
Aplikace matematiky

Jaroslav Milota
Differential growth models for microbial populations

Aplikace matematiky, Vol. 27 (1982), No. 1, 1–16

Persistent URL: http://dml.cz/dmlcz/103941

Terms of use:
© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103941
http://dml.cz


SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

DIFFERENTIAL GROWTH MODELS FOR MICROBIAL POPULATIONS 

JAROSLAV M I L O T A 

(Received January 15, 1980) 

1. INTRODUCTION 

A number of experimental and theoretical studies have been devoted to the dynamic 
behaviour of microbial evolution. In this note two basic approaches to deterministic 
models of microbial growth are discussed. The first one is the classical Monod model 
[12] in which the population coefficient is determined by a limiting substrate con
centration in accordance with the Michaelis-Menten equation. This model was 
criticized and modified by many authors (see e.g. Edwards [2], Fencl [3], Herbert 
[6], Jerusalemskii [8], Kuzmin [9], Moser [1.3], Powell [15], Teissier [17], Young, 
Bruley, Bungay [19]). J. Monod supposed the substrate concentration to be de
creasing proportionaly to the increment of the biomass concentration. In Section 2 
we show that this assumption in a rather general setting leads to unrealistic conclu
sions (Proposition 1). I should like to point out here that all models are discussed 
mainly from an ecological point of view. As one cannot be sure where the time origin 
of growth is, the asymptotic behaviour of the models is interesting. This approach 
allows to reach only qualitative biological conclusions. Throughout this note a little 
attention is paid to the possibility of reconstruction of the models from experimental 
data but no comparisons with them are made as the author could not get any serious 
data to compare the models with reality. In Section 2 it is also mentioned that various 
modifications of the growth coefficient in the Monod model have the well known 
Pearl-Verhulst logistic model as the limit case. This last model will play an important 
role in the sequel for its simplicity though it is not probably very realistic. 

The second basic approach which is due to S. N. Hinshelwood [7] takes account 
of inhibitory factors such as toxic products of metabolism. Although it is less used 
the author believes that it can yield more realistic results. In Section 3 we first show 
that the Hinshelwood model is equivalent to the above mentioned Pearl-Verhulst 
limit case of Monod models if it is supposed that the decrease of the substrate con
centration is proportional to the total amount of cells which were produced during 
the cultivation. This equivalence justifies the use of the second assumption on the 
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decreasing of the substrate concentration in general models of the Monod type. 
Proposition 2 concerns their behaviour. 

Both these approaches do not allow to describe such features of microbial evolution 
as oscillation which can be observed (see e.g. May et al. [11]). We mention that 
already V. Volterra and V. A. Kostitzin ([16], pp. 47 — 56) used integro-differential 
models to carry out a calculation based upon the accumulation of toxic products. 
We do not follow this idea but we try to explain this behaviour either by the lyse of 
dead cells in nutrient and toxic parts, or by cannibalism of bacteria. In Section 4 
a model is deduced which involves a coefficient that measures the realization of toxic 
activity. If the toxic part is not killing for the population at finite time we show (Sec
tion 5) that biologically meaningful solutions have damping oscillations. In other 
cases the model under certain circumstances possesses unstable limit cycles. Such 
behaviour looks like biologically reasonable and it has been recently found in various 
situations (see Oster, Guckenheimer [14] and the references given there). The 
methods of Section 6 are well known in the bifurcation theory (see e.g. Marsden, 
McCracken [10]) but the author finds them more instructive than general theorems. 

The last section is devoted to applying the preceding models to a chemostat. As 
a consequence of the multiplicative assumption on toxic activity it is shown that the 
limit concentration of inhibitory factors is a decreasing function of the dilution rate. 

The author is indebted to Dr. J. Sfastna for helpful biological discussions, Dr. M. 
Jilek for extended bibliography and to J. Basler for carrying out numerical experi
ments which preceded the theoretical research. 

