## Aplikace matematiky

## Ta Van Dish

Some fast finite-difference solvers for Dirichlet problems on general domains

Aplikace matematiky, Vol. 27 (1982), No. 4, 237-242
Persistent URL: http://dml.cz/dmlcz/103968

## Terms of use:

© Institute of Mathematics AS CR, 1982
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

## SOME FAST FINITE-DIFFERENCE SOLVERS FOR DIRICHLET PROBLEMS ON GENERAL DOMAINS

Ta Van Dinh<br>(Received April 20, 1979)

Our aim is to prove the existence of asymptotic error expansion to some simple finite-difference schemes for Dirichlet problems on general domains which, by Richardson extrapolation, lead to fast finite-difference solvers for the problems mentioned.

## 1. THE DIFFERENTIAL PROBLEM

In order to simplify the notation we shall consider only the two-dimensional geometry. The result can be generalized to the $n$-dimensional case. Let $D$ be a bounded domain in the $(x, y)$-plane with a boundary $G$. Let us consider the boundary value problem

$$
\begin{aligned}
L u & =f(x, y), \quad(x, y) \in D \\
u & =g(x, y), \quad(x, y) \in G
\end{aligned}
$$

where

$$
\begin{gathered}
L u=\frac{\partial}{\partial u}\left(p(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(q(x, y) \frac{\partial u}{\partial y}\right)-c(x, y) u, \\
p \geqq p_{0}>0, \quad q \geqq q_{0}>0, \quad c \geqq 0,
\end{gathered}
$$

$p, q, c, f, g$ being given smooth enough functions, $p_{0}, q_{0}$ given positive numbers. Assume that this problem has a unique smooth enough solution $u(x, y)$.

## 2. THE GRID

Let $\{h\}$ and $\{k\}$ be two sequences of positive numbers tending simultaneously to zero and

$$
0<\text { const }<h / k<\text { const. }
$$

For some $x_{0}, y_{0}$ the points

$$
\left(x_{i}, y_{j}\right), \quad x_{i}=x_{0}+i h, \quad y_{j}=y_{0}+j k, \quad i, j=0, \pm 1, \pm 2, \ldots,
$$

form a grid over the $(x, y)$-plane. Now we describe the grid over $D$. The points $\left(x_{i}, y_{j}\right)$ which belong to the interior of $D$ are called interior grid points and denoted by $D_{h}$. The intersections of the boundary $G$ with each grid line $x=x_{i}$ or $y=y_{j}$ are called boundary grid points and denoted by $G_{h}$. Each interior grid point $P\left(x_{P}, y_{P}\right)$ has four neighbour grid points, which are the closest to it on the grid lines $x=x_{P}$ and $y=y_{P}$. They are $\left(x_{P}+h_{P}^{+}, y_{P}\right),\left(x_{P}-h_{P}^{-}, y_{P}\right),\left(x_{P}, y_{P}+k_{P}^{+}\right),\left(x_{P}, y_{P}-k_{P}^{-}\right)$. So we always have $h_{P}^{+} \leqq h, h_{P}^{-} \leqq h, k_{P}^{+} \leqq k, k_{P}^{-} \leqq k$. An interior grid point $P$ is called strictly interior if $h_{P}^{+}=h_{P}^{-}=h$ and $k_{P}^{+}=k_{P}^{-}=k$. It is called a near-boundary one if at least one of the four following inequalities $h_{P}^{+}<h, h_{P}^{-}<h, k_{P}^{+}<k$, $k_{P}^{-}<k$ holds. We denote the set of strictly interior grid points by $D_{h}^{0}$ and the set of near-boundary ones by $D_{h}^{*}$. Then $D_{h}^{0} \cup D_{h}^{*}=D_{h}$. We shall call the set $D_{h} \cup G_{h}$ a grid with grid spacings $h$ and $k$ over $D$. This grid is in general not uniform near the boundary.

