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(Received February 12, 1981) 

INTRODUCTION 

In [5] and [6] Regula-falsi-like methods are considered in order to obtain sequen­
ces of upper and lower bounds for solutions of nonlinear equations. By using 
a generalization of Schmidt's concept of a divided difference operator the results of [6] 
are generalized in [7]. 

The method which is considered in [5], has the advantage that the order of con­
vergence is 1 + y/2 instead of the typical order of (1 + y/5)j2 for Regula-falsi 
methods. In this paper the enclosure results of [5] are generalized in the same manner 
as it was done for [6] in [7]. But if this method is realized by operators which are 
not divided difference operators, it can only be shown that the order of convergence 
is 2. This fact was also mentioned in [5]. 

We also consider a new iteration method in this paper. It is derived from Schmidt's 
method, but it works with much less effort and it is quadratically convergent. It is 
more effective than other known methods in the sense of Ostrowski [4]. 

2. PRELIMINARIES 

The definitions and properties used in connection with the cone which introduces 
a partial ordering in a Banach space B, are found in [8]. 

For x, y e R\ x ^ y if and only if x(i) g y{i\ i = 1(1) n. S(B) means the set 
of all continuous linear operators (B -* B). 

Kantorovich Lemma [1]: Let B be a Banach space, which is partially ordered 
by a closed regular cone, and A([x, j/] cz B —> B) a continuous, isotone rnaping. 
If x :g A(x) and A(y) :g j , then A has a fixed point in [x, y~\. 

As a measure of the rate of convergence of iterative processes we use the K-order 
defined in [3], 

21 



3. GENERALIZATION OF ENCLOSURE RESULTS 

In this paper B denotes a Banach space which is partially ordered by a closed 
regular cone. 

In order to enclose the solutions of F(x) = 0, F(V cz B -> B) in an interval 
[x l 5 yj cz V, Schmidt [5] considers the following iteration method 

/ 3 {\ { F(yk) + S F(yk„ l9 yk) (xk - yk) = 0 
V " ; - 1 F(yk) + S F(xk, yk) (yk + 1 - yk) = 0 . 

<5 F(V x VcB x P-> S(B)) denotes a mapping which satisfies 

(3.2) dF(x;y)(x-y) = F(x)-F(y). 

This concept of a divided difference operator can be generalized in the following 
manner. 

Definition 3.1. Given an operator F(V cz B -> B). A mapping A(M := {(x, y) | 
I x, y e V; x, y comparable} -> S(B)) is called generalized divided difference 
operator (i(verallgemeinerte Steigung") of F if 

(3.3) A(x, y) [x - y) = F(x) - F{y) , (x, y)eM. 

A realization of this concept in the case B = UN is given in [7]. By using this 
generalization the following theorem can be proved. It generalizes an enclosure 
theorem proved in [5] . 

Theorem 3.1. Let F(V cz B —> B) be a continuous mapping. Suppose there are 

yo> yi G V> sucn that 

yo = y» F(yi) = o . 

The mapping A is a generalized divided difference operator with the property 

(3.4) A(ul9vx) = A(u2, v2), uL^u2, v\ = v2 . 

Assume there exist a nonnegative, infective mapping Te S(B) and a mapping 
G(B -> B) such that 

(35) ITGSI, 
y ' ' \ T{G + A(u, »)} ^ 0 for all (u, v)eM, 

and an x. e V; [x. , xx] <=• V, which is a solution of the equation 

(3.6) i?(.vi) + ^ 0 v . v i ) ( * i - . v i ) = 0 . 

Then the iteration method 

(.(•^ • \ F(yk) + A(yk-i, .v,) (xk - yk) = 0 , 
( j l ^ * ) + <*4 .y*)O*+ i- .v*)-0 
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Because of 

Hk(z*) = Z* + T{F(yk) + A(xfe, );,) (z* - jfe)} = 

= z* + T{F(yK) + A(z*, jfc) (z* - yk)} = z* + TF(z*) = z* , 

H*(yfc) = 3>* + T^(yfc) _ yk, 

there exists a fixed point yfc + i of IIfc, which is a solution of the equation 

F(yk) + A(xk,yk)(yk+1 - yk) = 0 

and has the property 

^(yfc + i) - F(yk) + A(yfc+i, yk) (yk+1 - yk) _ F(yk) + A(xk, yk) (yk+1 - yk) = 0 . 

