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SOME REMARKS ABOUT THE MONOTONE INCLUSION
FOR SOLUTIONS OF NONLINEAR EQUATIONS
BY REGULA-FALSI-LIKE METHODS

NORBERT SCHNEIDER

(Received February 12, 1981)

INTRODUCTION

In [5] and [6] Regula-falsi-like methods are considered in order to obtain sequen-
ces of upper and lower bounds for solutions of nonlinear equations. By using
a generalization of Schmidt’s concept of a divided difference operator the results of [6]
are generalized in [7].

The method which is considered in [5], has the advantage that the order of con-
vergence is 1 + /2 instead of the typical order of (1 + ./5)/2 for Regula-falsi
methods. In this paper the enclosure results of [5] are generalized in the same manner
as it was done for [6] in [7]. But if this method is realized by operators which are
not divided difference operators, it can only be shown that the order of convergence
is 2. This fact was also mentioned in [5].

We also consider a new iteration method in this paper. It is derived from Schmidt’s
method, but it works with much less effort and it is quadratically convergent. It is
more effective than other known methods in the sense of Ostrowski [4].

2. PRELIMINARIES

The definitions and properties used in connection with the cone which introduces
a partial ordering in a Banach space B, are found in [8].

For x, yeR", x < y if and only if xV < y, i = 1(1) n. S(B) means the set
of all continuous linear operators (B — B).

Kantorovich Lemma [1]: Let B be a Banach space, which is partially ordered
by a closed regular cone, and A([x, y] = B — B) a continuous, isotone maping.
If x < A(x) and A(y) < y, then A has a fixed point in [x, y].

As a measure of the rate of convergence of iterative processes we use the R-order
defined in [3]. '
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3. GENERALIZATION OF ENCLOSURE RESULTS

In this paper B denotes a Banach space which is partially ordered by a closed
regular cone.

In order to enclose the solutions of F(x) =0, F(V = B— B) in an interval
[x,, »,] = ¥, Schmidt [5] considers the following iteration method

(3.1) {F(Yk) + & F(yie 1> i) (xi — )’k? =0
F(J’k) +9 F(xka )’k) ()’k+1 — W) = 0.

0 F(V x V = B x B — S(B)) denotes a mapping which satisfies

(3-2) dF(x;y)(x — y) = F(x) — F(y).

This concept of a divided difference operator can be generalized in the following
manner.

" Definition 3.1. Given an operator F(V = B — B). A mapping AM := {(x, y)‘
l x,yeV;x,y comparable} — S(B)) is called generalized divided difference
operator (“verallgemeinerte Steigung”) of F if

(33) Al 1) (x = 1) Z F(x) ~ F(), (x,y)e M.

A realization of this concept in the case B = R" is given in [7]. By using this
generalization the following theorem can be proved. It generalizes an enclosure
theorem proved in [5]. :

Theorem 3.1. Let F(V = B — B) be a continuous mapping. Suppose there are
Yo, ¥1 €V, such that

Yo 2 V1» F(.Vx) 0.
The mapping A is a generalized divided difference operator with the property
(3-4) Ay, 01) 2 A(uz, v,), uyp Zuy, v 20,

Assume there exist a nonnegative, injective mapping Te S(B) and a mapping
G(B — B) such that

35 TG <1,

(3:5) T{G + A(u,v)} =0 forall (u,v)eM,

and an x, €V, [xl, xl] < V, which is a solution of the equation

(3'6) F(J’l) + A()’o')’1) (xl_.V1) = 0.

Then the iteration method

(3.6a) ; {F(J’k) + A(yk~1’ )’x) (i — y) =0,
F(,Vk) + A(xh }’k) (Yk+1 - J’k) =0
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is well defined. This means there exist solutions X, 11, Yx+1 0f the linear equations
(3-6).
The monotone sequences (x), (i) have limits x*. y* , y* is a solution of F(x) = 0

and we get the monotone enclosure
(37) xS XS S SXRS Y S LS S S

for any solution z* € [x,, y,] of F(x) = 0.

