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SVAZEK 28 (1983) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON OPTIMAL REPLACEMENT POLICY 

R A I M I AJIBOLA KASUMU, A N T O N Í N LEŠANOVSKÝ 

(Received March 22, 1982) 

The present paper deals with a system with a single activated unit. We do not 
assume (as is usually done) that the unit is completely effective until it fails. We 
suppose that the unit can be in k + 1 states denoted by 0, 1, ..., k (k _ 2 and finite) 
at any time. The state i, i e {0; 1;, ..., ;k} can be interpreted as a level of the wear 
of the unit. The states 0 and k correspond respectively to the full operative ability 
of the unit, and to the failure of the unit. Let us put K = {0; 1; ...; k}. 

Let us suppose that inspections of the system are carried out at discrete time 
instants t = 0, 1, 2, ..., and that we have the possibility of replacing the unit used 
before t by a new one, i.e. by a unit which is in state 0, at t, for every t = 0, 1, 2,.. . . 
Concerning the changes of states of the unit we assume: 

A 1. The probability that the unit used in the system during (t\t + 1], t = 
= 0, 1, 2, ... is in state j at t + 1 under the condition that it is in state i at t depends 
only on i and j , i.e. this probability depends neither on t nor on the changes of states 
of the units used in the system before t nor on the particular unit used in the system 
during (t; t + 1]. Let us denote this probability by ptj. 

A 2. We have 

Pij = 0 for all ieK-{k}, j EK - {i; i + 1; k} , 

pu * 1 for all ieK-{k}. 

If the unit fails during the interval (t; t + 1] between two successive inspections 
of the system, we must replace it at t + 1. On the other hand, if it does not fail during 
(t; t + 1] then one of two possible actions (replace or do not replace) can be taken. 
We shall be interested in such replacement strategies according to which the decision 
at time t, t = 0, 1, 2, ... depends only on the state of the unit used during (t — 1; t ] , 
at t (independently of t). Every such replacement strategy is determined by a set 
A ^ K such that keA, and has the form: The decision is "replace" at time t if and 
only if the state at t of the unit used in the system during (t — 1; t] is an element 
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of A. The assumption A 2, however, implies that we can limit ourselves only to the 
replacement strategies Sfn, n e K, determined by the sets 

(1) An = {i;ieK,i^n}. 

Let R (R > 0) be the costs for replacement of the unit and let mu, for i e K — {k}, 
j e {i; i + l ; k } , be the income of the system reached during the interval (say 
(t; t + 1]) between two successive inspections of the system under the condition 
that the states of the unit used during this interval are i at t and j at t + 1. 

The aim of the present paper is to calculate the average income per unit time Cn 

of the system with the replacement strategy Sfn for all n e K and to characterize the 
value of k* fulfilling 

(2) k* = min {n; n e K, C„ g: Q for all i e K} 

under some reasonable conditions on p-u and mu, ieK — {k}, j E {i; i + 1; k}. 
Let us note that Derman showed in [2] that the strategy which maximizes the 
average income of the system per unit time is stationary and deterministic Hence, 
we may h'mit our considerations to the strategies Sfw n E K, only. 

Let us further suppose that the inspection of the system at time t, for every f = 
= 0, 1, 2, ..., involves also a preventive maintenance of the unit which will be used 
during (t; t + 1]. If the costs for this preventive maintenance mt depend only on the 
state i of the unit at t, then this much complicated model can be converted into 
the one described above, i.e. into the model without preventive maintenance, by 
substitutions mu — mt for mu, for all ieK — {k}, j e {i; i + 1; k}. 

A model very close to that just described is considered by Kolesar in [4]. In Kole-
sar's model, the matrix of state-transition probabilities is almost fully general and the 
replacement strategies prescribe replacements of units with the delay equal to a unit 
of time, i.e. if at an inspection, say at time t, a unit is in such a state that its replace
ment is either necessary or recommended by the applied strategy then this replace
ment is carried out at time t + 1. Corollary 1 of [4] and Theorem 2 of the present 
paper have similar assertions — the ditonic property of the sequence of average 
costs (incomes) per unit time of the system with control limit rules. Corollary 1 of [4] 
is, however, false as we can find out in [7] where a counter-example is given. The 
paper [8] shows, moreover, that the delay of replacements, i.e. the main difference 
of the two models in question, is much more important than one might expect. 