The operator 

H,(z) : = z + T{F(yk+,) + A(j„ yfc+ ±) (z - yfc + , )} , ZG [xk, z*] 

is continuous and isotone. 

Since 

Hk{xh) = *h + T{F(r/fc+1) + A(yfe, y*+1)(xfc - yK+1)} = 

= xfc + T{F(yfc + 1) + A(y„ j/ fc+1) (xfc - yfc) + A(yfc, yk+1) (yk - yk+1)} _ 

_xk + T{F(yk) + A(yk, yk + 1) (xk - yk)} _ 

- *k + ^{^(y fc ) + ^ ( y f c - l , yfc) (*fc - yfc)} = xk, 

Hk(z*) = z* + T{F(yk + 1) + A(j;fe, j f c + i ) (z* - yk+1)} _ 

_ z* + T{F ( j ,+ 1) + A(yfc+1, z*)(z* - yk+1)} _z* + TF(z*) = z* , 

the operator Hk has a fixed point xfc+1 with the property 

T(yfc+i) + 4̂(yfc, yfc+i) (xk + 1 - yk+1) = 0 . 

The statement (3.9) is now proved. 

By the regularity of the cone the limits x* = lim xk, y* = lim yk exist and it is 
obvious that the monotone enclosure (3.7) holds. 

We have 

0 _ TF(yk) = -TA(xk, yk)(yk+1 - yk) _ TG(yk+1 - yk) = yk+1 ~ xk 

and therefore by the continuity of the operators F and Twe obtain 

TF(y*) = 0 . 

Using the injectivity of Twe conclude F(y*) == 0. 

If we assume that there exists a mapping S(B -> B) with the properties (3.8), we 
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obtain 

S(y* - xk) ^ -A(yk.» yk) (y* - **) = 

= ~A(yk-u yk) (y* - yk) - A(yk_u yk) (yk - xk) = 

= ~A(yk-1, yk) (y* - yk) - F(yk) g S(y* - yk) - F(yk) 

and therefore 
0£y*-xk^y*-yk- S"1 F(yk). 

The following lemma gives a sufficient condition for the existence of a solution 
Xj e V of the equation (3.6) with the property \xx, y j <= V. 

Lemma 3.1. Let F(V - B -* B) be a mapping. We have y0, yteV such that 

F(yx) = o. 
Assume there exist mappings 0 ^ T, A(y0, yt) e S(B) and G, S(B -» B) such that 

, v i n x [TGSI, T{G + A(yo,yi)}^0, 
( 3 . 1 0 ) \S^-A(y0,y1). 

If there exists a solution y of the equation 

(3.11) F(yi) - S(y - yt) = 0 

with the property \y, yt] cz V, then the equation 

p(yi) + 4yo> yi) (x i - yO = ° 

has a solution x1 e Vwith the property [x1, y^ c V. 
Proof. Let y be a solution of the equation 

^(y i) + S(y - yi) = 0 

such that \y, yx] a V. We define the continuous and isotone operator 

H(z) := z + T{F(yi) + A{y0, yt) (z - y±)} , ze[y, yx] . 
Since 

H(y) = y + T{F(yi) + A(y0, yt) (y - yt)} ^ 

^y+ T{F(yi) - S(y - y/)} = y 
and 

H(yt) = yt + TF(yi) ^ yi , 

there exists a fixed point x1 e [y, y t ] of if, which is a solution of the equation 

F(yi) + A(y0, y,) (x. - y.) = 0 . • 

In [5] a convergence order of 1 + ^2 can be proved for the iteration method (3.6). 
If A is not a divided difference operator in the sense of Schmidt, under the same 
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assumptions only a convergence order of 2 can be proved for this method. In the follow­
ing chapter we will consider an iteration method, which is derived from the method 
(3.6). This method is more efficient in the sense of Ostrowski [4] than the other 
methods which are considered in [5], [6], [7]. 