2. MONOD MODEL 

Let M denote the biomass concentration and S the limiting substrate concentra
tion. Then the Monod model can be described by the couple of differential equations: 

(!) d f ^ M ^ * M , 
dt A + S 

(2) S + kM = 0 , 

where A, k are positive constants. Solving (2) with initial conditions M(0) = M0 > 0, 
S(0) = S0 > 0, and substituting in (1) we obtain the following equation of logistic 
type: 

(3) M = / J m ^ o + /c(Mo~M) M 

A + S0 + k(M0 - M) 

It easily follows that the solution M is increasing on the time interval <0, + oo) 
and M K = lim M(t) = Sok"1 + M0 . By (2), the solution S is decreasing on this 

t->QO 

interval and S x = lim S(i) = 0. In other words, a microbial population is still in-
f->oo 
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creasing even if the substrate concentration is very small, and therefore the Monod 
model can be hardly valid on any large time interval. 

In order to simplify the equation (3) we put x = MM^1 and a = kM00(A + 
+ kM,^)' \ ii0 = aj.im. This allows to rewrite (3) in the form 

(4) x = fi0 — x . 
1 — Ox 

We remark that the coefficients O, /L0 in this equation can be determined from the 
inflection of M, i.e., the model can be reconstructed from experimental data. Simple 
calculation shows that for sufficiently small M0 (M0 < S0(A + S0)(kA)~1) the 
biomass concentration has an inflection at a positive time t{ at which Mt = M(t{) = 
= Ma,a~x(\ — v ( 1 — a)). The ratio r = MtM~y is an increasing function of the 
parameter a with r(0 + ) = lim r(a) = 0-5 and r(l—) = lim r(a) = 1. Moreover, 

M(tt) M^ = /L0M?. If M 0 is sufficiently small then tt is also an increasing function 
of the parameter a. We also mention that the relative growth model (4) together 
with (2) is more general than the Monod model as it contains a non determined 
coefficient Mx. It means that S^ is not necessarily equal to zero. 

As has been mentioned in Introduction the classical Monod model was examined 
experimentally many times. Trying to get a fit with experimental data several authors 
(see Introduction) came to the conclusion that the growth coefficient in (1) ought 
to decrease faster and proposed various modifications. We mention two mathemati
cally typical cases which we present in terms of the relative growth rate for the sake 
of simplicity. For A tending to infinity the relative Monod growth coefficient 
fa(x) = f.L0(\ — x)(l — Ox)"1 goes tof0(x) = /t0(l — x) and the equation (4) is the 
well known Pearl-Verhulst model which is sometimes used for the growth of batch 
culture (Brock [1], Williams [18]). The opposite (i.e. convex) relative growth 
coefficient is obtained by allowing the coefficient a in (4) to be negative (this implies 
that M. e (0; OSM^)), or, more generally, by puttingf(x) = /L0(l - xb) (1 - Ox*)""1, 
b < 1, a < (1 — b) (1 + by1. The reconstruction of the last case from experimental 
data was examined by Fletcher [5] for a = 0 (i.e., for the Richards model) under 
other circumstances. For further purposes we rewrite the limit Verhulst case in the 
form 

(5) M = (-a + PS)M 

and the equation (2) , 

where a = /JSaj, j8 = 2(kM00)~\ k = (S0 - SJ (M„ - M 0 ) ~ \ Mt = 0-5MK. 

It is not^difficult to generalize various modifications of the Monod model. The 
general model of this type can be derived from the following two basic assumptions: 

I. The growth coefficient for a microbial population depends on the substrate con
centration only. No cell deaths and inhibitory factors are assumed. 



II. The decrease of the substrate concentration is proportional to the increment of 
the biomass concentration. 
These assumptions lead to a differential equation 

(6) M = F(S) M 

on a curve 

(7) S0 - S = <p(M - M0) . 