1. AVERAGE INCOME OF THE SYSTEM PER UNIT TIME 

Let the replacement strategy Sfw nE K, be accepted and let the unit used during 
(0; 1] be in state i, i E Bn = (K - A„) u {0}, at time t = 0. Let us denote by Dn(i) 
and Rn(i), respectively, the expected time to the first replacement of a unit and the 
expected income of the system up to the first replacement of a unit with the costs 
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for this replacement included. Using the renewal theory, it can be easily verified 
that the average income of the system with the replacement strategy £Pn per unit time 
Cn can be expressed as 

(3) C„ = - M for all neK. 
1 } 4.(0) 

The values of D„(i) and R„(i) satisfy the relations 

(4) D„(h) =l+pnh D„(h) + p„,h + 1 D„(h + 1) for n eK - {0} , 

heB„ - {n - 1} , 

(5) D„(n - 1) = 1 + />„_!,„_! D„(n - 1) for neK- {0} , 

(6) ~>o(0) = 1 , 

(7) R„(h) = phh[mh„ + R„(h)] + ph,h + 1[mhth + 1 + R„(h + l)] + 

+ Phk[mhk - R] for neK - {0} , h e B„ - {n - 1} , 

(8) R„(« - 1) = p„_j,„-1[m„_1^1 + R„(n - 1)] + p„-i,„[w„-i,„ - R] + 

+ Pn-1,*[»»I.-M _ I*] f o r neK - {0; fe} , 

(9) RA.(/< - 1) = p*-i,*-i[m*-i,*-i + Rk(k ~ 1)] + Pk-i,k[mk-Uk - R] , 

(10) Ro(0) = p00m00 + Poitwoi + Pok'nok - R . 

Solving these difference equations we obtain the following theorem. 

Theorem 1. The values of C„for neK are 

(11) Co = m(0) - R , 

-R+H;Zm(j)Pj 
(12) C„ = ^ for neK-{0}, 

HP J 
y=o 

where 

(13) m(i) = pHmH + p M + J w M + 1 + p t tm t t for ieK - {k - 1; k} , 

(14) m(k - 1) = pk-i,k-i^k-i,k-i + Pk-ukmk-i,k> 

(15) p y = ^ . ^ ^ _ - l - f o r j e K - { k } . 
1 - Pjj i=o 1 - ph-

Proof. The values of D0(0) and Ko(0) are given in (6) and (10), respectively. 
Further, the unique solutions of the systems of difference equations (4), (5) and (7), 
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(8), (9) have, respectively, the forms 

n-\ 

(16) D„(h) = £ Pj for n e K - {0} , he £„, 

(17) R„(h) = - R + X m(/) P} for n e JC - {()} , h e Bn, 
J = Һ 

where 

P* = — i — / n f ^ 1 - tor h,JEK-{k], ^ j . 
1 - pyj- *=*, 1 - p ( i 

Substituting (16) and (17) for h. = 0 into (3) we obtain (12). 

In the next section we shall need the following relation, based on (16) and (17), 
of the average incomes of the system per unit time corresponding to different replace
ment strategies &\. 

Lemma 1. Let n, n' e K — {0} be such that n' > n. Then 

Cn Dn(0) + X m(j) Pj 
(18) C„. J=n 

!Л(o) + ÏPj 
j = n 

2. OPTIMAL REPLACEMENT POLICY 

In this section we introduce an algorithm for finding the value of k* without 
calculating Cn for all neK. The following theorem characterizes the structure of the 
sequence {Cn}

k
n = 0. 

Theorem 2. We have % 

(19) C! > Co if Poo > 0 , 

(20) C! = Co if Poo = 0 . 

Let the sequence {m(n)}k
n=l be decreasing and let 

(21) p„in + l 4= 0 for every n e K - {k} . 

Let us put 

(22) z = max{k*; l ] . 

Then 

(23) {Q}«li is increasing, 
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(24) {Cn}
k
n=z+1 is decreasing , 

and the following implications are true provided z =j= k: 

a) if C 4= m(z) then Cz> Cz+1 ; 

b) if Cz = m(z) then C2 = Cz + l . 

Proof. According to Theorem 1 we have 

C0 =- m(0) - R 
and 

(25) C, -= m(0) - R(l - p 0 0 ) , 

so that (19) and (20) are obviously true. Concerning the relation (23) it is sufficient 
to prove it only for k* ^ 2. We show that 

(26) if k* ^ 2 then m(k* - l) > Q* . 

