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SVAZEK 28 (1983) APLIKACE MATEMAT IKY ČÍSLO 4 

ON THE CHOICE OF ITERATION PARAMETERS IN THE STONE 
INCOMPLETE FACTORIZATION 

KAREL SEGETH 

(Received December 28, 1982) 

1. INTRODUCTION 

Recently, the development of science and technology has brought about problems 
whose treatment involves solving very large sparse linear algebraic systems. Various 
direct (finite) methods based on the Gaussian elimination procedure have been devised 
to solve special systems. These methods use the number of arithmetic operations 
proportional to the number of unknowns and are called fast methods. Their ap
plicability, however, is limited to special sparse systems of a very regular structure. 

For more general sparse systems, diverse iterative methods have been developed 
whose each step is fast. Such methods usually involve one or more parameters that 
have to be a priori chosen. The choice of these parameters may substantially influence 
the rate of convergence of the iterative method. On the other hand, it is usually very 
costly (and sometimes perhaps practically impossible) to find the optimal values of the 
iteration parameters. 

A very frequently used class of methods is based on the incomplete factorization 
(triangular decomposition). Many authors (see e.g. Axelsson [ l ] , Buleev [4], Dupont, 
Kendall and Rachford [5], Kershaw [7], Meijerink and van der Vorst [8], 
Segeth [10], Stone [13]) studied methods of this class in connection with various 
iterative processes. The Stone incomplete factorization [13] seems to be one of the 
most often used methods in computational practice. It has been examined and 
generalized by several authors (Bracha-Barak and Saylor [3], Gustafsson [6], Say lor 
[9], Segeth [11], Taranto [14]). In various fields, it is employed for solving large 
sparse systems arising from two- or three-dimensional boundary value problems 
(e.g. in geophysics), for solving systems obtained after the linearization of nonlinear 
problems (e.g. in electronics [12]), etc. 

Up to now, the method has been given no rigorous theoretical foundation. We 
discuss numerical results obtained by solving a simple model problem to point out 
where there may be difficulties with the choice of iteration parameters. We have 
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chosen a particular model problem whose exact solution can be obtained in the first 
step of the used iterative procedure for a special choice of the parameters and the 
initial approximation. In general, we find out that these parameters can be chosen 
without a deeper a priori analysis of the system solved. 

As an introduction we are concerned with a discretization of a one-dimensional 
boundary value problem in Sec. 2. The two-dimensional problem treated in Sec. 3 
is a generalization of this factorization approach. We review the Stone method and 
its parameters in Sec. 3 and show some properties of the method in Sec. 4. In Sec. 5, 
we analyse a series of numerical experiments focused on the choice of the iteration 
parameters. 

2. ONE-DIMENSIONAL PROBLEM 

Consider a one-dimensional boundary value problem for the ordinary differential 
equation 

-u"(x) = v(x) in R , 

w(tf) = 9a - u(b) = gb, 

where R = (a, b) is an interval. Choosing q interior nodes Xj,j = 1, . . . , q, in R and 
employing the usual three-point finite-difference approximation (see e.g. Babuska, 
Prager, and Vitasek [2]), we come to the linear algebraic system 

(2.1) Au = v , 

where u = (uj) is the column vector of the unknown values Uj = u(xj), j = 1, ..., q, 
of the approximate solution at the nodes Xj of the net, v = (VJ) is the right-hand part 
vector, Vj = v(xj), and A is a a x q symmetric tridiagonal matrix. 

The well-known factorization procedure for the solution of the system (2.1) (see 
e.g. [2]) now consists in three steps. The matrix A is first factored as 

(2.2) A = LU , 

where L and U are lower and upper triangular matrices, respectively. In our case, 
both L and U have only two nonzero diagonals (i.e., the number of their nonzero 
diagonals is independent of q). The implementation of the factorization (2.2) then 
requires 0(q) arithmetic operations. 

The two next steps in the solution of (2.1) now represent solving the systems 

(2.3) Lz = v, Uu = z . 