Proposition 1. Let F be an increasing continuous function on an interval <0, u) 
with a zero point uu Let cp be an increasing continuous function on an interval 
<0, v), cp(0) = 0. Suppose that for a given S0 e (uu u) there is xi e (0, v) for which 
(p(xi) — So ~ Mi- Then for any M0 > 0 there exists a uniquely determined maxi
mal solution [M, S] Of the problem (6), (7) which satisfies the initial conditions 
M(0) = M0, 5(0) = 50 . This solution is defined on the interval <0, + GO) on which M 
is non-decreasing and 5 is non-increasing. Moreover, lim M(t) = M0 + xu 

lim5(t) = w1. 
t-*oo 

Proof. The problem (6), (7) reduces to the equation M = G(M) M, where G(M) = 
= F(50 — cp(M — M0)). As the function G is continuous on the interval <M0, 
Mo + x i> a n d positive on <M0, M0 + xx), there is a maximal interval <0, t{) on 
which the solution Mis increasing .Because of maximally of tu we have G(M(tx—)) = 
= 0, i.e. M(tx~) = M0 + xu and 

fMo + Xl dx 

J Mo xG(x) 

If tx < co then M(t) = M0 + x2 for t ^ tx is a solution. This proves the properties 
of the solution [M, 5] . All maximal solutions are forward uniquely determined 
because the function F changes its sign at uu 

Remark . We should like to point out the dependence of the limit value M^ 
of a microbial population on its initial value M0 for a fixed initial value of the limiting 
substrate concentration 5 0 . According to our opinion this means that even the general 
model (6), (7) can be used only in a narow zone of the initial values of the biomass 
concentration. 

3. HINSHELWOOD MODEL 

It was mentioned in Introduction that the growth rate of the biomass concentra
tion can be determined by the concentration of toxic products of metabolism of 
microbial cells. We now sketch a simple model of this type which is due to S. N. 
Hinshelwood [7]. Let P denote the concentration of toxic products and suppose that 

(8) P = rM , 



where r is a positive constant and the growth coefficient is a decreasing function of P; 
in the simplest case let 

(9) M = fi0(i - cP)M , 

where /i0, c are positive constants. We wish to find a solution of (8), (9) which satisfies 
initial conditions 

(10) P(0) = P0 __ 0 , M(0) = M 0 > 0 . 

By (8), the P-coordinate of the solution is increasing on a maximal time interval 
<0, tj) on which the M-coordinate is positive. Therefore 

dP r ' 

along a part of the trajectory of the solution. It means that the curve M = 
= c^r)-1 (P. - P ) ( P - P 2 ), where P 1 > 2 = c ^ l ± ((1 - cP0)

2 + 2 r c ; i o - 1 M 0 ) " 2 ] , 
contains this trajectory. Hence and by (8) we have 

•Pi _ł_ Г 
C/<0 J Po 

d P 
+ co ( P i _ P ) ( P _ P г ) 

and M a j = 0, P^ = Pt. We further suppose that P0 is rather small, namely that 

cP0 < 1. Then the M-coordinate is increasing on an interval <0, t 0) (P(t0) = c _ 1 ) 

and it is decreasing on the interval (t 0, + oo). Hence 

Mm = max {M(t), t e <0, +00)} = M(t0) + l/0(2rc)_1 (1 - cP0)
2 . 

Notice that this Mm has the same form as M ^ for the general Monod model (see 

Proposition 1). Calculation of an inflection shows that it appears at the time at 

which M; = | M W and Mt = ±M?/2(/.i0rc)1/2. For further purposes we denote the 

experimentally observed coefficient (2pi0rc)1/2 by }i. The equation (8) allows to state 

another interesting conclusion, namely, it follows from (8) that 

Í 'м(t)dt = -~^? = -(м„, -м0y
2, 

CГ Џ 

í ЭM(ř) d/ = - — M = ł м,1,/2 

Г Џ 

i.e., less microbial cells are produced during the increasing part of the cultivation 

then during the decreasing part. 

We can also use the value Mm for showing that the equations (8), (9) are nothing 

else than a logistic equation (see also Finn [4]). Namely, if we put M = Mm — 

- /L0(2rc)_ 1 (1 — cP)2 in (9) we obtain 

M = ±n(Mm - M)1/2 M . 