4. A MORE EFFICIENT METHOD 

We assume in this chapter that each subset of B which contains two elements, 
has a supremum [2]. 

Then we consider the iteration method 

[ F(yk) + A(*k, yk) Ofc+i ~ yk) = o , 
(4.1) zk+i =yk+1 + QF(yk + 1)9 

[xk + 1 = sup{z f e + i ,x i} . 

The sequence (yk) is constructed in the same way as for (3.6). Nonetheless, the 
sequence (xk) can be computed with less effort. Using a specific operator Q e S(B), 
the following theorem shows that by (4.1) we can get sequences (xk), (yk) which 
converge monotonously and enclose a solution of F(x) = 0. 

Theorem 4.1. Let F(V:= [xi9 yx~\ cz B ~> B) be a continuous operator such that 
F(y1) ^ 0 and assume that there exists a solution z* e Vof F(x) = 0. A is generali­
zed divided difference operator with the property 

A(ui, vi) ^ A(u2, v2) , u! = u2 , vi = v2 . 

If there exist an injective mapping Te S(B) and mappings Q e S(B), G, S(B -> B) 
with the pro pert is 

( T{G + A(u, v)} = 0 for all (u,v)eM, 
(4.2) <TG=I, QS = I, SS-A(yi9y2), 

[O^T, OSQ, 

then the iteration method (4.1) is well defined, z* is the only solution of F(x) = 0 
in the interval [xt, y^\. The monotone sequences (xk), (yk) have the same limit z* 
and the monotone inclusion 

(4.3) xi S . . . = xk ^ xk + 1 S . . . = z* = . . . = yk+l Syk^ . . . = yi 

holds. 
If in addition 

(4.4) \\A(x, z) - A(z, y)\\ g «{||x - z\\ + \\x - y\\ + \\z - y\} 

holds, if x ^ z ^ y or y <j z S x, x, y, z, e V, the R-order of convergence of (4.1) 
is not less than 2. 

Proof. The assumption that F(x) = 0 has a solution z* e Vis fulfilled if F(xt) = 0. 
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(See the proof of Theorem 3.L) We show by induction: xk = z* = yk, F(yk) = 0. 
This is correct for k = 1. 

Now we define the operator 

Hk(z) := z + T{F(yk) + A(xk, yK) (z - yk)} , z e [z*, yk] . 

Since this operator is continuous and isotone, it follows from 

Hk(z*) = z* + T{F(yfe) + A(xk9 yk) (z* - y/c)} = 

= z* + T{F(yfc) +'A(z*, yk)(z* - yfc)} = z* + TF(z*) = z* 

and 

Hk(yk) = yfc + TF(yfc) = j ; f c 

that there exists a fixed point yfc+1 e [z*, yfe]. y!fc+1 is a solution of the equation 
F(yk) + A(xk9 yk) (yk+1- yfc) = 0 

with the property 

^(yfc+i) = A(yk+l9 yk)(yk+i ~ y*) + F(yk) = 

= -4(xfc, y*) (y*+i - yfc) + ^(yfc) = 0 . 
We get 

z* - Zfc+1 = z* + QF(z*) - {yk+1 + S^yfc + i)} = 

= z* -yk+1 + Q{F(z*) - F(yfc+1)} = z* - yk+1 + 6 4yfc + i> **) (2* - yfc+i) = 

= {I + Q4yfc+i ?yfc+i)}(^ " yfc+i) = U + 2 ^ ( y i , y 2 ) } ( ^ ~ yfc+i) = 

= {I- eS}(z*-Jfc+1) = o , 

so that xK + 1 = sup {zfc+1, x j < z*. 