## 3. THE DISCRETE PROBLEM

We consider the following discrete problem with respect to the unknown $v\left(x_{P}, y_{P}\right)$ defined on $D_{h} \cup G_{h}$ :

$$
\begin{gathered}
L_{h} v=\left[2 /\left(h_{P}^{+}+h_{P}^{-}\right)\right]\left[p\left(x_{P}+h_{P}^{+} / 2, y_{P}\right)\left(v\left(x_{P}+h_{P}^{+}, y_{P}\right)-v\left(x_{P}, y_{P}\right)\right) / h_{P}^{+}-\right. \\
\left.\quad-p\left(x_{P}-h_{P}^{-} / 2, y_{P}\right)\left(v\left(x_{P}, y_{P}\right)-v\left(x_{P}-h_{P}^{-}, y_{P}\right)\right) / h_{P}^{-}\right]+ \\
+\left[2 /\left(k_{P}^{+}+k_{P}^{-}\right)\right]\left[q\left(x_{P}, y_{P}+k_{P}^{+} / 2\right)\left(v\left(x_{P}, y_{P}+k_{P}^{+}\right)-v\left(x_{P}, y_{P}\right)\right) / k_{P}^{+}-\right. \\
\left.-q\left(x_{P}, y_{P}-k_{P}^{-} / 2\right)\left(v\left(x_{P}, y_{P}\right)-v\left(x_{P}, y_{P}-k_{P}^{-}\right)\right) / k_{P}^{-}\right]- \\
\quad-c\left(x_{P}, y_{P}\right) v\left(x_{P}, y_{P}\right)=f\left(x_{P}, y_{P}\right), \quad\left(x_{P}, y_{P}\right) \in D_{h}, \\
v\left(x_{P}, y_{P}\right)=g\left(x_{P}, y_{P}\right), \quad\left(x_{P}, y_{P}\right) \in G_{h} .
\end{gathered}
$$

It is clear that the operator $L_{h}$ satisfies the maximum principle.

## 4. THE MAIN RESULT

Theorem 1. Assume that $u(x, y) \in C^{5}(\bar{D}), p(x, y), q(x, y) \in C^{4}(\bar{D})$ and that the problem

$$
\begin{aligned}
L w & =F(x, y) \in C^{m}(\bar{D}), & & (x, y) \in D, \\
w & =0 & & (x, y) € G,
\end{aligned}
$$

has a unique solution $w \in \mathrm{C}^{m+2}(\bar{D})$. Then for $h$ and $k$ small enough there exist two functions $w_{1}(x, y)$ and $w_{2}(x, y)$ independent of $h$ and $k$ such that

$$
\begin{equation*}
v\left(x_{P}, y_{P}\right)-u\left(x_{P}, y_{P}\right)=h^{2} w_{1}\left(x_{P}, y_{P}\right)+k^{2} w_{2}\left(x_{P}, y_{P}\right)+O\left(h^{3}+k^{3}\right) . \tag{1}
\end{equation*}
$$

Proof. First, Taylor's formula yields

$$
\begin{gathered}
L_{h} u\left(x_{P}, y_{P}\right)=L u\left(x_{P}, y_{P}\right)+h^{2} a\left(x_{P}, y_{P}\right)+k^{2} b\left(x_{P}, y_{P}\right)+O\left(h^{3}+k^{3}\right), \quad P \in D_{h}^{0}, \\
L_{h} u\left(x_{P}, y_{P}\right)=L u\left(x_{P}, y_{P}\right)+O(h+k), \quad P \in D_{h}^{*},
\end{gathered}
$$

where

$$
\begin{aligned}
& a(x, y)=(1 / 24) \frac{\partial^{3}}{\partial x^{3}}\left(p(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial x}\left(p(x, y) \frac{\partial^{3} u}{\partial x^{3}}\right), \\
& b(x, y)=(1 / 24) \frac{\partial^{3}}{\partial y^{3}}\left(q(x, y) \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial y}\left(q(x, y) \frac{\partial^{3} u}{\partial y^{3}}\right) .
\end{aligned}
$$