It is quite obvious that we can proceed in the same way with the problem 

(11) M = ( - a + PS)M , 

(12) S = - y M , 

(13) M(0) = M0 > 0 , 5(0) = S0 > a /T 1 , 

where a, /?, y are positive reals. Putting a = /L0c(P0 + S0) — /J0 , /? = /i0c, y = r 
(or fi0 = /5(P0 + S0) — a, c = Pn0

l) we obtain that the M-coordinate of a solution 
of (11) —(13) is equal to the M-coordinate of a solution of (8) —(10), while the second 
coordinates satisfy S + P = S0 + P0. It is therefore possible to account for the 
influence of inhibitory factors in the models of the Monod type by taking the equation 
(12) instead of (2). The coefficient y would then be a measure of accumulation of 
inhibitory factors and the ratio A(S) = |P'(S) [P(S)]_ 1 | ? where F is the growth 
coefficient in (6), would be a measure of toxicity of inhibitory factors. For example, 
A(S) = ell — cPI"1 in the case of (11), and this is an increasing function of c. For 
the classical Monod model (1) we have A(S) = A[S(A + S)]_1 and thus the presence 
of toxic factors can be accounted for by increasing the coefficient A. This conclusion 
is in agreement with the purpose of the modifications of the growth coefficient which 
were mentioned in Section 2. By our opinion, the condition (12), which says that the 
decrement of the substrate concentration is proportional to the total amount of the 
produced biomass, is more realistic than the condition (7), 

We conclude this section with an investigation of a general model of the Hinshel-
wood type, under which we mean the couple of equations 

(14) . M = F(S) M , 

(15) S = ~yM . 

Proposition 2. Let F be a continuous and increasing function on an interval 
<0, u) with a zero point ui. If S0 e (wl5 u) and M0 is a positive number then there 
exists a uniquely determined maximal solution [M, S] Of (14), (15), which satisfies 
the initial conditions M(0) = M0 , S(0) = S0. This solution is defined on an interval 
<0, t{), on which the S-coordinate is decreasing. Moreover, there is a point t0 e 
e (0, tj>, such that the M-coordinate is increasing on the interval (0, t0) and de
creasing on the interval (t0, tx). The end point t t is infinite if and only if 

(16) 

Only in this case lim M(i) = 0 holds. 

'SO 

F(S)dS = -yM0 
0 

Proof. The function F is continuous and therefore a maximal solution [M, S] 
of (14), (15) exists for any mentioned initial conditions. As M0 > 0, the S-coordinate 



is decreasing on a maximal time interval (0, tx) and the M-coordinate is positive 

on it. Hence for the trajectory of this solution the condition 

[So 

(17) M = M 0 + y~l F(o) da = H(S) 

is true. By (15), 

(is) '~rT-rV 
Using this and the assumption on maximality of tx we can state that there exists 
a point t0 e (0, t,> such that S(t0) = t/ l5 i.e., the M-coordinate is increasing on the 
interval (0, t 0) and decreasing on the interval (t 0, t,). Put M t = M(t{ —) and S! = 
= S(tx—). There are two possibilities: 

(i) S! > 0 and therefore, by maximality of tl9 M. = 0. As 

-—| = -y F(S,) 

d S j S = S! 

is finite, it follows from (18) that tt = +co. Moreover, the equality (17) yields 

0 = M І = M 0 + y" 1 F(cг)d(j ^ M 0 + y" 1 F(a)áa 
jst Jo 

i.e., the inequality (16) is fulfilled. 

(ii) S1 = 0. It is obvious that a solution [M, S] cannot be extended beyond the time 
ti. If the condition (16) is not satisfied, then, by (17), M, = H(0) is positive and 
therefore tl is finite. If (16) holds then M t = 0 and the same method as above 
yields tx = + oo. 

Example . Consider the classical Monod equation (l) together with (15). As 

1 SO C 

џm- - d S ^ 0, 
A + S 

t{ is finite. Moreover, Sx = 0 and Mi = max {M(t); t e <0, t!>}. These conclusions 

show that this model is again unrealistic for long time intervals. 

