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SVAZEK 27 (1982) A P L I K A C E M ATE M A T I K Y ČÍSLO 4 

ON A NON-MARKOVIAN QUEUEING PROBLEM 
UNDER A CONTROL OPERATING POLICY 

AND START-UP TIMES 

A R U N B O R T H A K U R , R U B Y G O H A I N 

(Received May 20, 1980) 

1. I N T R O D U C T I O N 

In most queueing processes, the system operates whenever a unit arrives and it 
becomes idle as soon as the system becomes empty. Lately, the concept of a modified 
operating rule called "control operating policy" and "start-up" times in the queueing 
theory have been introduced by various authors, see Heyman [3], Baker [2] etc. 

The control operating policy and the start-up times are: (a) Turn the system on 
when n (an integer) number of customers are present in the queue and then turn 
the system off when it is empty. Once the system becomes empty, it remains idle till 
the queue length again reaches n or more, (b) When the queue lentth reaches n the 
system starts and the server blocks the counter for a random amount of time called 
"start-up" time while doing certain pre-service work. When the period of start-up 
time is over the server takes units for service one after another under FCFS discipline 
till the system becomes empty. 

In the study of the economic behaviour of the system M/G/l, Heyman [3] assumed 
that the successive start-up times are identically zero. Baker [2] showed that although 
the addition of start-up times generally makes the non-Markovian queueing problem 
difficult to analyse, the simple queue with exponential start-up can be handled easily. 
The objective of our present note is to obtain the distribution of the number of custo
mers in the queue (those who are actually waiting in the waiting line) for the model 
M/G/l under the control operating policy and start-up times. 

We consider here that customers arrive in accordance with a Poisson process 
with rate A and form a waiting line. When the queue length reaches n(> 1), the server 
beings start-up. The duration of the start-up times is assumed to be distributed expo
nentially with the mean l/v. The customers are served in a system of one server 
according to a general service time distribution with the density d(t) = n(x) (exp — 
— fo n(y) dy}, where n(y) dy is the conditional probability that the service will be 
completed m the interval (y, y + dy) provided it has not been completed till the 
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time y. When the system becomes empty it remains idle till the waiting line reaches 
n or more. 

3. STATE EQUATIONS 

Let us define; 

Pr 0(t) ~ Probability that at time t, the queue length is equal to r and the service 

channel is idle (r _ 0). 

P. .(t) = Probability that at time t, the queue length is equal to i and the service 

channel is busy (i „ 0). 

Pi j(x, t) _ Probability that at time t, the queue length is equal to i and a unit is 
being serviced with elapsed service time lying between x and x + dx 
(i ;> o). 

F(s) = Laplace transform (L.T.) of the function F(t). 

Clearly, 
/•oo 

P.,(0 = P.,,(x,0dx. 

The difference-differential equations govering the system are as follows: 

. ' C O 

(1) (d/dt) Po>o(0 = -A" Po,o(0 + - \ M ( * . 0 *(*) dx > 

(2) (d/dt) Pr>0(f) = -A Pr>0(r) + A P r _ . >0(t) ; 1 £ r «, n - 1 , 

(3) (d/dt) Pr>0(t) = -(A + v) Pr>0(f) + XPr^ >0(t) ; r £ « , 

(4) (3/&c) P0>1(x, r) + (djdt) P0>1(x, 0 = - [A + -(x)] P0>1(x, t), 

(5) (a/3x) P M (x , t) + (apt) P u ( x , t) = - [ A + i~(„)] P;>1(x, t) + 

+ A P j _ 1 > 1 ( x , t ) ; i ^ 1 , 

/•co 

(6) P M (0 , t) = P i+1>1(x, t) r,(x) dx ; 0 g i _; „ - 2 , 

/•GO 

(7) Pu(0, t) - P l + l i l ( x , 0 iy(x) dx + v Pi+lt0(t); i „ n - 1 . 

3. SOLUTION OF THE STATE EQUATIONS 

Let the initial condition of the system be Po>0(0) — 1, i.e., the time is reckoned 
from the instant when the service channel is idle and there is no one waiting in the 
queue. 
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Define the following generating functions: 

P(x,t;z) = ^ziPu(x,t), \z\ g 1 , 
i = 0 

oo 

P(t,z) = Z z ' P , 1 ( 0 , | z | g l . 
i==0 

Obviously, 
/•CO 

P(>,z) = P(x, t ; z ) d x . 

Multiplying (4) and (5) by the appropriate powers of z and then adding; we find 

(8) (djdx) P(x, t; z) + (djdt) P(x, t; z) + [A + rj(x) - AZ] P(x, t; z) = 0 . 

Similarly, from (6) and (7), we get 

(9) z P(0, t; z) = P(x, t; z) n(x) dx - P0>1(x, t) rj(x) dx + 
Jo Jo 

+ v Z p,-,0(t) z ' . 
j = /i 

The solution of the Lagrangian-type equation given by (8) is 

(10) P(x, t; z) = K(t - x; z) exp { - N ( x ) - (A - Xz) x) , 

where N(x) = J0 r\(y) dy and K(.; z) is given by 

K(-y;z) = 0 for y^O, 

X(t; z ) = P(0, t; z) for t > 0 . 