Moreover, if there exists an operator S(B — B) with the properties
(3-8) S< —A(m,v), uzv, 0<S 'eS(B),
then x* = y*.

Proof. Let x; € V be a solution of the equation (3.6) such that [x,, y,] = V.
Then we get

F(x) 2 F(y1) + A(yy, x1) (¥ = y1) Z F(y,) + Ao, y1) (1 — ¥y) = 0.
We consider the continuous operator H defined by
H(z):=z + TF(z), ze[xy,y]-
zy 2 z, implies
H(zy) — H(z;) = z; — z, + T{F(z,) — F(2,)} 2 z; — 2z, + TA(zy, z,) (z, — z,) =
2 T{G + A(zy, z,)} (z, — 2z,) 2 0,
so H is isotone. Together with
H(x,) = x; + TF(x,) = x,,
H(y;) =y + TF(y,) < yy,

Kantorovich Lemma guarantees the existence of a fixed point z* € [x,, y,], which
is a solution of F(x) = 0.

It will be proved by induction that
(3-9) X = 2% 2 Y £ V-1 F(_Vk) 0.
(3.9) is correct for k = 1.

We define the continuous operator

Hyz):= z + T{F(») + A(xw. ) (z — y)}, ze [z*, »] -
zy 2 z, implies
Hk(z]) - Hk(zz) =7z, — 2z, + TA(xk, Yk) (zl — Zz) >
2 T{G + A(x, yi)} (21 — z,) 2 0,

so H, is isotone.
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Because of
Hy(z*) = 2* + T{F(y) + A(xi yi) (z* = )} 2
> z* + T{F(yi) + A(z*, 3) (z* — y)} = z* + TF(z¥) = z*,
Hy(y,) = v, + TF(») < i,
there exists a fixed point Yx+1 of H,, which is a solution of the equation
F() + A(xe y) Gks1 — ) = 0

and has the property

F(yerr) < F(r) + AQis 1 00) (s 1 — ) < F(r) + A% vi) (s — 1) = 0.
The operator

f_Ik(Z) =z + T{F(yk+1) + A(yk3 Yerr) (2 = J’k+1)} . z€[x, z¥]

is continuous and isotone. »'

Since
Hy(x) = xx + T{F(ys1) + AW Yir 1) (% = Yern)} =
= % + T{F(yir1) + AW Yir1) (e = 1) + AW Vs 1) 0k — Yirn)} 2
Z x + T{F(y) + AQe Y1) (i = 1)} 2
= x, + T{F(y,) + AWi-1 ¥) (5 — 2)} = %
H(z*) = z* + T{F(yi+1) + A0 Yis1) (z* — yes1)} <
S 2% 4 T{F(yrs1) + Arr 1> 2%) (2% — yisq)} S 2% + TF(z*) = z*,
the operator H, has a fixed point x,, ; with the property
F(yer1) + Ao Yis1) (s — Yar1) = 0.

The statement (3.9) is now proved.

By the regularity of the cone the limits x* = lim x,, y* = lim y, exist and it is
obvious that the monotone enclosure (3.7) holds.

We have
02 TF(y) = —TAXe y) Wke1 = Vi) 2 TGC(Vew1 = ¥i) 2 Vw1 — Xk
and therefore by the continuity of the operators F and T we obtain
TF(y*)=0.
Using the injectivity of T we conclude F(y*) = 0.
If we assume that there exists a mapping S(B — B) with the properties (3.8), we
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obtain
S(v* = x) < — A1 v (0F — %) =
= —AWi-1, 1) (F — ») — A= 1> 1) (e — ) =
= = A1, ) (% = y) — F(») = SO* — ») — Fy)
and therefore
0= y*—x, S y* =0 —SF(n)-

It follows that lim x, = y*. O

The following lemma gives a sufficient condition for the existence of a solution
x, € V of the equation (3.6) with the property [x5 1] = V.