4. DERIVATION OF A MORE COMPLEX MODEL 

The equivalence of the Hinshelwood model (8) —(10) and the model (11) —(13), 
which was expressed in terms of the substrate concentration, supplied — at least from 
the mathematical point of view — a treatment of influences of inhibitory factors as 
part of the substrate. But this approach does not take account of such features of the 
microbial evolution as the lyse of dead cells. In the sequel we suppose that dead cells 



are desintegrated in two parts, namely into toxic substances and factors which stimu
late the growth of the population. In order to avoid mathematical difficulties we 
further suppose, partly unrealistically, that this process of desintegration can be 
expressed by differential equations and therefore we shall use neither delay nor 
integrodifferential models. 

Having in mind these phenomena we can treat the microbial evolution as three 
component model in which a biomass concentration M, a nutrious substrate concen
tration S and an inhibitory factors concentration F are considered. We normalize 
the unit of concentration by putting M + S + F = 1, intending to express that the 
other factors have no significance. We introduce influences of the nutriment by the 
equation (l 1). It is obvious that one can have many objections against this assumption 
but we introduce it for the sake of simplicity of mathematical discussion and because 
the equation (11) is the boundary case between concave and convex relative growth 
rates (see Section 2). We also point out the above mentioned equivalence with the 
Hinshelwood model. We are not sure in which form to present influences of toxic 
products. If the population is only inhibited with a constant rate co then it either 
dissapears at a finite time or it is decreasing and exists for arbitrary long time intervals. 
The equation M = —co corresponds to the former case which we shall call additive. 
The latter — multiplicative — case can be realized by the equation M = — coM. 

Summarizing, we arrive at the following equations: 

(19) M + S + F = 1 , 

(20) S = -yM + xF , 

(21) M = ( - a + PS)M - coF 

for the additive model. The multiplicative model consists of (19), (20) and 

(22) M = ( - a + PS - coF) M . 

Equations (21), (22) are special cases of the following more complex case: 

(23) M = ( - a + fJS - coxF) M - co2F . 

It is obvious that the models can be reduced to the couple of differential equations 
for the concentrations M and S. We shall investigate these equations mainly in the 
set J* = {[M, S]; M = 0, S ^ 0, M + S ^ 1}, which is biologically meaningful. 
Further, we shall make two basic assumptions. We suppose that the vector field is 
directed into the set & on the part &x = {[M, S]; M + S = 1, M > 0, S > 0} 
of the boundary of J*. Simple calculation shows that this assumption is equivalent 
to the inequality 

(24) y = P ~ oc 

for all introduced models. It can be seen that the models have exactly two stationary 
points and the second assumption is concerned with the behaviour of solutions near 



the stationary point Mi = 0, Sx = 1. We require this point to be a saddle point of 
the systems. It seems to be also biologically reasonable. By calculation, this hypo
thesis is equivalent to the assumption that the second stationary point [M2 , S2] 
belongs to the interior of the set & and leads to the condition 

(25) x(p - a) > oj2y . 

First of all we investigate the multiplicative model in the next section and postpone 
the general case to Section 6. By re-scaling the time parameter and values of con
centration M and S one can come to the following couple of equations (T = kt with 
k = co2 + p - a > 0): 

dx 
(26) — = x' = (1 — y + ax) x — by , 

dT 

y' = X - cy , 

where our previous assumptions mean that a — 0, b — 0, c > b, ac < 1 and the 
stationary point [0, 0] is a saddle point. We remark that a = 0 in the additive 
model and b = 0 in the multiplicative case. 

5. MULTIPLICATIVE MODEL 

This model has two stationary points, namely M1 = 0, Sx = V and 

(27) M2 = - / ( / J ~ a ) _ _ , S2SS*(v + x) + <»y^ 

P(y + x) + coy [i(y + x) + coy 

If we put x = oo(M - M2), y = co(M - M2) + (ft + w) (S - 52), eliminate F 
and denote s = coM2 — %, then the system (19), (20), (22) has the following form: 

(28) x = y(x + s + x), 

(29) y = — x(fi - a - y) + - ^ - (x + s + x) . 
S + X S + X 

It is easy to see that, by omitting the second term in (29), we obtain the system with 
the first integral 

xx 
(30) W(x, y) = y + (fi - a) log (P - a - y) + x log (x + s + x) 

S + X 

in the domain x > — s — x, y < ft - a, which contains the image of M. 