Indeed, if k* ^ 2 and m(k* — 1) ^ Ck* then we obtain from Lemma 1 and from 
the definition of k* the following impossible relation: 

(27) Ck, <
 C » - D'-*M+ C ^ < Ck,. 

The sequence {m(w)}*~0 is decreasing so that 

(28) m(rc) > Cfc* for every neK — Ak* 

and according to Lemma 1, the definition of k* and (21) (which secures that Pn > 0 
for every neK — {0}), 

(29) C > C» D"(Q) + C**P» > C" I )^Q ) + C » P " = C 
V J " + 1 ^ Dn(0) + Pn Dn(0) + Pn ' " 

for every n e [1; ...; k* — 1} so that the sequence {Cn}**=1 is increasing. 

For the proof of (24) we need to verify 

(30) if k* < k then m(z) S Cz. 

The proof of (30) will be divided into two parts: 

1) If k* = 0, i.e. z = 1, and m(1) > Cx then we obtain from (19), (20), (21), Lemma 1 
and from the definition of k* the following impossible relation: 

c0.c2>«^i = C l > c , 
D,(0) + P. 

2) If k* > 0, i.e. z = k*, and m{z) > Cz then we similarly have 
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C_ £>z(0) + c,P, . _ _, 

0,(0) + Px 

According to (30) and Lemma 1 and by virtue of the fact that the sequence {m(n)}*__ 
is decreasing the following relation holds for every n e Az+i — (k)' 

Cz Dz{0) + "_; mQ) P , m(n) Dz(0) + __ m(«) P, 
(3!) C„ = -=_- > -iff = m(n). 

l>*(0)+ _*>,• ->z(0) + Z P , 
J = 2 j=z 

Thus for every n e A z + 1 — {k} the inequality 

C„ D„(0) + m(n) Pn 
< _ _ + 1 — - < L„ 

->.(0) + P„ 

is fulfilled and the sequence {Cn}n_z + 1 is decreasing. The two last statements of Theo
rem 2 are easy consequences of Lemma 1 and of (30) because we know that m(z) ={= 
=# C_ is equivalent to m(z) < Cz. 

Theorem 2 can be applied in the following way: If we want to find k*, i.e. the least 
subscript of the elements of {CJ*_.0 which maximize the values of Cn for n e K , 
we need not calculate Cn for all neK. The complexity of the expressions for Cn 

given in Theorem 1 increases with increasing n. Therefore is seems to be convenient 
to calculate the values of Cn in the natural order: C0, C_, ..., Ck. Theorem 2 guaran
tees that for finding k* it is sufficient to start with C_ and after calculating Cn (n __ 2) 
to compare Cn with Cn-X and to proceed toC„+ 1 in the case Cn > Cn_ _. On the other 
hand, if Cn __ C,,_i then Theorem 2 states: 

if n ^ 3 then k* = n — 1 , 

if n = 2 and p00 4= 0 then k* = 1 , 

if n = 2 and p00 = 0 then k* = 0 , 

and we need not know the values of Ct for i > n. 

Corollary 1. Let the assumptions of Theorem 2 be fulfilled. Then 

(32) z = min [{n; n e K - {0; k}, m(n) __ Cn} u {k}] . 

Proof. Let us put 

Z = {n; n e K - {0; k}, m(n) __ Cn} . 

If z = 1 then k* < k and according to (30), 1 e Z. Thus min [Z u {k}] = 1. If 
z = k* = k then according to (26) and to the definition of k* 

m(n) __ m(k* — 1) > Ck* > Cn for every neK — {k} 
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and thus Z = 0 and min [Z u {k}] = k. Finally, if z e K - {0; 1; k} then z = k*, 
according to (30) z e Z and using (26) we obtain 

m(n) ^ m(k* — 1) > Cfc* > Cn for every n e K , n < z . 

In the algorithm suggested above for finding the value of k* we can use the follow
ing comparison of m(n) and Cn based on (32) before calculating Cn+l: 

if w. = 1, m(l) S C- and p00 = 0 then k* = 0 , 

if n = 1, m(l) ^ Cj and p00 + 0 then k* = 1 , 

if n ^ 2 and m(n) ^ C„ then k* = « , 

if n ^ 1 and m(n) > C„ then k* > ti and Cn + i > C„ . 