Lemma 3.1. Let F(V — B - B) be a mapping. We have y,, y, €V such that
F(yl) < 0.
Assume there exist mappings 0 < T, A(yo, ¥1) € S(B) and G, S(B — B) such that

{TG <I, T{G+ A(yo,y1)} 20,
S < —A(yo, y1) -

If there exists a solution y of the equation
(3-11) F(y)) = S(y = y1) =0
with the property [y, yi] = V, then the equation

F(y1) + A(yo, y1) (x4 — y1) =0

has a solution x, € V with the property [x,, y,] = V.
Proof. Let y be a solution of the equation

F(y;) +S(y —») =0

such that [y, yl] < V. We define the continuous and isotone operator

H(z):=z + T{F(y,) + A(yo, y1)(z — »1)}, ze€[y,y:]-

(3.10)

Since
‘ H(y) = y + T{F(y,) + Ao, 1) (v = 1)} =

2y + T{F(y,) - Sy —y)} =
and
H(y,) = y; + TF(yy) < »4,

there exists a fixed point x, € [y, yl] of H, which is a solution of the equation

F(y,) + A(vo» ¥1) (x1 - yl) =0.0

In [5] a convergence order of 1 + /2 can be proved for the iteration method (3.6).
If A is not a divided difference operator in the sense of Schmidt, under the same
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assumptions only a convergence order of 2 can be proved for this method. In the follow-
ing chapter we will consider an iteration method, which is derived from the method
(3.6). This method is more efficient in the sense of Ostrowski [4] than the other
methods which are considered in [5], [6], [7].

4. A MORE EFFICIENT METHOD

We assume in this chapter that each subset of B which contains two elements,
has a supremum [2].
Then we consider the iteration method

F()’k) + A(xk’ J’k) (yk+1 - J’k) =0,
(4‘1) Zg+1 = Yr+1 t QF(,VkH) s
Xk+1 = SUp {Zk+1’x1} .

The sequence (y,) is constructed in the same way as for (3.6). Nonetheless, the
sequence (x,) can be computed with less effort. Using a specific operator Q € S(B),
the following theorem shows that by (4.1) we can get sequences (x), (y,) which
converge monotonously and enclose a solution of F(x) = 0.

Theorem 4.1. Let F(V := [x,, y,] = B — B) be a continuous operator such that
F(y,) < 0 and assume that there exists a solution z* € V of F(x) = 0. A is generali-
zed divided difference operator with the property

A(uy, vy) 2 A(usz, v,), uy 2 uy, vy 20,.

If there exist an injective mapping Te S(B) and mappings Q € S(B), G, S(B - B)
with the propertis

T{G + A(u,v)} 20 forall (u,v)eM,

0<T, 00,
then the iteration method (4.1) is well defined. z* is the only solution of F(x) = 0
in the interval [xy, y,]. The monotone sequences (x;), (v,) have the same limit z*
and the monotone inclusion
(4.3) XS S Sx S S S S nS Sy
holds.
If in addition
(4.4) l4(x, 2) = Az y)| < afllx = 2] + |x = y] + [z = 5[}

holds, if x < z < yor y £ z £ X, x, ¥, z, € V, the R-order of convergence of (4.1)
is not less than 2.

Proof. The assumption that F(x) = 0 has a solution z* € Vis fulfilled if F(x,) = 0.
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(See the proof of Theorem 3.1.) We show by induction: x, < z* < y,, F(y,) < C.
This is correct for k = 1.