Lemma. Let the junction W be defined by (30) and Tc = {[x, y]; W(x, y) = c}. 
Then Fc is a closed curve which tends to the origin with increasing c. 



Proof . Denote cp(x) = — x(s + x)~l x + x log (x + s + x) and i//(y) = y + 
+ (ft — a) log (/? — a — y). <p and i/̂  are evidently concave functions. As 
max {W(x, y); x > — s — x, y < /> — a} = cp(0) + i/J(0), we have Fc = 0 for c > 
> <p(0) + *//(0) and Fc - [0, 0] for c = <p(0) + i/y(0). If c < cp(0) + ?//(0) then 
there exist exactly two points xt < 0 < x2 such that the inequality cp(x) > c — \j/(0) 
holds if and only if x e ( x l 9 x2). For any such x there exist exactly two points 
}'i(x) < 0 < y2(x) for which W(x, yt(x)) = c, i = 1, 2. This proves that Fc is 
a closed curve. As xx is an increasing function of c and x2 is a decreasing function of c, 
the curves Fc tend to the origin with c increasing to cp(0) + i^(0). 

Proposition 3. Let the conditions y ^ fi — a > 0 be satisfied. If [M(/), 5(t)] is 
a solution of (19), (20), (22) with an initial condition [M(0), S(0)]e^, M(0) > 0, 
t/?^/i 

lim M(t) = M2 , lim S(t) = S2 . 
f—> OO f —> 00 

Proof. By expressing a solution [M(t), S(t)] in terms of x, y we have 

d TT// / \ { w £ 2/ \ x ( 0 + e + ^ 
- W(x(t), y(t)) = - — — y2(t) ^ — > 0 , 
dt s + x p — a — j(t) 

because e < 0, 8 + x > 0, and x(t) > — e — x (as M(t) > 0), y(t) < ft — a (this 
follows from the form of the vector field and the coefficients inequalities). Therefore, 
the solution [x(t), y(t)] crosses the curve Fc from the exterior to the interior. This fact 
together with the preceding lemma proves the statement. 

We should like to point out that the asymptotic behaviour of a solution does not 
depend on the coefficients x, co, whose meaning is rather obscure. 

Remark on the determination of coefficients. The multiplicative model contains 
five coefficients. Two conditions on them are given by (27). Observing the first 
maximum and minimum values of M one can get two independent conditions on 
a, P, co. The last condition on y, x can be obtained from the first minimum value of S. 
Unfortunately, the author was not able to get any serious experimental data to com
pare the model with reality. 

6. GENERAL MODEL 

The discussion of this model, i.e. the system (26), is more complicated and the results 
will not be so complete as for the multiplicative case. The stationary points of (26) 
are [0, 0] and 

, A c - b c - b 
(31) x2 = , y2 = — . 

1 — ac c(l — ac) 

If we put 2s = be"1 + a(c — b) (1 — ac)'1 — c then the matrix of the linearized 
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system near the stationary point [x2, y2] has the eigenvalues ± (c2 + 
+ b - c)1/2. Thus the stationary point [x2, y2] is locally asymptotical stable for 
£ < 0 and it is unstable for £ > 0. The following figure 1 shows the dependence of 
the asymptotic behaviour near to [x2, y2] on the coefficients x, co for the additive 
model (19) -(21). 

^-Ґ(/3-a) ӘC 

stable node 

Fig. 1. 

The case £ = 0 and existence of limit cycles for s near zero will be studied by the 
standard bifurcation techniques (see e.g. Marsden, McCracken [10]). Instead of 
using the general Hopf theorem we shall show the main steps of the method. We 
restrict the parameter £ to the interval ( — (c — b)1/2, (c — b)1/2) and put v = 
= (c — b — £2)1/2. Then the system (26) can be transformed into the following 
polar coordinate form: 

(32) 

(33) 

ť — r[s + r A(cp) cos cp] = Fjr, cp) , 

cp' = v — r A(cp) sin cp — F2(r, cp) , 

where v A(cp) = [v cos cp + (c + s) sin cp] [av cos cp + (a(c + s) — 1) sin cp]. 
We shall investigate the last system in the whole plane. It has the solution r(T) 