Performing the L.T. on (10), we get 

(11) F(x, s; z) = P(0, 5; z) exp {-N(x) ~ x(s + A - Xz)} . 

Further, solving recursively the L.T. of (2) and (3) we find, respectively, 

(12) Pr?0(s) = [X\(s + A)]' P0t0(s) ; 1 ^ r 1% n - 1 , 

(13) Pr?0(s) = 4 5 + X)l~»(s + A + v ) " - ' - 1 P0<0(s) ; r = n . 

Making use of (11), (13) and the L.T. of (l), (9) we conclude 

(14) P(0, s; z) = Q(s, z)\\z - d(s + A - Az)] , 

where 
<2(5, z) = 1 - [(s + A) - vX"z"\(s + A + v - Az) (5 + A)""1] P0>0(S). 

From (11) and (14) we have 

(15) p(s,z)-l-^s + x - ^ . eM 
s + Å - Àz z - d(s + /. — лz) 
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The above expression gives the L.T. of the probability generating function (pgf) 
of the queue length when the service channel is busy. 

Expanding the right-hand side of (15) in a power series of z and collecting the 
coefficient of z1 we can determine theoretically all Pt {(s), i ^ 0 in terms of P0t0(s), 
whence P0,o(5) c a n be derived by the normalizing condition of the state probabilities. 
Inversion of Piti(s) and Pr,o(s) (given by (12) and (13)) leads to the determination 
P u ( f ) and pj(t). 

4. MARKOVIAN QUEUEING MODEL 

As a special case, let us now discuss the queueing system where the service time 
distribution is exponential with the mean (i/H). Accordingly, we get from (15) 

(16) P(s, z) = [1 - {(s + A) -

- vz"X"l(s + X + v- Xz) (s + A)""1} Po,o(s)]IM(s + >• + AO ~ *-} - A<] • 

The denominator of (16) can be written as 

/(z) = (-A)(z-a)(z-/?), 

where a and fi are the two roots of the quadratic equation f(z) = 0. 
Now expanding the right-hand side of (16) in powers of z and collecting the co

efficients of z\ we get 

(17) PM = [{((s + m (l/a/i) t 1 / a - T } P0,o(s) ~ 
fc = 0 

- {(1/A) (1/a/?) t l / a ' - y } ] , O g i l B - 1 , 
fc = 0 

(18) P u ( s ) = [{((s + A ) / A ) ( l / « / ? ) i l / a ' - T } -
fc = 0 

- {vA"~7(s + A)""1 (s + X + v)(l/aj8) 

'T" l W _ 1 " ^ ) ( ^ + * + v))'+W-}] IVo(*) -
7 = 1 fc=0 

- [ ( l / A ) ( l / a / ? ) t l / a ' - ^ ] , i^n. 
fc = 0 

The value of P0 0(s) can be obtained by using the normalizing condition, viz., 

n — 1 oo T i — 1 oo 

IVo(s) + Z Pr,o(s) + Z ^,.o(s) + Z I\i(s) + Z P>AS) = (i/s). 
r = l r = 7i i = 0 j = n 

which we omit here due to the lack of space. 

246 



Equilibrium Results. Let Pr 0 and Pf t be the steady state probabilities corres
ponding to Pr,o(0 an (^ -°i,i(0' respectively. Applying the well known Tauberian 
theorem to (12), (13), (17), and (18), we get 

P,,o = ^o.o > 1 £ r _ n - 1 , 

Pf,o = 0 '-"+ 1Po,o, r _ n , 

1 - Of+1 

Pu = e — ^ c o , 0 _ i _ n - 1 , 
1 — O 

p,, = 
i - Q 1+1 

1 — 0 fc = 0 ?>'й' ł1-fг7 :'}] ř»- '-"• 
where 

O = A / / Í ( < 1 ) , 0 = A/(A + v) and w = V//Í - O(l - 0)/0 . 

The normalizing condition of the steady state probabilities leads to the determina
tion of P00 as 

^o,o = v(l - O) , 

where v = [(1 - 0)/{0 + n(l - 0)}] . 

For convenience, let us write Pf = Pf 0 + Pf>l. Thus, we have 

Pf - v(l - OI + 2 ) , 0 _ i _ n - 1 , 

p. = !;[^i-» + 3 ( l - O"-1) + (1 - O) {OJ"-" + 3 + O0f'-R + 1 -

- ( 1 + o ) 0 ' - - " + 2/(O^-0)}], / _ « , 
where 0 4= O. 

The mean number of customers in the queue, say, L(n) is given by 

7 1 - 1 0 0 

L(n) = I «P, + I fP, = P[«(II - l)/2 - o3/(l - o)2 + 
i = 1 i = n 

+ {(0 - O + O2 - O20) (n0 - n02 + 02)/(0 - Q) (1 - 0)2} -

- {O(l - 0) (nO2 - nO3 + O3)/(l - £) 2 (0 - O)}] . 