This process needs also 0(q) arithmetic operations and thus the whole factorization 
procedure requires altogether 0(q) operations, i.e., this procedure is fast as the 
amount of arithmetic operations is proportional to the number of unknowns. The 
number of operations (but not the order) is even lower if we use the symmetric facto
rization LLT = A. 
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3. STONE INCOMPLETE FACTORIZATION 

We will now consider the Dirichlet boundary value problem for the Poisson partial 
differentia] equation 

(3.1) —Au(x,y) = v(x,y) in R, 

u(x, y) = g(x, y) on F , 

where R = (a, b) x (c, d) is a rectangle with the boundary F. 
The equation considered by Stone [13] is sligthly more general and the boundary 

condition is of the Neumann type 

in K (3.2) - £ (Kx, y) - f e i - ) - 1 (,{X, y) ̂ ) = v{x, y) i 

du(x,y) ( . 
— = y(x, y) on F , 

dn 
where dujdn is the normal derivative. 

For our problem (3.1), we construct a rectangular net on the rectangle R with 
interior nodes (xj9 yk) (denoted also by (j, k)); j = 1, . . . , m; k = 1, . . . , n. Suppose 
that m•. :_ n and put q = mn. The nodes with coordinates x0 = a, xm + 1 = b, 
y0 = c, or yn+1 = d are called boundary nodes. We further put 

hxJ = xj+1 - xj , j = 0 , . . . , m , 

V = yfc+i - yfc5 k = 0 , . . . , n , 

h^ = max hxj, hy = max hyk . 
; = 0,...,m fc = 0,...,n 

The simplest five-point finite-difference approximation (see e.g. Babuska, Prager, 
and Vitasek [2]) then leads to the linear algebraic system (here, too, we denote the 
exact solution as well as the discrete one by the same symbol) 

(3.3) Au = v , 

where u is the vector of the unknown values u(xj, yk) of the approximate solution 
at the nodes (xp yk) of the net, u = (u(xu yx), u(x2, yx),..., u(xm_1? yn), u(xm, yn))

T, 
v is the right-hand part vector, and A = (ais) is a q x q symmetric sparse matrix. 
A has only five nonzero diagonals. If the equations are ordered in a proper way 
(in our case, if the numbering of the nodes follows the rows of the net), then in the ith 
row only the entries ati_m, at f _i , aih aii+1, aii+m may be nonzero. For the sake 
of simplicity, we speak about five nonzero entries in all the rows of A. In the first 
row, for example, there are indeed no entries a1?1_m and a10. In this and analogous 
cases we assume that the entries which do not appear in the matrix are zero. (Note 
that for the problem (3.2), the finite-difference approximation is constructed also at 
boundary nodes. Moreover, the matrix obtained is singular.) 
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It is well-known that the factorization (2.2) now gives bandmatrices L and U of 
bandwidth m -f 1, i.e., in the ith row the m + 1 entries /M_m, ..., lH and the m + 1 
entries uih ..., uii+m are nonzero. The implementation of the factorization (2.2) 
then requires 0(qm2) arithmetic operations, the solution of the systems (2.3) requires 
0(qm) operations. Thus the whole process described is not fast, which is an im
mediate consequence of the fact that the bandwidths of L and U depend on the 
number of nodes of the net. 

Stone [13] proposed to construct, instead of (2.2), an incomplete factorization 
that, however, allows to solve a system "close" to (3.3) fast. Stone's idea (further 
developed e.g. by Bracha-Barak and Saylor [3], Meijerink and van der Vorst [8], 
and Saylor [9]) consists in computing only such entries of the factor matrices that 
are situated in the same positions as the nonzero entries of the original matrix A. 
All the other entries are set zero. 

We denote the factors constructed in this way by Land U. In our case, L = (Jis) 
is a lower triangular matrix with three nonzero diagonals. In its ith row, only the 
three entries //,t_m, h,i-i> hi a r e nonzero and we moreover put 

ln = 1 . 

Similarly, U = (uis) is an upper triangular matrix with three nonzero diagonals and 
in its ith row only the three entries uih uii+1, uu+m

 a r e nonzero. In fact, for i = 
= 1, ..., q we successively calculate the entries //?/_m, h.i-u ua> ui,i+u a n d ui,i+m 

from the equations 

V / ai,i-m li,i — mUi — m,i-m > 

a i , i - l ~ l i , i - l U i - l , i - l •> 

aii = h,i-mUi-m,i "+" h,i-lUi-l,i "•" Uii J 

ai,i+l = ui,i+l •> 

ai,i + m Uii + m ' 

Note that we need 0(q) arithmetic operations to construct the factorization (3.4) 
since we compute altogether only 5 nonzero entries in each row of L and U and we 
use only a fixed (independent of q) number of operations to determine each of these 
entries. 