Then for any $w_{1}(x, y)$ and $w_{2}(x, y) \in C^{3}(\bar{D})$ we put

$$
z=v-u-h^{2} w_{1}-k^{2} w_{2},
$$

and we have

$$
\begin{gathered}
L_{h} z=h^{2}\left[-L w_{1}-a\left(x_{P}, y_{P}\right)\right]+k^{2}\left[-L w_{2}-b\left(x_{P}, y_{P}\right)\right]+O\left(h^{3}+k^{3}\right), \quad P \in D_{h}^{0}, \\
L_{h} z=O(h+k), \quad P \in D_{h}^{*} .
\end{gathered}
$$

We choose $w_{1}$ and $w_{2}$ so that

$$
\begin{array}{llll}
L w_{1}=-a(x, y), & (x, y) \in D ; & w_{1}=0, & (x, y) \in G, \\
L w_{2}=-b(x, y), & (x, y) \in D ; & w_{2}=0, & (x, y) \in G,
\end{array}
$$

which exist by assumption. Thus we have

$$
\begin{aligned}
L_{h} z & =O\left(h^{3}+k^{3}\right), & & P \in D_{h}^{0}, \\
L_{h} z & =O(h+k), & & P \in D_{h}^{*} . \\
z & =0, & & P \in G_{h} .
\end{aligned}
$$

Hence our theorem immediately follows from the following lemma.
Lemma. If z satisfies

$$
L_{h} z=\varphi, \quad P \in D_{h} ; \quad z=0, \quad P \in G_{h},
$$

then for $h$ and $k$ small enough we have

$$
\max _{D_{h}}|z| \leqq M\left\{\max _{D_{h^{0}}}|\varphi|+\max _{D_{h^{*}}}|\varphi| \cdot\left(h^{2}+k^{2}\right)\right\},
$$

where $M$ denotes a constant independent of $h$ and $k$.

Proof of the lemma. We set $z=z_{1}+z_{2}$, where

$$
\begin{aligned}
L_{h} z_{1} & =\varphi, & & P \in D_{h}^{0}, \\
L_{h} z_{1} & =0, & & P \in D_{h}^{*}, \\
z_{1} & =0, & & P \in G_{h}, \\
L_{h} z_{2} & =0, & & P \in D_{h}^{0}, \\
L_{h} z_{2} & =\varphi, & & P \in D_{h}^{*}, \\
z_{2} & =0, & & P \in G_{h} .
\end{aligned}
$$

To evaluate $z_{1}$ let $B(x, y)$ be the unique smooth enough solution of the differential problem

$$
L B=-2, \quad(x, y) \in D, \quad B=0, \quad(x, y) \in G,
$$

which exists by assumption. We have

$$
0 \leqq B(x, y) \leqq M_{1},
$$

where $M_{1}$ denotes a constant. At the same time

$$
\begin{array}{ll}
L_{h} B=L B+O\left(h^{2}+k^{2}\right), & P \in D_{h}^{0}, \\
L_{h} B=L B+O(h+k), & P \in D_{h}^{*} .
\end{array}
$$

Thus for $h$ and $k$ small enough we have

$$
L_{h} B \leqq-1 .
$$

Now let us consider the problem

$$
L A(x, y)=-2 K, \quad(x, y) \in D, \quad A(x, y)=0, \quad(x, y) \in G,
$$

where

$$
K=\max _{D_{\mathrm{h}^{\mathrm{o}}}}|\varphi| .
$$

Thus we have on the one hand

$$
A=K B, \quad 0 \leqq \max _{D} A=K \max _{D} B \leqq M_{1} \max _{D_{n}^{\circ}}|\varphi|
$$

and on the other hand, for $h$ and $k$ small enough,

$$
L_{h} A=K L_{h} B \leqq-K .
$$

Then

$$
\begin{aligned}
& L_{h}\left(A \pm z_{1}\right) \leqq 0, \quad P \in D_{h}, \\
& A \pm z_{1}=0, \quad P \in G_{h} .
\end{aligned}
$$