Using the criteria just determined instead of the comparison of Cn and Cn^l we do 
not calculate the superfluous value of Cz+1. 

Remarks . 1) If the sequence {m(n)}*I0 is only non-increasing then the results 

similar to Theorem 2 are true. 

2) If the relation (21) is not fulfilled and we put 

(33) n0 = min {n; neK - {k}, p„t„+l = 0} 

then from Theorem 1 it is evident that 

^ . i o + l == C„0 + 2 = *** = Ck . 

On the other hand, it is obvious that the unit in state 0 can by no means enter any 
of states n e {/; ieK — {k}, i > n0}, so we can pass to the model including only 
the states of the unit 0, 1, ..., n0 and k. In this model the condition (21) is fulfilled 
and we can use Theorem 2. 

3. A MORE EFFECTIVE ALGORITHM FOR FINDING THE VALUE OF k* 

The procedure for finding the value of k* suggested in the preceding section is 
very suitable if k* is small enough. For example, if k* = 1 then, evidently, there 
exists no better one. On the other hand, if k* = k we have to calculate all the values 
of C„, neK — {0; k}. Thus we can state that this procedure is very weak in this case. 
Our aim is to minimize the number of those Cn, neK, which are to be calculated 
for the least favourable value cf k*. For this purpose, we introduce the following 
algorithm. 

Let the preceding considerations (at the beginning we can make use e.g. of the 
results of Section 4 of the present paper) imply that 

(34) a < z < b , 

323 



where a and b are certain elements of the set K u {k + 1} such that b — a — 2. 
If at the beginning we know nothing concerning our task we obviously start with 
a = 0 and b = k + 1. The case b = a + 2 is trivial and may be omitted, i.e. we 
may suppose that 

(35) b - a > 2 . 

Let us calculate the value of Cd, where d is the whole part of (a + b + l)/2. It is 
easy to see that 

(36) a + 2 = d = b - \ . 

Thus 

(37) deK - {0; 1} . 

There are four possibilities: 

1) Cd — m(d — 1) — in this case we put a' = a and b' = d\ 

2) d + k and Cd < m(d) — in this case we put a' = d and b' = b; 

3) d + k and m(d) g Q < m(J - 1); 

4) d = k and Ck < m(k - 1). 

By (34), (37) and Corollary 1 of the present paper, and by Theorem 4 of the paper [6] 
(stating that the inequalities Cd = m(d— 1) and z < d are equivalent if d e K — 
— (0; 1}) we have 

(38) a' < z < b' , 

where 

(39) a\b'eK u {k + 1} 

in the first two cases, and 

(40) z = d 

in the cases 3) and 4). We shall deal with the cases 1) and 2) only. The relations (38) 
and (39) and the fact that z e K — {0} imply that b' — a' = 2. It may happen that 
b' — a' = 2. Then evidently z = a' + 1. On the other hand, if 

(41) b' - a' > 2 

we repeat this construction starting with the new parameters a = a' and b = b'. 
The relations (37), (38), (41) and the assumption that the original parameters a and b 
are from the set K u {k + 1} guarantee that the new ones meet all the demands. 

So the procedure of finding the value of z is divided into several steps each of which 
has the form just described. The set of possible values of z is reduced approximately 
to one half in every step. 

324 



Lemma 2. It is necessary to carry out not more than log2 k steps of the algorithm 
to find the value of z. 

Proof. Let q be the natural number such that 

(42) 2q~1
 = k < 2q. 

Let exactly r steps of the algorithm have to be carried out and let as, bs and ds be the 
corresponding parameters a, b and d of the s-th step, s = 1,..., r. By the mathematical 
induction we shall prove that 

(43) 2 = bs - as - 1 < 2q~s+1 for every s = l , . . . , r. 

We have b! — ax = k + 1 so that (43) is true for s = 1. Let r > 1 and let (43) hold 
for some s e {1; ...; r — 1}. We know that 

(44) bs+1 - as+j = b's - as > 2, 

because the s-th step is not the last one which is to be carried out. Further, the realiza
tion of the (s + 1)-st step of the algorithm implies either Cds = m(ds — 1) or ds 4= k 
and Cds < m(ds), i.e. either 

(45) bs+1 - as+l = ds - as 

or 

(46) b5+1 - as+l = bs - ds. 

