space of symmetric n x n matrices (stress or strain 
tensors). A repeated index implies summation over the range 1, ..., n. 

Assume that a yield function f : Ua -> IR is given, which is convex and continuous 
in U0. 

We introduce the following notations: 

S - {T : Q -> Ua | xtj e L2(Q) Vij} . 

<т, e> = (TijeijdX, II orli o = <<T, <7> 
1/2 
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Let the boundary cQ be decomposed as follows 

8Q = ru u ra, ru n ra = 0, 

where Fu and FG are either empty or open in dQ. Assume that a body force vector 

F e [L2(.Q)]\ a surface traction vector g e [L2(F a)]" and a displacement vector 

U o G f H 1 ^ ) ] " be given. 

Flenceforth Hj(Q) = Wj,2(Q), j = 0, 1, 2, denotes the Sobolev space with the 

norm ||*||;,_Q> #°(-2) = L2^)- -^(M) i s t n e space of polynomials of the k-th degree 

on the set M. 

In case that Fu = 0, the total equilibrium conditions for F and g are assumed 

to be satisfied. 

In the space 5 we introduce also the energy scalar product 

(<7,T)= < 6 - V T > , HOI) = (O ,d) 1 / 2 , 

where c : 5 -» S is the isomorphism defined by the generalized Hooke's law: 

a = ceoGij =-- cijklekl. 

Here c i i U G L O : ( 0 ) , G and e are the stress and strain tensors respectively, 

3a > 0 , <ce, e> ^ oc\\e\\2

0 V e e S . 

The space of virtual displacements is defined as follows 

V = {v G [H1 (&)]" | v = 0 on Fu} . 

The set of statically admissible stress fields is 

E(F, g) - (T G S I <T, e(v)> = L(v) W G V} , 

where 

Ц-)- F;v; d: Oiv^ds. 

We introduce the set of plastically admissible stress tensors 

B = { T G R f f | f ( T ) ^ 1}. 

It is easy to see that B is convex and closed in M0. 

Finally, we define the set of plastically admissible stress fields 

P = {T e S | T(X) G B a.e. in Q} . 

The set P is convex and closed in S. 
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The Hencky's law can be stated in the following way (cf. [1], [2]). Introducing 
the projection IlB(x) : Uc -> B onto the set B with respect to the scalar product 
(c"1(x)o)ijTij, then 

(1.1) o^nB(x)ce. 

Consider the actual strain tensor field e(u) e S, 

etJ(u) = ^(duildxj + dujjdXi), 

and the actual stress tensor field o e E(F, g), where u = u0 + w is the actual displace
ment field, w e V (Suppose the existence of all these fields for the time being.) More
over, let 17 : S —> P be the projection onto the set P with respect to the energy scalar 
product (G, T). Then 

(nr)(x) = nB(x)r(x) 

holds almost everywhere in Q (see [2]). Hence we may write 

o = He e(u) 

and consequently, for any T e P 

(c e(u) — cr, T — a) g 0 

i.e., 

(1.2) <e(u0) + e(w), T - G> - (<x, i - G) ^ 0 . 

Let us take 
r e E(F, g) n P . 

Since x — o e E(0, 0) and w e V, 

<e(w), T - d } = 0 . 

Thus we obtain 

(1.3) (o, T - G) - <e(y0), T - o) ^ 0 VT G £(F, g) n P . 

The inequality (1.3) is equivalent with the H a a r - K a r m a n p r inc ip l e : the actual 
stress field o minimizes the functional of complementary energy 

Sf(x) = \ ||T||2 - <e(u0), T> over E(F, g) n P . 

In fact, both the functional 5^ and the set E(F, g) n P are convex and the equi
valence follows easily. 

Theorem 1,1. Let the set E(F, g) n P be non-empty. Then the Haar-Kdrmdn 
principle has a unique solution o. 
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Proof. The sets F(F, g) and P are convex and closed in 5, the functional Sf is 
quadratic and strictly convex. Hence the existence and uniqueness follows. 

Remark 1.1. The formulation in terms of displacements is much more difficult 
to handle (see [1], [2], [3]), as far as the existence and uniqueness is concerned. 