Now we define the operator
Hy(2) := z + T{F(y) + 4(x ) (z = »)} > ze[z%n].
Since this operator is continuous and isotone, it follows from
Hy(z*) = 2% + T{F(y,) + A(x,, ») (z* — )} 2

> z* + T{F(y,) +'A(z*, ) (2% — w)} 2 z* + TF(z*) = z*
and :

Hy(ye) = v + TF(y) £ wi

that there exists a fixed point y, 4, € [2*, yi]. Y+ I8 a solution of the equation

F(Yk) + A(xk’ J’k) (J’k+1 - )’k) =0
with the property

F(Yk+1) = A(yk+17 J’k) (Yk+1 - J’k) + F(Yk) <

< A(xi vi) (v — v + F(n) = 0.
We get

¥ =z, = 2% + QF(Z*) - {)’k+1 + QF(J’k+1)} =
Vi1 T+ Q{F(Z*) - F(Yk+1)} Z 2%~ yroq + QA(yk+1a Z*) (Z* - Yk+1) 2
{I + QA(yk+l’ Yk+1)} (z* - yk+1) = {I + QA(yp J’2)} (Z* - J’k+1) =
P {I - QS} (Z* - yk+1) 20,

so that X,y = SUp {z,,, x;} < z*.

I
t
*

1%

Because of y;+1 < y, we obtain

Zy41 = Ik = Vit + QF(yk+l) -+ QF(y)} =
= Yr+1 — Vi T+ Q{F(J’k+1) - F(J’k)} = {I + QA(}’k, Yk+1)} (Yk+1 - J’k) =
= {I + QA()’p y:)} (J’k+1 - .Vk) 2 {I - QS} (Yk+1 - Yk) =0.

Now we have proved that the sequences (x), (y,) are monotonous and bounded,
so that the limits x* = lim x,, y* = lim y, exist by the regularity of the cone. Using
the continuity of the operators F and T and the injectivity of T'it follows from

0= TF(Yk) = T{—A(xk, .Vk) (J’k+1 - J’k)} =

TG(yk'+1 - J’k) 2 Virt1 — Vi

v

that F(y*) = 0.
Since"

Zps1 = Yk+1 + QF(yk+1) S Xt = Vi1
we get x* = y*.
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In order to prove the statements about the order of convergence we define I =
p= max {[lx* — x|, |y — x*|}-
Then
S(yk+l - X*) = “A(xk, J’k) ()’k+1 - x*) =
= —A(xk’ )’k) (J’k+1 - yk) - A(xk’ Yk) (Yk - x*) =
= F(y) — F(x*) — A(xw y) (0 — x*) = {A(y x*) = A(xe 9i)} (0 — x*)
implies
0= ysr —Xx*= 0. S()’k+1 - x*) = Q{A(Yk’ X*) - A(xk’ Yk)} (J’k - x*) =
= Q{A(y,, x*) — A(x*, %) + A(x*, x) — A(x yi)} (e — x*).
Since B is a partially ordered Banach space, which means that |x| < f|y| holds
if 0 < x < y, we obtain by the continuity of ¢ and (4.4)

(4.5) Iyier = 2 < 9y = x*| + % = =} e = =] -
In the same way we get from
0= x* —xp41 = x* + QF(x*) - (Yk+1 + QF(yk+1)) =
S {1+ QAKX*, yir )} (X* = yisa) s
using (4.4), the following estimate
@9 I = x5 0l x +  — ) I -
From the estimates (4.5) and (4.6) we obtain
Fer1 < max {y, 8} ry.

This guarantees that the R-order of our iteration method is not less than 2. |

The iteration method (4.1) has the advantage that we have to determine only one
linear operator and to solve only one linear equation per iteration step. Since the
convergence order of (4.1) is not less than 2, this method is more effective than the
methods which are considered in [5], [6], [7]-

Now we will give an answer how to find a suitable operator Q. In order to ensure
the equality of the limits lim x,, lim y, it is assumed in [5] and [6] that there exists
an operator S such that the conditions

(4.7) S<-6F(uv), 120

hold. Then we can choose Q := S™. If B = R" we consider the important case that
S = (s;;) has the property Ys;; > 0 for all j. Then it is not necessary to compute

the inverse of S. We can set Q = (q;;) with

N
q;; = (Z s,,->‘1 or g¢;; = max ( Y s,k)"l .
1=1 1=1

If this matrix Q is used the condition (4.2) holds.
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5. REMARKS