Putting now 

(3.5) LU = A, 

we obtain instead of (2.2) that 
A = A + F, 

where E = (eis) is a nonzero matrix. In our case, the matrix A = (dis) has seven non
zero diagonals. As compared with A, the entries aM_m+1 and aI>I+m_i are, in ad-
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dition, nonzero in the ith row of A. Indeed, by (3.4) we have ais = cn$ except for 

ai,i — m+1 H,i — nr*i — m,i — m+ 1 ? 

ai,i + m-l = *i,i-\Ui-\,i + m-l • 

Therefore the matrix E has two nonzero diagonals, i.e., in its ith row the entries 
eM_m+1 = —aifi-m+1 and eiJ+m-1 ~ ~di>i+m_1 are nonzero. The matrix A thus 
corresponds to a seven-point finite-difference scheme with two additional nodes, 
(jf + 1, k — 1) and (j — 1, k + l), which are associated with the two coefficients 
ai,i-m+\ a n ( l ai,i + m-l-

Conversely, note that modifying the seven-diagonal matrix A in a proper way, 
we can construct its exact LU factorization with the matrices L and U of the above 
described zero-nonzero structure. We will try to modify the matrix A properly in 
order that it resemble the original matrix A in some sense as closely as possible, and 
then we will factorize this modified A exactly. 

Stone proposed to cancel the effect of the "parasitic" entries aM_m + 1 and aM+m_1? 

expressing the value of the approximate solution at the additional two nodes (j + 1, 
k — 1) and (j — 1, k + 1) as a linear combination of the values at the adjacent 
original nodes and subtracting this linear combination from the seven-point finite-
difference formula. The resulting (seven-point) difference formula should be close 
to the original five-point formula. 

Assuming that the functions v and g are sufficiently smooth and using the Taylor 
expansion with hx j_1 -> 0 and hyk -> 0, we readily find that 

(3.6) u(xj_1, yk + 1) - u(xj, yk+1) + u(xj„u yk) - u(xj, yk) -

_ h h d2u(Xj> &) - in 3 d3u(*'> yO ,U2 h d3u(x", y") 
- nx,j-inyk A j - 1 -T- + 2nxJ-inyk ~ 2 

cx cy dx ex cy 
2 d*u(x",y") 38

3u(x'",y"') 
*h*->-lh* dxdy2

 + i h * 8 y 3 ' 

where (xf, y'), (x", y") and (x'", ym) are certain points of the rectangle with vertices 
(xj-u yk)> (XJ> yk), (xj,yic + i) a"d (xj-u yk+1). A similar expression holds at 
(xj+i, y/c-i)- The cancellation suggested by (3.6), however, is performed only par
tially, i.e. with some weight a. This number a, 0 __ a ĝ 1, is a parameter of the Stone 
method. We thus replace the approximate solution u at (j — 1, k + 1) by 

(3.7) u(xj_u yk + 1) - oc(u(xj, yk+1) + u(xj-u yk) - u(xj9 yk)) 

and the solution at (j + 1, k — l) by 

(3.8) u(xJ+1, v / c-0 - <*(u(xj9 yk-t) + u(xj+1, yk) - u(xj, yk)) . 

The coefficients in the ith row of the system change, but no new nonzero coefficient 
arises (cf. Fig. 1). The matrix with this partial cancellation performed is denoted 
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i+m-1»(j-1,k+1) i+m<s>(j ,k+1) i+m* 

K.І-1 

Һyk 

ҺXj 

І-U(j-Ьk) Ыì.k) 
Һy,k-1 

/ -m-í*>( j - í ,k-^ 

i + 1"(j + 1fk) 

i-m+1»(j+1,k~1) i-m*(j,k-1) 

Fig. 1. 

by A(a) = (ais(a)). It is unsymmetric in general; clearly, we have 

(3-9) ai,i-m(x) = ai,i-m ~ <*8l,i-m+l , 

ai,i-m+l(0C) = #i , i-m+l •> 

ai,i-i(a) = ai,i~i - ctaiJ+m_1 , 

tfii(a) = #» + aa M _ m + 1 + aaiJ+m_1 , 

ai,i+ i(a) = ai,, + i - aa M _ m + 1 , 

^i,i + m - l ( a j ~ ai,i + m-l •> 

ai,i + m(tt) = #i,i + m ~ aa ;> t + m _ 1 . 