2. APROXIMATIONS BY EQUILIBRIUM FINITE ELEMENT MODELS 

Let us consider two-dimensional problems, i.e. let Q a U2. In order to discretize 
the problem, one has to replace the set F(r% g) n P by a finite-dimensional approxi
mation. The simplest possibility is to work with piecewise constant stress fields on 
triangulations of the domain Q. An analysis of such a method has been given by 
Mercier and Falk in [2], [4], [5]. In the present paper, we employ piecewise linear 
stress fields on composite triangles (see Watwood and Hartz [6]). 

First we recall some results on the composite triangular block-elements, obtained 
by C Johnson and Mercier [7]. Let us consider a triangle K with vertices ai9 a2, a3. 
Joining the vertices with the center of gravity 0, we obtain three subtriangles Kh 

i = 1, 2, 3. Consider a triangulation &\ of Q and define Sh = {a e S\a\K. e [Pi(K,)]4» 
a . v is continuous when crossing any side Oah i = 1, 2, 3 and atap for all K e ^~h}, 
where v denotes the unit normal with respect to the side under consideration. 

In [7] a linear mapping 

rh : S n [Hl(Q)Y - S„ 

is defined through the following set of conditions: 

(i) f ( ( r „<x) .v -<T .v ) .vds = 0 , \fve[Pl(l)f, M . v e [ / > , ( / ) ] 2 

on every side / e &'h, 

(ii) J (rha - a) dx = 0 VK e Fh. 
J K 

If a e S n [Hy(&)]4, j = 1, 2, then 

(2.1) ||o- - rha\\0 = ChJ\a\hQ 

holds for any regular family {&~h}, 0 < h = h0, of triangulations, where h is the 
maximal length of all sides in 3Th and W\-UQ is the seminorm consisting of all deriva
tives of thej-th order. C is a constant independent of h and a. Although the estimate 
(2.1) has bee proven in [7] forj = 2 only, the same argument is applicable to the case 

j= 1-
Let us define ex t e rna l a p p r o x i m a t i o n s Eh of the set F(F, g): 

Eh = {ah e Sh | (alv e(vh)) = L(vh) Vv„ e Vh} , 
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where 
Vh = {vh e V| v„\K e [P^K)]2 VX e ^ „ } . 

Introduce also an approximation Ph of the set P: 

eS„\f 
mesK 

Һ 

к 

In other words, the condition The B a.e. in Q is replaced by a weaker condition, 
that the mean values of Th on every K e 3~h belong to B. It is obvious that Eh 4- E(F, g) 
and Ph 4: P, in general. 

We now define the approximate problem: to find ah e Eh n P,, such that 

(2.2) &{?}) = m m o v e r Ehn Ph < 

Lemma 2.1. If there exists a stress field 

T e E(F, g) n P n [H^rQ)] 4 , 

t/i(?n the problem (2.2) /ias a unique solution. 

Proof. Applying the mapping rh to the stress field T, we obtain 

(2.3) r„T G £,, . 

In fact, 
e(vh)\K e [P0(K)]4 V X G J , , VV, e V, . 

Consequently, (ii) yields 

<r„T, e(v,)> = <T, e(v,)> = L(vh) Vv, e Vh . 

Furthermore, 

(2.4) rhT e Ph . 

In fact, T G B a.e. and therefore 

1 

mesK mes K J к 

TáxeB \IKežrh 

follows from (ii) and the convexity of B. 

Hence, the set Eh n Ph 4= 0. Eh is convex and closed in S, being an affine hyper-
plane in the finite-dimensional space Sh. The set Ph is also convex and closed in S. 
To prove the closedness of Ph, we use that both the mean values on K and the yield 
function are continuous mappings of their arguments. The convexity of Ph follows 
from the convexity of/. 

The rest of the proof is obvious. 
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Theorem 2.1. Let the solution a of the Haar-Kdrmdn principle belong to [ H 1 ^ ) ] 4 . 
Then 

(2.5) ||o~-cr,,|| - > 0 , h~>0 

holds for any regular family of triangulations. 