Let (45) be true. If as + b5 + 1 is even then we obtain 

fts+1-as+1-l=^±fii-a5-l=^f^<2-. 
2 2 

If as + bs + 1 is odd then 

b s + 1 - a s + 1 - l = ^ - a s - l < b - ^ ^ ± < 2 « - . 
2 2 

On the other hand, if (46) is fulfilled then 

b,+ 1-a.+ l-l*b.-!±±±-l<b'-a'-l<2'-<. 
2 2 

In this way, the relation (43) is verified. In particular, for s = r we have 2 < 2q~r+i 

so that 
r = q — 1 = log2 k . 

Theorem 3. Tbe number of those C„, neK, the values of which it is necessary 
to calculate for finding the value of k*, if the algorithm considered in this section 
is used, is less than or equal to log2 k. 
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Proof. It is easy to see that exactly one Cm neK — {0}, is enumerated with 
every step of the algorithm in question. Let the value of z be found. If z + 1 we know 
that k* = z. On the other hand, if z = 1 we obtain according to (19) and (20) that 

if Poo = 0 then k* = 0 and 

if Poo > 0 t n e n k* = 1 

so that it is not necessary to calculate any further value of Cn. 

Remark. In the case of k = 2", where n is a natural number, it may happen that 
the number of values of Cn which have to be calculated is equal to n = log2 k. Indeed, 
if z = k* = 1 then as = 0, bs = 2n~s+1 + 1, ds = 2n~s + 1 and Cds = m(ds - 1) 
for every 5 = 1, ..., n, so that in the S-th step we obtain the results as = 0 < z < b's = 
= dv, b^ — ^ = J s > 2 for every s = 1, ..., n — 1 and b'n — a'n = dn = 2. 

We find that the number of those C„, n e K , which are to be calculated in the least 
favourable case when using the algorithm of the present section is much less than 
that when using the procedure considered in Section 2. It ought to be mentioned 
that if 1 + log2 k < k* < i(k + 1) the former method need not be quicker although 
it may require the enumeration of a smaller number of values of Cn, n e K . Namely, 
we should calculate C[fe+1/2] by the former one while the latter one stops with Ck*.t. 
The former may be essentially more difficult to obtain than the latter due to the 
increasing complexity of the formula (12) when n increases. 

4. ADDITIONAL COMMENTS 

The following theorems serve for further decrease of the number of necessary 
calculations of the values of Cn and for the apriori upper estimate of this number. 
We suppose throughout the present section that the assumptions of Theorem 2 are 
fulfilled. 

Theorem 4. If neK — {k} and m(n) _ m(0) — R then n = k*. 

Proof. It is obvious that n = 1. If n < k* then k* = z and from Theorems 1 
and 2 we obtain 

Cn = C,= m(0) - R(\ - poo) = m(0) - R = m(n) , 

but this relation contradicts (32). 

Lemma 3. Let the sequence {Ppjy-o be increasing and let neK - {0; k}. Then 

(47) m(n - 1) - jR(l - Pn-i,n-i) SCn = m(0) - Rp0k • 

Proof. Let us put F; = m(j) ~ PJkR
 f o r a11 J eK - lk}' T h e sequence {Ej})Zl

0 

is obviously decreasing and 
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-R + im(j)Pj = -R +"lE ,EJ . + RV(l - p..) P. - Rlpjj+.P, = 
j=0 j=0 j=0 j=0 

n—1 n—1 n— 1 n— 1 

= I EJPJ + R £ Pj-tjPj-x " K Z PjJ+1Py = I F,P, - RPn-l,nPn-l -
7 = 0 , = 1 , = 0 7 = 0 

By the relation (12), we have 

£.1-1 Z ^ j ~~ Rpn-i,nPn-i 
Cn l> t 2 - ^ n ^ -5,-1 - KP„-i,„ = m(n - 1) - R(l - pn^^t) 

Y?j 
7 = 0 

and similarly 

C^Fo = m ( 0 ) - Rp0fc. 

Theorem 5. Let the sequence {p/fc}y_0 be increasing and let n e K — [0; k}. Then 

1) i/ m(n) ^ m(n - 1) - K(l - pn-.ltn-t) then n ^ k*; 

2) if m(n) > m(0) — Rpok then n < k*. 