(p(x) = VT. Define the map 
0, 

<% т, o) = 

Q + F^Қt), ę(t)) àt - a 

ľғ2(r(t), ę(t)) át - 2ҡj 

where [r(r), <^(T)] is a solution of (32), (33) which satisfies the initial condition 
r(0) = Q, cp(0) = 0. By the implicit function theorem, one can find O0 > 0, t 0 > 0, 
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G0 > 0 such that for any Q e( — Q0, Q0) there exists exactly one fe(27iv_ 1 — r0, 
27iv~1 + T0) , and a e( — a0, a0) for which <P(Q, T, a) = 0. It means that the above 
mentioned solution [r(r), <p(t)] is defined on the interval <0, f> and r(f) = n, 
(p(x) = 27T. 

Denote by P the Poincare map P(Q, S) = G(O, s) — Q. Positive ^-coordinates of 
zero points of P correspond to periodic solutions of (26). The <p-coordinate of a solu
tion is increasing (see (33)) for a sufficiently small O0, and hence the time variable 
can be eliminated. So we have 

(34) r = F r 4 *°>-<-
dcp F2(r, (p) 

Moreover, Q0 can be chosen so small that a solution r(cp, Q) of (34) is an analytical 
function of O, i.e. 

O0 

r((p, Q) = X an(<P> £) Q" • 
n = l 

Substituting this in (34) we obtain the following infinite system of differential 
equations: 

^ ' < ? - « « v - ' « . ( , , ) . « . ( 0 ) - l , 
ácp 

= EV~1 a2(qj) + v~2 A(ę) (v cos rp + є sin </>) a\(ę) , a2(0) = 0 , 
da2(cp) 

á(p 
áa3((p) 

єv * a3(ę) + v 2 A(cp) (v cos ę + є sin ę) . 
d</> 

. [2 a2(<p) + v~2 A(cp) a\((p) sin <p] at(<B), a3(0) = 0, .... 

As we are interested in the nonzero roots of P(O, s), we put 

,Q~1 P(Q,£) for Q + 0N 

/ ( Є ' £ ) = ^ ( 0 , Є ) for Є = 0 

= exp (2яv 's) - 1 + £ a„+ i(2я, e) e " , 

and hence /(0, 0) = 0, (dfjda) (0, 0) = 271V"1 + 0, (dfldg) (0, 0) = a2(27i, 0) = 0. 
This allows to use the implicit function theorem which yields Q1 > 0, 2X > 0 such 
that for every Q e (0, QX) there exists exactly one ^ e ( —s1 ? s^ satisfying /(O, a) = 0, 
It means that there is a closed trajectory of the system (26) passing through the 
point [x 2 + Q, j / 2 ] . Further, we have (ds/dQ) (0) = 0 and 

cVг 

dO2 

diMrls2f 
d£ 

(0, 0) = - f 2а3(2n, 0) - - *Ц-=-f-- (1 - 2ac). 
OO 2я 2v C 
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For example, if 2ac < 1 (i.e. w^x < fi(y + x)) then the function S(Q) has a local 
maximum at Q = 0. It follows that periodic solutions of the system (19), (20), (23) 
occur for negative values of the parameter s. Moreover, a continuity argument 
yields O2 > 0, e2 > 0 such that for any e e ( —e2? 0) there exists one and only one 
§ E (0> Qi) f ° r which e = S(Q). 

In order to examine the stability of periodic solutions we fix Q E ( — Oi,O() and 
£ = S(Q) and put 1I(Q) = (OT/dO) (Q, S(Q)). AS h(0) = 0, ft'(0) = 0, h"(0) = 4a3(2n, 0) 
and 

lim 
Q-^Q 

Ø(Q,І 
1 + Һ(Q) , 

we can state that for 2ac < 1 (i.e. a3(2n, 0) > 0) and sufficiently small positive Q 
the corresponding periodic solution is unstable. Our investigation also shows that 
there is no small periodic solution for s > 0 in the case lac < 1, b > 0. The following 
figures show typical cases of global behaviour of solutions in dependence on the 
increasing parameter a>1. 