Proof. We employ the following abstract proposition on the convergence of the 
Ritz-Galerkin approximations (see e.g. [8] — chapter 4). 

Proposition 2.1. Let u and uh be the unique solutions of the problems 

3F(u) — min over X and 

^(uh) — min over Xh, 

respectively, where fF is a quadratic functional in a real Hilbert space H, with 
positive definite second differential, X a H a closed convex set and Xh c Ha closed 
convex subset for any h, 0 < h :g h0. 

Assume that: 

(H 1) to every h e (0, h0 > there exists an element vh e Xh such that 

\\u — vh\\ -> 0 for h -> 0 ; 

(H 2) vh e Xh, u* e H, vh-^ u* (weakly) for h -> 0 implies u* e X. 

Then 
\\uh - u | | - > 0 , fe-*0. D 

We can apply the proposition with & = £?, H = S, X = E(F, g) n P , Xh = 
= Eh n Ph, u = (J, uh = ah. 

To verify the condition (H 1), we realize that 

||(j - rft<T|| = CA|ff|1>n 

by virtue of (2A) and rha e Eh n Ph — see (2.3), (2.4). 

Let us consider the condition (H 2). First we show that 

(2.6) rh G Eh , rh -* T in S (weakly) implies T e £(F, g ) . 

In fact, for any v e V there exists a sequence {vh}, vh e Vh, such that 

\\v - vh\\i,Q~>0, h-+0. 

Consequently, e(vh) -> e(v) in S and (2.6) follows from 

<T„, e(v„)> = L(v„), 

if we pass to the limit with /t. 
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It remains to verify that 

(2.7) T f t£P f t, Th -- T (weakly) in S => T e P . 

To this end we prove an auxiliary 

Lemma 2.2. Denote for any co e S 

ij/h(oo) e S 

the tensor function such that 

il/h(co)\K = -

mes K ^ _ 

Then Th -* T (weakly) in SfOr h -> 0 implies that 

^h(?h) - * T (weak/y) in S . 

Proof. For any s e S we may write 

(2.8) |<5, ^(T„) - T>j ^ |<S, <K(T„) - ^ ( T » | + |<5, ^ ( T ) - T>| . 

It is well-known that: 

(2.9) | | ^ ( T ) - T | | 0 - > 0 , fe-0, V r e S . 

Furthermore, we have 

0 , ilh(?h ~ T)> = Sij \jJhij(Th - T) dx = 

= X 5u d * (Th - *)ij (mes K)~l dx = <i>fc(s), T, - T> . 
* e ^ J K J K 

Using (2.9), we conclude that both terms on the right-hand side of (2.8) tends to zero, 
which proves the lemma. • 

Now we are able to verify (2.7). Recall that 

T„ e Ph o \ph(Th) e P , Th G Sh 

follows from the definition of Ph. By virtue of Lemma 2.2, we have 

*A/.(T/.) -* T in S • 

Since P is weakly closed, T e P. Q.E.D. 

Next let us employ i n t e r n a l a p p r o x i m a t i o n s of the set E(F, g). To this end, 
assume that the body forces F and the surface tractions g are piecewise constant and 
piecewise linear with respect to a fixed triangulation 3?~ho, respectively. 
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Then a stress field % e E(F, g) exists, wb.ich is p iecewise l inear with respect 
to ^ „ 0 . 

Inserting o — x + ? into the Haar-Karman principle, we obtain the following 
equivalent problem: 

(2.10) J ( T ) = min over Jf , 

where 
•!W = i |T| |2 + (T, Z) - « U 0 ) , T> , 

X = £ ( 0 , 0 ) n ( - x + P ) . 

Let us approximate the set Jf by the set 

/ U Ь L ( ' + " , d x ) s i ж 6 ' ' } ' 
where 

Eh = F(0, 0) n Sh, 3rh is a refinement of ^ „ 0 . 

We define the approximate problem 

(2.H) J(Th) = m m o v e r ^h-

Lemma 2.3. Let a o0e F(F, g) n P exists such that o0 — % = r0e [H^O)] 4 . 