We can obtain the exact factorization of ̂ l(a) in the form 

(3.10) A(a) = L(a) 0(a) , 

where L(a) and U(a) are lower and upper triangular matrices, respectively, and each 
of them has the same three nonzero diagonals as described above for Land U. 

Note that the value a = 0 corresponds to no cancellation, i.e. to the factorization 
described e.g. in [7] and [8]. Clearly, L(0) = Land tj(0) = U in our notation (3.5). 
On the other hand, the value a = 1 leads to the best possible result as far as the above 
mentioned five-point and seven-point finite-difference schemes are compared. 

Let us now complete the description of the Stone algorithm. We thus solve the 
linear algebraic system (3.3) after having constructed the factorization (3A0), where 
the matrix A (a) is in some sense close to A. 

Stone used a one-point iterative method 

(3-11) Â(a)ur = A(a)мr_! - ß(Aм r_! - v), r = 1,2,..., 
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where u0 is an arbitrary initial approximation and /? is another iteration parameter. 
Putting 

(3.12) tr = ur- w r_! , 

we may rewrite (3.11) in the more convenient form 

(3.13) A(a) tr = -P(Aur_x - v), r = 1, 2, ... . 

To compute un we have to solve the system (3A 3) with a known right-hand part and 
then use (3A2). The evaluation of this right-hand part requires 0(q) arithmetic 
operations as A has five nonzero entries in every row. The solution of the system 
(3A3) requires also 0(q) operations since we have constructed the factorization (3A0) 
with the triangular matrices L(a) and 0(<x) having only three nonzero entries in every 
row. This LU factorization also requires only 0(q) arithmetic operations as we men
tioned above. Finally, we need 0(q) operations to compute ur from (3A 2). Hence, 
the whole iteration step (3.11) (or (3A3)) needs altogether 0(q) arithmetic operations 
and it is therefore fast. 

To reach a certain symmetry of the computation, Stone numbered the nodes row
wise, but ordered the rows alternately from below upwards (displayed in Fig. 1) 
in one iteration step and from above downwards in the next step. We thus work 
with two different matrices A (and also A(a)) in each two consecutive steps and the 
additional two nodes in the difference scheme are alternately (j — V k + 1), (j + 1, 
k — 1) or (j — 1, k — 1), (j + 1, k + 1). These two consecutive iteration steps are 
called a double-step in what follows. Every double-step is performed with a fixed 
value of a. 

The Fourier analysis of the rate of convergence of the iteration (3.H), which is 
similarforboththeproblems(3A)and(3.2),hasledStone[13] to the following recom
mendations: We choose a positive integer P. If the functions X(x, y) and /J(X, y) and 
the quantities hxj and hyk are constant, we put A(x, y) = A and ji(x, y) = M, and 
determine the quantity amax from the relation 

/ l t A 1 • / 2h2
x 2h2

y \ 
(3A4) 1 - amax = min ~ — , ^ ) . 
1 ' \\ + MhlKAhjY 1 + Ah2,l(Mhl)J 
Note that Kershaw [7] expressed his objections to this ad hoc formula. A set of P 
iteration parameters ap is then defined as 

(3.15) 1 - ap = (1 - O ^ ' " " - P = 0, 1, . . . , P - 1 , 

if P > 1; we put 
a 0 ~ amax 

for P = 1. These P parameters are used cyclically, each of them for one double-step. 
Fo r the (P + l)st double-step, the same parameter a is used as for the first double -
step etc. Note that the formula (3.15) implies a0 = 0 for P > 1 and a p _ ! = amax. 
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Within a cycle, the order of the application of the parameters is not critical (Stone 
[13]), but e.g. for P = 9 Stone recommended the order a8? a5, a2, a7, a4, a1? a6, a3, 
a0. Stone also claimed that the value fi = 1 is satisfactory in general. 

In conclusion, we briefly estimate the storage requirements of the method. We 
need 5q words to store the matrix A and q words to store the right-hand part v. 
Further, we use q words for the approximate solution ur. Finally, 5q words are re
quired to compute and store the matrices L(a) and U(a) of (3.10). These factors are 
evaluated in each step anew. The total storage requirements thus are \2q words. Note 
that if we considered A a bandmatrix, the storage requirements for the exact factors L 
and U would be 0(qm). 