There are other versions of Theorem 4.1 corresponding to various sign configura-
tions. We indicate these versions schematically in Table 5.1, where the first row
represents

Theorem 4.1. We define: (i = 0, 1)

[(rm s e 00
: (=1)" X4y = sup {(“l)i Zk+1’(—'1)ixk}9
(=1)' F(y;) £ 0 A(M — S(B)) is a mapping with the properties
(—1)': Auy, vy) 2 (—1) A(uz., y), Uy = Uy, Uy = Dy,
(=)' {F(u) = F(v)} = (=1)" A(u, v) (u — v).
There exist a nonnegative injective mapping Te S(B) and mappings Q € S(B).
G, S(B — B) with the properties
T{G + (—1)' A(u,v)} 20 forall (u,v)eM,
TG < I, (—1)'S < (—1)** A(y,, y2).
l 0=(-1)Q,05=1,

i (=1)' 5 = (1) xas = (1) 2 S (=) s S (=) e

Table 5.1
I Ay By, Co= D,
1 Ay By, C; = D,
11) R By,  C,= D,
vV 4 B,  Co= D

Table 5.1 means: If we replace the corresponding assumptions of Theorem 4.1 as
indicated in Table 5.1 the enclosure statements D; follow.

6. NUMERICAL RESULTS

We consider the problem

x" = g(t,x), x(0) = x(1) =0
2x + 2, —x < t?

g(t,x):=| —x* + 2, —x = 1%

(6.1)

This problem possesses a unique solution in the interval [z, z,], where z(f) :=
:=1(1 — 1), z,(f) = 0. In order to compute a numerical approximation to the
solution of (5.1) we consider the following discrete analog.
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Let
t(j)=jh’ hzl/(n_,.l), j=0,...n+1

be a uniform subdivision of the interval [0, 1]. We approximate x"(1”) at each point
1) by the second central difference quotient. Using this approximation in (5.1)
we obtain an approximate solution of (5.1) by solving the nohlinear equation

(6-2) F(x) = Cx — h* .9(x) = 0
with
—21 g(tm, x(‘))
1 .
C:= e y(x) :=
1 =2 g(1™, x™)|.

We consider the interval
V=[x, y,] € R, x9 =10 - 1), y? =0, j=1..,n

and set

aM(x, y) 1
1 1

A(x, y) := o™, y) |
1
aP(x, y) 1= [ =2 = K1), —x < (1)
-2 + hZ(x(j) + y(j)) , _x(i) z (t(i))Z ,
G:= —A(xl,xl), T:G—la S = _A(ylsyl)'

Since S = (s;;) has the property
Ysi;>0 forall j
i

we can choose Q = (q;;) defined by q;; = max () sy) . Then the assumptions
k 1

of Theorem 4.1 are fulfilled. (6.2) is solved iteratively by the iteration (4.1).

For x{* we get the following enclosing intervals

Table 6.1
Number
of Iterations Enclosing interval
1 [—0-250000000, —0-241945613]
[—0-242097229, —0-242002224]
3 [—0-242002573, —0-242002573].
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N

The numerical results were obtained on the CD computer of the Technical University
of Berlin.
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Souhrn

NEKOLIK POZNAMEK O MONOTONNI INKLUZI
PRO RESEN{ NELINEARNICH ROVNIC METODAMI
TYPU REGULA FALSI

NORBERT SCHNEIDER
V ¢&lanku je zobecnén vysledek J. W. Smidta o monotonni inkluzi feSeni ne-
linedrnich rovnic (tj. o existenci klesajici posloupnosti intervalii obsahujicich feSeni)
a je uddna iterani metoda efektivnéjsi nez metody dosud zndmé. Pro tuto metodu

jsou rovnéz dokdzédna tvrzeni o monotonni inkluzi.
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