Then the problem (2.H) has a unique solution rh. 

Proof. We have T 0 e £(0, 0) n [ H 1 ^ ) ] 4 a n d 

ro 
V o e -Efc 

follows from [7] — (5.5) and Lemma 2. Moreover, since #|K e [Pi(K)]4 for all 
K e ^ , we have 

r/.X = X 

and consequently 

(2-12) rh(x + T0) = X + V o • 

Since x + ?o e -® a-e- m - » - • - t n e mean values of % + rftT0 in every triangle K belong 
to B, by virtue of (2.12), the condition (ii) for rh and the convexity of B. Thus we 
conclude that r^T0 e Jf*,,. 

The set Jfh is convex and closed in S (cf. an analogous assertion in the proof 
of Lemma 2.1). Hence the existence follows. The uniqueness is a consequence of the 
strict convexity of the functional J. 

Theorem 2.2. Assume that o — x — T E [ H 1 ^ ) ] 4 . Then 

||T - T,,|| - > 0 , h->0, 

holds for any regular family of iriangulations, refining ^ho. 
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The p roof is parallel to that of Theorem 2.L We use also that rhx e Jf \ follows, 
like in proving Lemma 2.3. 

Remark 2.l. In three-dimensional problems, we can employ piecewise linear 
stress fields on tetrahedral block-elements composed of four subtetrahedrons. 
Estimates parallel to (2.1) hold for an analogous mapping rh (see the forthcoming 
paper [10]). Then the above results remain true. 

3. TORSION PROBLEM 

Let us consider a cylindrical bar subjected to a twisting moment at one end while 
keeping the other end fixed. LIsing the Saint-Venant theory of torsion and the Haar-
Karman principle, we are led to the following problem in terms of stresses (pL = 
= CT/3, i = 1, 2, C = const): 

(3.1) S?(p) = | | | p | | 2 - (<p, p) = min over E n P , 

where p e [L2(;Q)]2, Q cz U2 represents the cross section of the bar (multiply connect
ed, in general); (•, •) and || • || are the usual scalar product and the norm in [L2(.Q)]2, 
respectively, 

<Pi = ~Cox2 9 Vi = Coxi 9 Co = const, 

E = {p e [L2(Q)f | (p, grad v) = 0 Vv e H\Q)\ , 

P = {pe [L2(Q)Y \f(p) S 1 a.e. in Q} , 

where f is a given continuous and convex function in [R2,f(0) < 1. 

It is readily seen, that the problem (3A) has a unique solution. In fact, 0 e E n P5 

E n P is closed and convex in [L2(.Q)]2 and Sf is strictly convex, quadratic. 

To approximate the problem (3.1), we employ some finite element spaces, intro
duced by Raviart and Thomas in [11]. 

Let us assume that Q is a bounded polygonal domain and consider regular family 
of triangulations 3~h oiQ, h -> 0. We construct finite elements on any triangle K e 2Th 

by means of an affine invertible mapping 

LK : x -> FK(x) = BKx + bK , 

such that FK(K) = K, where K is the unit right reference triangle in the (£, r/)-plane. 
Introduce the linear space of vector-functions 

Q = {-Ii = <*o + tfiC + a.j] + O3c(c + rj), 

q2 = b0 + bjC + b2r\ + b3)](c + rj)} , 

where ah bteR are arbitrary coefficients. 
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Then we define 

S„ = {pe [L2(<2)]2| \fKeJTh3peQ such that 

p\K = ( d e t E ^ T ^ p o E - 1 ; 

p . v is continuous, when crossing any side common to two adjacent triangles}. 

From [11] — proof of Theorem 3 — we conclude that a linear mapping 

r„ : [Hl(Q)Y - S„ 
exists such that: 

/* 
(3.2) ( r A q - q ) d x = 0 VK e ZTh , 

JK 

(3-3) M - f l l l - Cft'|q|,ifl, j = 1,2, 

provided that q belongs to [HJ(.Q)]2. 