In view of the values of q and P, it may be possible to accomplish the factorization 
(3A0) in advance for all ap, p = 0 , . . . , P — 1, and to store all the 2P results (two 
factorizations correspond to each double-step). The storage requirements are then 
much greater, but the amount of the words needed remains 0(q). Significant time 
savings result from this modification of the process. 

4. THE SECOND ORDER PROPERTY OF THE STONE METHOD 

The formula (3.6) shows that if d2uj(dx dy) = 0 in R and also all the third partial 
derivatives of the exact solution u vanish in R, then the cancellations (3.7) and (3.8) 
are complete for a = V Thus the original five-point and the modified seven-point 
difference schemes are equivalent, i.e., the systems with the matrices A and A(i) have 
the same solution if u satisfies the above assumptions. A factorization possessing this 
property is called the second order method by Saylor [9]. This result can be formu
lated in the following way. 

Theorem. Consider the problem (3.1) and its discretization (3.3). Let A(\) be given 
by (3.9). If d2uj(dx dy) = 0 in R and all the third partial derivatives of the solution u 
vanish in R, then 

(4.1) (A(\)~A)u = 0. 

Proof. The statement follows from the fact that the second and higher order terms 
in (3.6) vanish for the function u satisfying the hypothesis of the theorem and thus 
(3.7) and (3.8) vanish for a = 1. Hence A(l) u = Au. 

Corollary. Under the assumptions of the theorem, the Stone method described 
in Section 3 is a finite process for P = 1, a0 = 1, ft = 1 and the initial approxima-

Proof. The first iteration step in (3.13) gives tx = u1 so that 

A(1)t] = A(\)u1 = v. 
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On the other hand, (3.3) and (4.1) imply 

A(i) u - v = 0 , 

i.e. uj = u since A (l) may be shown to be nonsingular [3]. 

Hence, for the problem whose exact solution u possesses the above property, the 
optimal choice of the parameters for the Stone method is P = 1, amax = a0 = 1, 
and P = 1. This property of the exact solution cannot be verified a priori in practice. 
In practical computation, we are thus forced to employ some guesses for P, amax, 
and j8 which may be based e.g. on (3A4). 

5. NUMERICAL EXAMPLES 

The author's experience with solving numerous two-dimensional elliptic problems 
(including problems with complex coefficients) has confirmed that the Stone method 
is not overly sensitive to the choice of the parameters involved (i.e., P, amax and /?, 
whereas ap is chosen according to (3.15)). 

We will now present a numerical example of the application of the Stone method 
to a simple model problem. 

Let R = (0, 1) x (0, 1). We solve the problem 

(5.1) -Au(x, y) = 0 in R, 

u(x, y) = x on F , 

with the exact solution 

u(x, y) = x in K u F . 

This problem represents just the case considered in Section 4 when the Stone 
method is a finite process for P = 1, a0 = V fi = 1 and u0 = 0 and when it requires 
only one iteration step to obtain the solution of the linear algebraic system. The exact 
solution u(x, y) is independent of y and all its second and higher order derivatives 
vanish. Further, the five-point finite-difference scheme is exact for this problem and 
the approximate solution is equal to the exact one except for round-off. 

We present a comparison of numerical experiments performed for various choices 
of P, amax and /?. We have used the equidistant square net with m = n = 19, that is, 
q = 361. We have employed the iterative process (3.13) with the initial vector u0 = 0. 
Since tr = (tr(xu yx)9 tr(x2, yt), ..., tr(xm, yn))

T in (3.12), we may write the stopping 
criterion: The process is finished after the rth step if 

\tr(xj, yk)\ S e\ur(xj, yk)\ , 

where s > 0 is a parameter, holds for alJ j = 1, . . . , m and k = 1, . . . , n. This value 
of r is denoted by rstop. We put s = 10"5 in single precision arithmetic. 
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Several tables illustrate the properties of the Stone factorization. Table 1 cor
responds to the most straightforward use of the method, i.e. with P = 1, a0 = 0, 
and various values of /?. For the problem (5.1), the optimal value of fi lies near 1*6. 