5. INVENTORY QUEUEING ANALOGUE 

Consider a single product inventory system for which replenishment items are 
supplied by a single production facility one by one. The system operates under 
a base-stock control policy in which each production run continues until on-hand 
stock is raised to the desired base-stock level, denoted by M. When the 
inventory is at the base-stock level, the production facility is idle. It remains idle 
until customer's demand reduces inventory to a pre-determined re-order level denoted 
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by R. As soon as the inventory level first drops to R, a start-up interval occurs after 
which replenishment items are produced till the stock is raised to M. The behaviour 
of the Markovian model of the production inventory system may be viewed as an 
M / M / 1 queue with exponential start-up, where start-up begins when the queue 
size reaches M — R = n. 

In order to study the economic behaviour of the system it is necessary to derive 
the mean inventory level I, the mean backlog level B and the mean set up rate S, as 
these three factors commonly account for the operating cost in most inventory analy
sis. These factors are defined by 

M 

(19) I =E(M- i ) (P l , 0 + Pj_1)1), 
i = 0 

B = I ( i - M ) ( P i , 0 + Pj_1>1), 
i = M 

S = vX(\ - O) . 

Moreover, it is well known that the performance of an inventory system is reflected 
by the cost of operation per unit time. Accordingly, a representative cost function 
that suits the present inventory model may be written as 

(20) C(M, R) = C0 + hi + pB + kS, 

where C0 is the preparatory cost which is fixed for the inventory level, h is the holding 
cost associated with I, p is the penalty cost associated with B and k is the fixed cost 
associated with each start-up. 

The expressions represented in (19) may be substituted into (20) to obtain the desired 
cost function. As I and B depend on whether R is positive or negative, we present 
below two expressions for C(M, R) according as R = 0 and R < 0 for a Markovian 
production inventory system. 

R = 0 

C(M, R) = C0 + hv[M(M - R) - (M - R)(M - R - l)/2 - MO/(l - O) + 

+ R{QI(1 - O) + (A/v)} + O2/(l - (?) - {(1 - O) (A + v)/(OA + Ov - A)} x 

x {O3/(l - O)2 - A3/v2(A + v)}] + (h + p) v[(OV+1 - e " ) / ( l - Q)2 + 

+ {(1 - O)(A + v)/(OA + Ov - A)} {O/* + 3/(l - O)2 - A« + 3/v2(A + v)*+1}] + 

+ kvA(l - O) ; 

R < 0 

C(M, R) = C0 + /7v[M(M + l)/2 - MO/(1 - O) + O2(l - OM)/(1 - O)2] + 

+ pv[R(R + l)/2 - R{QI(1 - O) + (A/v)} + 
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+ Q2(Q - QM)I(\ ~ Q)2 + {(1 - (?) (A + v)\(QX + Ov - A)} x 

x {<?3/(l - e)2 - P\v2(k + v)}] + kvA(i - O) . 

The above results are in agreement with that of Baker [1] with C0 = 0. 

PARTICULAR CASES 

By varying n and 9, a number of particular cases can be derived. We present below 
the results for some of them: 

Case I. 6 = 0; this implies that there is no start-up in the system, rather the system 
operates as soon as the queue length reaches n. Note that w9 -> e as 0 -> 0. Therefore 
we have 

Pr,0 = (1 - Q)\n , 0 = r S n - 1 , 

-°u = (<? - Qi+2)l" , 0 £ i £ n - 1 , 

p . x = (^'-" + 2 - Qi + 2)jn, i = n, 

L(n)= (n - l ) /2 + Q2\(\ - O). 

Case II. 0 = 0, n = 1, this implies the simple queue M/M/l. Here 

iYo = (1 - < ? ) , 

Ffl = ( 1 - O)O^/+1 , i = 0, 

L(tl) = O^2/(1 - O). 

R e m a r k s . While the mathematical approach to this problem is useful to the theo
rists of OR, the numerical analysis of the problem will be of much help to the 
applied researchers. The computational aspects of the operational parameters of the 
single server and bulk service queue are the subject matter of another paper, which 
will appear elsewhere. 
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S o u h r n 

O NEMARKOVOVSKÉM MODELU HROMADNÉ OBSLUHY 
SE ZPOŽDĚNÍM A ROZBĚHOVÝM ČASEM 

ARLJN BORTHAKUR, RUBY GOHAIN 

V článku se popisuje model systému hromadné obsluhy, v němž obsluhová linka 
začne reagovat na požadavky zákazníků teprve, když délka fronty dosáhne určité 
pevné hranice; každý pracovní interval navíc začíná náhodným rozběhovým časem. 
Autoři ukazují rovněž souvislost s jistým modelem řízení zásob. 

Authors addresses: Dr. Arun Borthakur, Dr. Ruby Gohain, Department of Statistics Gauhati 
University, Gauhati 781014, Assam, India. 
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