We deduce $A \pm z_{1} \geqq 0$, that is $\left|z_{1}\right| \leqq A$. Hence

$$
\begin{equation*}
\max _{D_{h}}\left|z_{1}\right| \leqq M_{1} \max _{\mathrm{D}_{h^{0}}}|\varphi| . \tag{2}
\end{equation*}
$$

The evaluate $z_{2}$ we first consider the problem

$$
\begin{aligned}
L_{h} Z & =0, & P \in D_{h}^{0}, \\
L_{h} Z & =-|\varphi|, & P \in D_{h}, \\
Z & =0, & P \in G_{h} .
\end{aligned}
$$

Then by the maximum principle

$$
Z \geqq 0, \quad\left|z_{2}\right| \leqq Z .
$$

Now we have to evaluate $Z$. It is clear that $Z$ attains its maximum value on $D_{h}$, but cannot attain it on $D_{h}^{0}$ (because here the right hand member is zero). Let $Q \in D_{h}^{*}$ be the grid point at which $Z$ attains its maximum value. Then the difference equation $L_{h} Z=-|\varphi|$ written at $Q$ leads to an equality where the right hand member is $|\varphi(Q)|=$ $=\left|\varphi\left(x_{Q}, y_{Q}\right)\right|$ and the left hand member is the sum of four nonnegative differences between the value of $Z$ at $Q$ and the values of $Z$ at the four neighbour grid points of $Q$, and one nonnegative term $c u$ at $Q$. Therefore, at least one neighbour grid point of $Q$ lies on $G$. Let $S$ be this point. The value of $Z$ at $S$ must be zero. Then if $S$ lies on the grid line $x=x_{Q}$ we have

$$
\left[2 /\left(h_{Q}^{+}+h_{Q}^{-}\right)\right]\left[p\left(x_{Q}+\frac{1}{2} h_{Q}^{+}, y_{Q}\right)\left(Z\left(x_{Q}, y_{Q}\right)-0\right) / h_{Q}^{+}\right] \leqq|\varphi(Q)|
$$

or

$$
\left[2 /\left(h_{Q}^{+}+h_{Q}^{-}\right)\right]\left[p\left(x_{Q}-\frac{1}{2} h_{Q}^{-}, y_{Q}\right)\left(Z\left(x_{Q}, y_{Q}\right)-0\right) / h_{Q}^{-}\right] \leqq|\varphi(Q)|
$$

If $S$ lies on the grid line $y=y_{Q}$ we have

$$
\left[2 /\left(k_{Q}^{+}+k_{Q}^{-}\right)\right]\left[q\left(x_{Q}, y_{Q}+\frac{1}{2} k_{Q}^{+}\right)\left(Z\left(x_{Q}, y_{Q}\right)-0\right) / k_{Q}^{+}\right] \leqq|\varphi(Q)|
$$

or

$$
\left[2 /\left(k_{Q}^{+}+k_{Q}^{-}\right)\right]\left[\left.q\left(x_{Q}, y_{Q}-\frac{1}{2} k_{Q}^{-}\right)\left(Z\left(x_{Q}, y_{Q}\right)-0\right) \right\rvert\, k_{Q}^{-}\right] \leqq|\varphi(Q)| .
$$

Hence we deduce

$$
\min \left\{p_{0}, q_{0}\right\} \cdot Z\left(x_{Q}, y_{Q}\right) \leqq|\varphi(Q)| \cdot\left(h^{2}+k^{2}\right),
$$

that is, we have

$$
\begin{equation*}
0 \leqq Z\left(x_{P}, y_{P}\right) \leqq Z\left(x_{Q}, y_{Q}\right) \leqq M_{2}\left(h^{2}+k^{2}\right) \max _{D_{h^{*}}}|\varphi| \tag{3}
\end{equation*}
$$

for all $P \in D_{h}$, with $M_{2}=1 / \min \left\{p_{0}, q_{0}\right\}$. Then the lemma follows from $|z| \leqq\left|z_{1}\right|+$ $+\left|z_{2}\right|$ and the inequalities (2), (3) with $M=\max \left\{M_{1}, M_{2}\right\}$.

