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SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

SOME FAST FINITE-DIFFERENCE SOLVERS 
FOR DIRICHLET PROBLEMS ON GENERAL DOMAINS 

TA VAN DINH 

(Received April 20, 1979) 

Our aim is to piove the existence of asymptotic error expansion to some simple 
finite-difference schemes for Dirichlet problems on general domains which, by 
Richardson extrapolation, lead to fast finite-difference solvers for the problems 
mentioned. 

1. THE DIFFERENTIAL PROBLEM 

In order to simplify the notation we shall consider only the two-dimensional 
geometry. The result can be generalized to the /l-dimensional case. Let D be a bounded 
domain in the (x, y)-plane with a boundary G. Let us consider the boundary value 
problem 

Lu=f(x,y), (x,y)eD, 

where 

u = g(x, y), (x,y)eG, 

Lu = Tu v^9 y^ fa) + O^ v ^ * ' y>> d) " ck ^ U ' 
p ^ To > ° , q ^ go > 0 , c ^0 , 

p, q, c, f, g being given smooth enough functions, p0, go given positive numbers. 
Assume that this problem has a unique smooth enough solution u(x, y). 

2. THE GRID 

Let [h] and {k} be two sequences of positive numbers tending simultaneously to 
zero and 

0 < const < /z/k < const. 
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For some x0, y0 the points 

(xhVj), Xi = x0 + ih , j ; ; = y0 + j k , i,j = 0, + 1 , ±2 , ..., 

form a grid over the (x, y)-plane. Now we describe the grid over D. The points 
(xh y/) which belong to the interior of D are called interior grid points and denoted 
by Dh. The intersections of the boundary G with each grid line x = xf or y = yj 
are called boundary grid points and denoted by Gh. Each interior grid point P(xP, yP) 
has four neighbour grid points, which are the closest to it on the grid lines x = xp 

and y = yP. They are (xP + hp~, yP), (xP - h~, yP), (xP, yP + kP), (xP, yP - k>). 
So we always have /.P S. h, hP ^ h, kP g k, kP :g k. An interior grid point P 
is called strictly interior if hP = hP — h and kp = kP = k. It is called a near-boun
dary one if at least one of the four following inequalities hp < h, hp < h, kP < k, 
kP < k holds. We denote the set of strictly interior grid points by Dh and the set 
of near-boundary ones by D*. Then Dh \J D* = Dh. We shall call the set Dh (J Gh 

a grid with grid spacings h and k over D. This grid is in general not uniform near the 
boundary. 

3. THE DISCRETE PROBLEM 

We consider the following discrete problem with respect to the unknown v(xP, yP) 
defined on Dh \J Gh: 

Lhv = l2l(hp + hp )] [P(XP + hp /2, Vp) (v(xP + /?P, yP) - v(xP, VP))//IP -

- p(xP - hpjl, yP) (v(xP, y>) - v(xP - hp, yP))/hP] + 

+ [2/(/4 + kP)] [q(xP, yP + kP/2)(v(xP, yP + kP) - v(xP, vP))/kP ~ 

- g(^/>, yp ~ kP /2) (v(xP, yP) - v(xP, yP - kP))/kP] -

- c(xP, yP) v(xP, yP) = f(xP, yP) , (xP, yP) G D;,, 

V(XP, yp) = g(^P, yP) , (xP, yp) e Gh . 

It is clear that the operator Lh satisfies the maximum principle. 

4. THE MAIN RESULT 

Theorem 1. Assume that u(x, y) e C5(D), p(x, y), q(x, y) e ^(D) and that the 
problem 

Lw = F(x, y) e Cm(D) , (x, y)eD, 

w = 0 (x, y) e G , 
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has a unique solution we 0+2( D ) # Then for h and k small enough there exist two 
functions wx(x, y) and w2(x, v) independent of h and k such that 

( 1 ) V(XP, » ) - U(XP, » ) = /,- W i ( X p ? V p ) + k2 H , 2 ( X p ; >7p) + 0 ( / 2 3 + fc3) < 

Proof. First, Taylor's formula yields 

Lhu(xP, yP) = Lu(xP, yP) + h2 a(xP, » ) + k2 b(xP, » ) + 0(/z3 + k3) , P e D£ , 

L;ju(xP, yP) = Lu(xP, yP) + 0(h + k) , P e D* , 
where 

"("^(|^5(^"(I)+I(*"'-»S)' 
^ ^ ( " 3 ^ ( * - " » | ) + | ( * ' ^ ) ' 

Then for any Wj(x, 3;) and w2(x, y) e C3(5) we put 

z = v — it — h2wl — k2w2 , 
and we have 

Lhz = h'l-Lw, - O(xP,»)] + k2[-Lw2 - b(xP,»)] + 0(h3 + k3), PeD°h> 

Lhz= 0(h + k), PeD*. 

We choose wt and w2 so that 

Lw, = - a ( x , y) , (x, y) 6 D ; w2 = 0 , (x, y) e G , 

Lw2 = - b(x, y) , (x, y) ED; W2 = 0 , (x, y) e G , 

which exist by assumption. Thus we have 

Lhz = 0(h3 + k3), PeD°h , 

Lhz = 0(h + k) , PeD*. 

z = 0 , ^ e G,,. 

Hence our theorem immediately follows from the following lemma. 

Lemma. Ifz satisfies 

Lhz = <p, PeDh; z = 0 , P e G„, 

then for h and k small enough we have 

max |z| ^ M{max |</>| + max \cp\ . (h2 + k2)} , 
Dh Dh° Dh* 

where M denotes a constant independent of h and k. 
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P r o o f of the lemma. We set z = z ( + z2, where 

Lhzv = <$>, PeDl, 

L,Zl = 0 , PeD*h, 

z . = 0 , PeGh, 

L„z2 = 0 , P e D : , 

L„z2 = v , P e D * , 

z2 = 0 , P e G t . 