Because of j f c + 1 = yfc we obtain 
z*+i - zk = yfc+i + G^yfc+O - {^ + e^(yfc)} = 

= yfc+i - ^ + 6{nyfc+i) - F(yfc)} = {i+ QA(yk, yfc+i)} (yfc+i - yfc) = 
= {I+ Q A(yu y2)} (yk+1 - yk) = {I - gS} (yk+1 - yk) = 0 . 

Now we have proved that the sequences (xk)9 (yk) are monotonous and bounded, 
so that the limits x* = lim xk9 y* = lim yk exist by the regularity of the cone. Using 
the continuity of the operators F and Tand the injectivity of Tit follows from 

0 = TF(yk) = T{-A(xk9 yk)(yk+1 - yk)} = 

= ^(y fc+ i ~ yfc) = yfc+i - yfc 
that F(y*) = 0. 

Since 

Zfc+i = yfc+i + e^(yfc+i) = Xfc+i = yfc+i 
we get X* = y * = v*. 
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In order to prove the statements about the order of convergence we define rk : = 
:= max{||x* - xk\\9 \\yk - x*\\}. 

Then 

S(yk+i - x*) ^ ~A(xk, yk)(yk+1 - x*) = 

= -A(xk, yk) (yk+1 - yk) - A(xk, yk) (yk - x*) = 

= F(yk) - F(x*) - A(xk, yk) (yk - x*) <, {A(yk, x*) - A(xk, yk)} (yk - x*) 

implies 
0 rg yk+1 - x* ^ Q . S(yk+1 - x*) ^ Q{A{yk, x*) - A(xk, yk)} (yk - x*) = 

= Q{A(yk, x*) - A(x*, xk) + A(x*, xk) - A(xk, yk)} (yk - x*) . 

Since B is a partially ordered Banach space, which means that ||x|| S />||y|| holds 
if 0 ^ x ^ y, we obtain by the continuity of Q and (4.4) 

(4.5) \\yk + 1 - x*\\ ^ y{\\yk - x*\\ + \\x* - xk\\} \\yk - x*\ . 

In the same way we get from 

0 S x* - xk + 1 ^ x* + Q F(x*) - (yk+1 + Q F(yk+1)) ^ 

^{1+ QA(x*,yk + 1)}(x* -yk + 1), 

using (4.4), the following estimate 

(4.6) ||x* - xk+1\\ ^ S{\\yk - x*\\ + \\x* - xk\\} \\yk - x*\\ . 

From the estimates (4.5) and (4.6) we obtain 

rk+1 ^ max{y, 3} r\ . 

This guarantees that the R-order of our iteration method is not less than 2. a 
The iteration method (4.1) has the advantage that we have to determine only one 

linear operator and to solve only one linear equation per iteration step. Since the 
convergence order of (4.1) is not less than 2, this method is more effective than the 
methods which are considered in [5], [6], [7]. 

Now we will give an answer how to find a suitable operator Q. In order to ensure 
the equality of the limits lim xk, lim yk it is assumed in [5] and [6] that there exists 
an operator S such that the conditions 

(4.7) S ^ -SF(u, v), S'1 =0 

hold. Then we can choose Q := S_1. If B = RN we consider the important case that 
S = (sfj) has the property £ s ^ > 0 for all j . Then it is not necessary to compute 

i 

the inverse of S. We can set Q = (qtj) with 

«U = ( Z Sn)1 o r Qtj = m a x ( Z sik J1 -

If this matrix Q is used the condition (4.2) holds. 
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5. REMARKS 

There are other versions of Theorem 4.1 corresponding to various sign configura­
tions. We indicate these versions schematically in Table 5.1, where the first row 
represents 

Theorem 4.1. We define: (i = 0, 1) 

A Í ( -1) 'X. š ( - l ) ' 2 * £ ( - - / > ! , 
1 (--)'**+i = sup {(-!)' zk+x, ( -1)4} , 

B 

Cr. 