Note 1. If $p=$ const $>0, q=$ const $>0$ the theorem holds without assuming that $h$ and $k$ are small enough because in the proof of the lemma we can take $A=$ $=K\left(R^{2}-x^{2}-y^{2}\right)$, where $R$ denotes the radius of a circle having the centre at $0(0,0)$ and containing $D$.

Note 2. The theorem is still available if the term $c u$ in the differential equation is replaced by $c(x, y, u)$ with $(\partial c / \partial u) \geqq 0$.

## 5. CONSEQUENCE

Theorems 1 leads to a simple process for accelerating the convergence of the method by Richardson extrapolation. Assume that we want to calculate the approximate value of $u\left(x_{P}, y_{P}\right)$ at a grid point $P$ which is common to three grids with grid spacings $(h, k),(h / 2, k),(h, k / 2)$. We denote the value obtained on the grid with the grid spacing $(h, k)$ by $v^{h, k}\left(x_{P}, y_{P}\right)=v^{h, k}$ and $u\left(x_{P}, y_{P}\right)=u$. Then by (1) we have

$$
\begin{aligned}
v^{h, k}-u & =h^{2} w_{1}\left(x_{P}, y_{P}\right)+k^{2} w_{2}\left(x_{P}, y_{P}\right)+O\left(h^{3}+k^{3}\right), \\
v^{h / 2, k}-u & =(h / 2)^{2} w_{1}\left(x_{P}, y_{P}\right)+k^{2} w_{2}\left(x_{P}, y_{P}\right)+O\left(h^{3}+k^{3}\right), \\
v^{h, k / z}-u & =h^{2} w_{1}\left(x_{P}, y_{P}\right)+(k / 2)^{2} w_{2}\left(x_{P}, y_{P}\right)+O\left(h^{3}+k^{3}\right) .
\end{aligned}
$$

By eliminating $w_{1}\left(x_{P}, y_{P}\right)$ and $w_{2}\left(x_{P}, y_{P}\right)$ from these relations we obtain

$$
\frac{4}{3}\left(v^{h / 2, k}+v^{h, k / 2}\right)-\frac{5}{3} v^{h, k}=u+O\left(h^{3}+k^{3}\right)
$$

which yields a more accurate approximate value of $u\left(x_{P}, y_{P}\right)$ than any of $v^{h, k}, v^{h / 2, k}$, $v^{h, k / 2}$. Our algorithm is much simpler than that of [1].

## Reference

[1] V. Pereyra, W. Proskurowski, O. Widlund: High order fast Laplace solvers for Dirichlet problem on general domains. Math. Comp. 31, 137 (1977), 1-17.

## Souhrn

## RYCHLÉ ŘEŠENÍ DIRICHLETOVA PROBLÉMU NA OBECNÉ OBLASTI METODOU KONEČNÝCH DIFERENCÍ

Ta Van Dinh

Autor dokazuje existenci mnohoparametrického asymptotického rozvoje pro chybu obvyklého pětibodového diferenčního schématu pro Dirichletův problém pro lineárni a semilineární eliptickou parciální diferenciální rovnici na obecných oblastech. Tento rozvoj dává s použitím Richardsonovy extrapolace jednoduchý způsob zrychlení konvergence dané metody. Postup je ilustrován na numerickém přikladě.

[^0]
[^0]:    Author's address: Ta Van Dinh, Polytechnical Institute of Hanoi, Vietnam.