We define 

£/, = {«?/, e S/, | (<fo, grad vA) = 0 Vvft e VA} , 
where 

V„ = {vh e H 1 ^ ) |i>„|K 6 P.(X) VK e ^ „ } 

is the standard finite element space; furthermore, we introduce 

Ph = \qheSh / ( — т. I 9 A « - * U - к є ^ Л . 

The approximate problem will be defined as follows: 

(3.4) £f(ph) = min over Eh n p f c . 

Lemma 3.1. The problem (3.4) has a unique solution. 

Proof. The set FA n Ph contains the zero element and is convex and closed. Hence 
the existence and uniqueness of the solution follows. 

Theorem 3.1. Let the solution p of (3.1) belong to [ H 1 ^ ) ] 2 . Then 

\\p-ph\\~>0, h^O 

holds for any regular family of triangulations. 

Proof. We employ Proposition 2.1, setting J = Sf, H = [L2(Q)]2, X = E n P, 
^ft = £/, n PA, w = p, wA = fv 

To verify the condition (H 1), we use the estimate (3.3): 

||p - rhp\ <, Ch\p\ia 
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and prove that rhp e Eh n Ph. In fact, for any vh e Vh we may write 

(rhp, grad vh) = (p, grad vh) = 0 , 

by virtue of (3.2) and v,, e Hl(Q). Consequently, rhp e Eh. 

Second, f(p) ^ 1 a.e. in Q and therefore 

1 
/ 

mesK 
r„P áx = / p dx ) = 1 VKeJ4 

K ) \rnes K J K 

follows from (3.2), the convexity and continuity off Thus r^p e Pfc. 

Let us verify (H 2). We have 

pheEh, ph~* p (weakly) in H => p e E . 

In fact, for any v e H1(Q) there exists a sequence {v/,}, vft e Vh, vh -> v in Hl(Q), 

h -> 0. Then 
(£>,„ grad v„) = 0 

and passing to the limit with h -> 0, we obtain 

(p, grad v) = 0 . 

It remains to prove that 

phePh, ph-p in H=>peP. 

We employ Lemma 2.2, where the space 5 is replaced by H. Thus we have 

ph ePho yh(ph) eP, pheSh, 

by virtue of the definition of Ph. From Lemma 2.2, 

^h(Ph)~>P m H, h->0. 

Since P is weakly closed, p e P follows. Q.E.D. 

Remark . The regularity assumption p e [H^rQ)]2 is satisfied if Q is convex — see 
Brezis and Stampacchia [12]. 

Finally, let us consider i n t e r n a l a p p r o x i m a t i o n s of the set £, i.e. let us appro
ximate the set JT = £ n P by the set 

^ь = E°h n Ph, 
where 

It is not difficult to find that (cf. [11]) 

E°h = {p e Sh | div p = 0 for all K e 3~h and p . v = 0 for the sides on dQ] . 
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We define the approximate problem 

(3.5) Sf(ph) = min over E°h n Ph . 

Lemma 3.2. The problem (3.5) J?as a unique solution. 

Proof. The set Eh n P,, contains the zero element, being also closed and convex 

in H. 

Theorem 3.2. Assume that pe [ H 1 ^ ) ] 2 . Then 

| |p-ft . | | -*o, h->0 

holds for the solution ph of the problem (3.5) and for any regular family of triangu-

lations. 

The p r o o f is parallel to that of Theorem 3A. Note that 

peEn[Hl(Q)]2=>rhpeE°h 

follows from [11] (see Lemma 2 and the proof of Theorem 3 there). 
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S o u h r n 

ANALÝZA PRUŽNĚ PLASTICKÝCH TĚLES 
PODLE HENCKYOVA MODELU METODOU KONEČNÝCH PRVKŮ 

IVAN HLAVÁČEK 

Na základě variační formulace v napětích — tzv. principu Haara-Kármána — 
jsou definovány po částech lineární aproximace pole napětí a dokazuje se jejich kon
vergence. Vzhledem k podmínkám rovnováhy aproximace jsou jak externí tak 
interní, vzhledem k podmínce plasticity však jen externí. 

Podobně je studován také problém kroucené válcové tyče. 
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