Tab. 1. P= 1, a0 = 0 

ß 0-9 1 1-5 1-59 1-6 1-61 1-62 1-65 1-7 

>-stop 1 3 4 121 83 79 78 78 79 106 >300 

Tаb. 2. amаx " = 0-9975 (cf. (3.14) аnd (3.15)), ß= 1 

P 1 2 3 4 5 6 7 

'stop 74 23 17 15 17 15 17 

In Table 2 we used the formulae (3A4) and (3A5), which are due to Stone [13], 
to determine amax = 0-9975 and ap, p = 0 , . . . , P — 1; we have ft = 1 and P varies 
from 1 to 7. The dependence of the rate of convergence on P is rather weak. The 
values of P between 3 and 7 give about the same results. With the very small number 
of iterations (15 to 17) it is of no use to test larger values of P. Hence, the exact 
choice of P is not of primary importance. 

If P = 1, notice that for a0 = 1 one iteration step gives the solution of the linear 
algebraic system, whereas for a0 = 0-9975 we needed 74 iteration steps to reach the 
accuracy prescribed. 

Tab. 3. amax = 0-9975 (cf. (3.14) and (3.15)) 

ß 0-6 0-7 0-8 0-9 10 11 1-2 1-3 1-4 1-5 1-6 

P= 4 23 21 19 15 15 15 15 14 15 20 27 
rstop 

P= 5 26 19 19 16 17 17 17 17 17 19 27 

In Table 3 we use again amax = 0-9975 and compare the rate of convergence for 
various values of /?, P = 4 and P = 5. The dependence of the rate of convergence 
on fi is rather weak in the range from 0-9 to V4, which confirms that the choice of 
P = 10 is satisfactory. 

We have tried to test also the dependence of the rate of convergence on the order 
in which the values ap are employed within a cycle. The order usually used for the 

304 



Tab. 4. amax = 0-9975 (cf. (3.14) and (3.15)), I5 = 1-3, P= 4 

sequence 3 ,2 ,1 ,0 2 , 3 , 1 , 0 3 , 1 , 2 , 0 0 ,2 ,1 ,3 0 ,3 ,1 ,2 0 , 1 , 2 , 3 
of a's 

14 14 16 17 20 22 

computation of the results presented was ocP_u . . . . a0. For P = 4 and $ = 1*3 the 

number of iterations for various sequences of a's ranges between 14 and 22; some 

particular values are shown in Tab. 4. Notice that the order suggested by Stone [13] 

is a3, a1? a2, a0. For P = 4 and fi = 1-6 the number of iterations is 27 or 28 in all 

the cases, the dependence on the order of ap thus being very weak. 

Summarizing the experience with the choice of iteration parameters, we can say 

that the Stone incomplete factorization may be well used without a deeper a priori 

analysis of the problem solved. The computation of the electromagnetic field in some 

problems of geophysics carried out by the author confirmed this conclusion. 
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S o u h r n 

O VÝBĚRU ITERAČNÍCH PARAMETRŮ VE STONEOVĚ 
NEÚPLNÉ FAKTORIZACI 

KAREL SEGETH 

Článek se zabývá iteračním řešením řídkých soustav lineárních algebraických 
rovnic metodou Stoneovy neúplné faktorizace. Jako úvod se v odst. 2 uvažuje diskre-
tizace jednorozměrné okrajové úlohy a přímé řešení vzniklé soustavy lineárních 
algebraických rovnic faktorizací. Iterační řešení dvourozměné okrajové úlohy, zkou
mané v odst. 3, je zobecněním faktorizačního přístupu k řešení soustavy. Algoritmus 
Stoneovy neúplné faktorizace je pro přehlednost celý popsán v odst. 3 a některé 
vlastnosti této metody jsou odvozeny v odst. 4. 

Závěrečný odstavec je věnován numerickým experimentům, jež jsou zaměřeny na 
volbu iteračních parametrů ve Stoneově metodě. Jak ukazuje zkoumaná modelová 
úloha, lze všeobecně říci, že vhodné hodnoty parametrů je možno úspěšně zvolit 
bez hlubší apriorní analýzy řešené soustavy lineárních algebraických rovnic. 

Auihoťs address: RNDr. Karel Segeth, CSc, Matematický ústav ČSAV, Žitná 25, 115 67 
Praha 1. 
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