— l)1 F[yt) = 0 A(M -> S(B)) is a mapping with the properties 
-iyA(ul9vt) = (-1)1 A(u2, v2), u1 = u2,vx = v2, 
-1)1 {F(u) - F(v)} = (-iy A(u, v) (u - v). 

There exist a nonnegative injective mapping Te S(B) and mappings Q e S(B). 
G, S(B -> B) with the properties 

T{G + (-1)1 A(u,v)}=0 for all (u, v) e M , 
TG = I,(-iy S <(-l)i + 1 A(y2,y2), 
0 = (-iyQ,QS = I, 

D-. (-iyxk = (~iyxk+1 = (-iyz* = (-iyyk+l = (-iyyfc. 

Tal зle 5.1 

I A0, B0. C0^D0 

II Ax, B0, CX=>DX 

III A0. B,. CX^>D0 

IV Ax. Bx. C0^DX 

Table 5.1 means: If we replace the corresponding assumptions of Theorem 4.1 as 

indicated in Table 5.1 the enclosure statements Dt follow. 

6. NUMERICAL RESULTS 

We consider the problem 

f x" = g(t, x), x(0) = x(l) = 0 
(6A) < f t2x + 2, -x < t2 

[ g(t, x):=\ -x2 + 2, -x = t2. 

This problem possesses a unique solution in the interval [z 1 ? z 2 ] , where zx(t) : = 
: = t(l — t), z2(t) = 0. In order to compute a numerical approximation to the 
solution of (5.1) we consider the following discrete analog. 
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Let 

,«> =JҺ, Һ = i/(в + i ) , y = o,...,п + 1 

be a uniform subdivision of the interval [0, l ] . We approximate x"(t(j)) at each point 
t(j) by the second central difference quotient. Using this approximation in (5.1) 
we obtain an approximate solution of (5A) by solving the nonlinear equation 

(6.2) 
with 

C : = 

- 2 1 
1 

F(x) = Cx - h2 . y(x) = 0 

, y(x): = 
1 

1 - 2 

We consider the interval 

V'= l>i>y i ] <= 

and set 

a(í ( 1 ) , * ( 1 ) ) 

a(ŕ<n), x ( n )) 

* x O> = ř(Л(ř(Л _ !) ^ yU) _ o , ; = !,..., „ 

A(x, y) : = 

a ( 1 )(x, J>) 1 
1 1 

a(n)(x, .v) 
1 

«">(*, j,) : = J - 2 - h2(^>)2, -x(i) < (t(i))2 , 

{ _ 2 + h2(x(j) + j ! ( i ) ) , -x<» _ ( > ) 2 , 

G : = - A ^ , ^ ) , T=G-X, S=-A(y2,yi). 

Since S = (slV) has the property 

_ > y > 0 for all j 
i 

we can choose Q = (qtj) defined by qtj = max (X,%)_ 1- Then the assumptions 
k I 

of Theorem 4.1 are fulfilled. (6.2) is solved iteratively by the iteration (4.1). 

For x(

k

5) we get the following enclosing intervals 

Table 6.1 

Number 
of Iterations Enclosing interval 

1 
2 
3 

[-0-250000000, -0-241945613] 
[-0-242097229, -0-242002224] 
[-0-242002573, -0-242002573]. 
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The numerical results were obtained on the CD computer of the Technical University 
of Beriin. 
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Souhrn 

NĚKOLIK POZNÁMEK O MONOTÓNNÍ INKLUZI 
PRO ŘEŠENÍ NELINEÁRNÍCH ROVNIC METODAMI 

TYPU REGULA FALŠI 

NORBERT SCHNEIDER 

V článku je zobecněn výsledek J. W. Smidta o monotónní inkluzi řešení ne­
lineárních rovnic (tj. o existenci klesající posloupnosti intervalů obsahujících řešení) 
a je udána iterační metoda efektivnější než metody dosud známé. Pro tuto metodu 
jsou rovněž dokázána tvrzení o monotónní inkluzi. 
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