Fig. 2. 

Analogously, opposite results hold for 2ac > 1. 

13 



7. APPLYING THE MODELS TO A CHEMOSTAT 

We suppose that a chemostat has a constant di lutation rate v and the evaluation 
for v = 0 can be described by the equat ions (19), (20), (23). As the study of the 
additive model is similar (al though more complicated and not so complete) as in the 
multiplicative case, we shall be concerned with the last one only. The above assump
tions lead to the equat ions 

M = ( - a + J3S - ojF) M - vM , 

(35) S = -yM + xF + v(l - S) , 

F = (y + coF) M - xF - vF . 

Denoting X = M + 5 + F and summing these equations, one obtains X = 
= v(1 — X). If the initial condition X(0) = 1 is supposed, then X(t) = 1 for all 
positive t and therefore the system (35) can be rewritten in the form 

M = [ - ( a + co - v) + (p + co) S + toM] M , 

S = v + x - (y + x) M - (x + v) 5 . 

This system has two stationary points, namely M\ = 0, St = 1, and 

(36) M2(v)= (v + x){fi-a-v)i 

P(y + x) + co(y - v) 

(37) 5 (j/) = a(y + x) + coy + v(y + x - OJ) 

j5(y + x) + oj(y - v) 

The same assumption on the direction of the vector field on the set $x as in Section 4 
gives also the condit ion (24) and, under this condit ion, the stationary point [ M l 9 S^\ 
is a saddle point if and only if the dilutation rate fulfils the inequality 

(38) v < P - a . 

The condit ions (24), (38) allow to proceed as in Section 5. The same t ransformat ion 
yields the equat ions 

x = y(x + e + x + v), 

(x + V) X /n x £V , . 
y = - -̂  ^— (j8 - a - v - v) + *- (x + e + x + v) , 

£ + X + v £ + X + v 

where e = coM2 — x — v < 0, instead of (28), (29), and therefore Proposition 3 
remains true. Having in mind the asymptotic behaviour of a chemostat we can ask 
how the steady state (36), (37) depends on the dilutation rate v. Obviously (dS2\dv) > 
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> 0, and as 

F2(V) = i - M2(V) - s2(v) = iLrf ~ f + f-ziLz L), 
p(y + x) + co(y — v) 

we have 
5 F 2 _ CD(v - vt) ( v - v2) 

dv [j5(y + x) + co(y - v)]2 ' 

where ft — a < vt < v2, provided the condition (24) is satisfied. Thus (dF2\cv) < 0 
on the set (38). Similarly 

dM2 _ O)(v — v3) (v — v4) 

dv [p(y + x) + co(y - v)]2 ' 

where v3 < /J — a < v4, and v3 > 0 (i.e., the steady state M 2 assumes its maximum 
value at v3) if and only if 

(39) P ~a > ^(y + x) + ^ . 
x (jff + cD) (7 + x)' 

Proposition 4. Let the condition (24) be satisfied, let the dilutation rate v be 

constant and let (38) be fulfilled. Then for the initial conditions M(0) > 0, 5(0) > 
> 0, M(0) + 5(0) = 1, the dynamic behaviour of a chemostat (35) is such that 

Um M(t) = M2(v) , lim S(t) - 5 2 (v) , 
t~* 00 t-* 00 

where M2(v), 52(v) are given by (36), (37). Moreover, limF2(t) = F2(v) is a decreasing 
f-»O0 

function of v and M2(v) assumes its maximum value for the dilutation rate v3 > 0 
provided the condition (39) holds. 
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S o u h r n 

DIFERENCIÁLNÍ RŮSTOVÉ MODELY PRO MIKROBIÁLNÍ POPULACE 

JAROSLAV MILOTA 

Na základě studia modelů Monodova a Hinshelwoodova typu jsou v práci odvo
zeny dva modely mikrobiálního růstu, které uvažují rozklad mrtvých buněk v toxické 
složky a složky stimulující růst. Jsou dokázány asymptotické vlastnosti modelů a jsou 
rovněž použity pro popis kontinuální kultivace v chemostatu. 
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