To evaluate zv let P(x, y) be the unique smooth enough solution of the differential 
problem 

LB = - 2 , (x,y)eD, B = 0 , ( x , y ) e C , 

which exists by assumption. We have 

0 ^ B(x, y) S. Mi , 

where M, denotes a constant. At the same time 

LhB = LB + 0(h2 + k2), PeD°h , 

LhB = LB + 0(h + k), P e D * . 

Thus for h and k small enough we have 

LhB^ - 1 . 

Now let us consider the problem 

L4(x, y) = - 2 K , (x, y) e D , A(x, y) = 0 , ( x j ) e G , 

where 

K = max |<p| . 
Dh° 

Thus we have on the one hand 

A = KB , 0 i% max A = K max B ^ Mx max \q>\ 
D D DH° 

and on the other hand, for h and k small enough, 

LhA = KLhB ^ - K . 

Then 
- * ( > l ± z i ) ^ 0 , PeD,, 

A ± zt = 0 , P e G h . 
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We deduce A + zx ^ 0, that is |zx | ^ A. Hence 

(2) max |zj | ^ Mx max |(#| . 
Dh Dh° 

The evaluate z2 we first consider the problem 

L;JZ = 0 , PeD°, 

1 ^ = - |<p | , PeD„, 

Z = 0 , P e G;,. 

Then by the maximum principle 

Z ^ 0 , |z2 | ^ Z . 

is clear that Z attain: 
cannot attain it on Dh (because here the right hand member is zero). Let Q e D* be 
the grid point at which Z attains its maximum value. Then the difference equation 
LhZ = — \cp\ written at Q leads to an equality where the right hand member is [<p((?)| = 
= \(p(xQ, yQ)\ and the left hand member is the sum of four nonnegative differences 
between the value of Z at Q and the values of Z at the four neighbour grid points of Q, 
and one nonnegative term cu at Q. Therefore, at least one neighbour grid point of Q 
lies on G. Let S be this point. The value of Z at S must be zero. Then if S lies on the 
grid line x = xQ we have 

[2/(h+ + hQ)] [p(xQ + i/, + , yQ) (Z(xQ, yQ) - 0)//r + ] ^ \<p(Q)\ 
or 

I'KK + hQ)~l [P(*Q - i*c.yQ)(z(*Q,yQ) - o ) / ^ ] £ \<P(Q)\ • 

If S lies on the grid line y = yQ we have 

[2/(/c+ + fc")] [q(xQ, yQ + | fc+)(Z(x e , yG) - 0)//c+] ^ |<p(Q)| 
or 

[2/(/c+ + k~j\ [q(xQ, yQ - ikQ)(Z(xQ, yQ) - 0)fc] ^ \<p(Q)\ . 

Hence we deduce 
min {p0, q0] . Z(xQ, yQ) S \<p(Q)\ . (h2 + k2) , 

that is, we have 

(3) 0 ^ Z(xP, yP) <, Z(XQ, yQ) ^ M2(h
2 + k2) max \<p\ 

Dh* 

for all P e Dh, with M 2 = 1/min {p0, g0}. Then the lemma follows from \z\ ^ \z±\ + 
+ |z2 | and the inequalities (2), (3) with M = max [Ml9 M2). 

N o t e 1. If p = const > 0, q = const > 0 the theorem holds without assuming 
that h and k are small enough because in the proof of the lemma we can take A = 
= K(R2 — x2 — y2), where R denotes the radius of a circle having the centre at 
0(0, 0) and containing D. 
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N o t e 2. The theorem is still available if the term cu in the differential equation 

is replaced by c(x, y, u) with (dcjdu) ^ 0. 

5. CONSEQUENCE 

Theorems 1 leads to a simple process for accelerating the convergence of the method 

by Richardson extrapolation. Assume that we want to calculate the approximate 

value of u(xP, » ) at a grid point P which is common to three grids with grid spacings 

(h, fc), (/?/2, fc), (h, fc/2). We denote the value obtained on the grid with the grid 

spacing (h, k) by vh,k(xP, yP) = vh,k and u(xP, j>) = u. Then by (l) we have 

vh,k - u = h2 w,(xP, j>) + k2 w2(xP, j>) + O(/i3 + k3) , 

vh/2tk __ u _ (hj2y w ^ yJ + k2 w ^ x > ? yJ + 0 ( f c 3 + fc3^ ^ 

V ћЛH _ u = h2 W i ( л > ţ yp) + {kj2y W2(Xp; yp) + 0(h3 + fc3) . 

By eliminating w^Xp, yP) and w2(xF, j>) from these relations we obtain 

^/2,fc + „M/2) _̂  lvh,k = M + 0^3 + fc3^ ^ 

which yields a more accurate approximate value of u(xP, j>) than any of vh,k, vh/2'k, 
vh,k/2. Our algorithm is much simpler than that of [ l ] . 
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S o u h r n 

RYCHLÉ ŘEŠENÍ DIRICHLETOVA PROBLÉMU 
NA OBECNÉ OBLASTI METODOU KONEČNÝCH DIFERENCÍ 

TA VAN DINH 

Autor dokazuje existenci mnohoparametrického asymptotického rozvoje pro chybu 
obvyklého pětibodového diferenčního schématu pro Dirichletův problém pro lineární 
a semilineární eliptickou parciální diferenciální rovnici na obecných oblastech. 
Tento rozvoj dává s použitím Richardsonovy extrapolace jednoduchý způsob 
zrychlení konvergence dané metody. Postup je ilustrován na numerickém příkladě. 
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