Proof. The proof of part 1) is based on (32) and on Lemma 3. If n e K — (0; k], 
n ^ k* and m(n) > m(0) — Rp0k then k > n 7> z, so that according to (30) and 
(31), m(n) S C„- This result contradicts, however, the relation 

m(n) > m(0) - Rp0fc ^ Cn 

which can be easily obtained from Lemma 3. 

Let us denote 

(48) nx - max [{n; n e K - {0; k], m(n) > m(0) - Rp0fc} u {0}] , 

(49) n2 = min [{n; neK - {0; k}, m(n) g m(0) - R or 

m(n) ^ m(n - 1) - K(l - p^Un^)} v {k}] ; 
then 

(50) nx S fc* ^ " 2 

and if «! # 0 then n2 < k*. 

It is worth mentioning that the optimal replacement strategy Sfk* does not involve 
only the comparison of the mean incomes of the system achieved during the nearest 
unit of time with the decisions ,,replace" and "do not replace". In other words, 
the strategy Sfk* is not generally equivalent to the strategy Sf determined by the set 
A ~ K with the properties 

a) k e A, 

b) if n e K — {k} and m(n) < m(0) - R then n e A, 

c) if neK - {k} and m(n) > m(0) - R then n <£ A. 
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Theorem 4 guarantees that A c Ak* but the following example shows that 

generally the sets A and Ak* need not coincide. 

E x a m p l e 1. Let 

k = 2 , 

m(0) = 2R , m(l) = fP , 

POO
 =

 4 •> Pol ~ P02 = 8" •> 

P\\ = P12 = "1 • 

From the definition of the set A we see that A = {2}, particularly 1 $ A. On the 

other hand, pok < plk and 

777 (1) = §R < | R = m(0) - (l - poo), 

so that according to the first part of Theorem 5, k* g 1, i.e. 1 e Ak*. Altogether 

we obtain 

1 eAfc* - A . 

References 

[1] C. Derman: On optimal rеplaсеmеnt rulеѕ whеn сhangеѕ of ѕtatе arе marкovian, in: Mathе-
matiсal optimization tесhniquеѕ (R. Bеllman еd.) Projесt Rand Rеport, April 1963. 

[2] C. Derman: Finite State Marкovian Deсiѕion Proсeѕѕeѕ, Mathematiсѕ in Sсienсe and Engi-
neering, vol. 67, Aсademiс Preѕѕ, New Yorк and London (1970). 

[3] R. A. Kasumu: On optimal replaсemеnt poliсy (1980) — unpubiiѕhеd. 
[4] P. Kolesar: Minimum сoѕt rеplaсеmеnt undеr marкovian dеtеrioration, Manag. Sсi., vol. 

12, No. 9, May (1966), 694-706. 
[5] A. Lešanovský: On dеpеndеnсеѕ of thе еxpесtеd inсomе of a ѕyѕtеm on itѕ initial ѕtatе, 

to appеar in IEEE Tranѕaсtionѕ on Rеliability. 
[6] A. Lešanovský: On optimal rеplaсеmеnt poliсy II, to appеar in Proсееdingѕ of thе Third 

Pannonian Sympoѕium on Mathеmatiсal Statiѕtiсѕ, Viѕеgrád (1982). 
17] A. Lešanovský: Somе rеmarкѕ on thе papеr by P. Kolеѕar "Minimum сoѕt rеplaсеmеnt 

undеr marкovian dеtеrioration", to appеar in Managеmеnt Sсiеnсе. 
[8] A. Lešanovskў: Сompariѕon of two rеplaсеmеnt poliсiеѕ, to appеar in Pгoсееdingѕ of thе 

Fourth Pannonian Sympoѕium on Mathеmatiсal Statiѕtiсѕ, Bad Tatzmannѕdorf (1983). 
[9] D. B. Rosenfield: Dеtеriorating Marкov proсеѕѕеѕ undеr unсеrtainty, Tесhniсal rеport No. 

162, May (1974), Dеpt. of opеrationѕ rеѕеarсh and Dеpt. of ѕtatiѕtiсѕ Stanford Unìvеrѕity, 
Stanford, Сalifornia. 

110] S. Ross: Arbitrary ѕtatе marкоvian dесiѕiоn prосеѕѕеѕ, Ann. Math. Ѕtat. 39 (1968), 2118 tо 
2122. 

328 



S o u h r n 

O OPTIMÁLNÍ ZAMĚŇOVACÍ STRATEGII 

R A I M Í AJIBOLA KASUMU, A N T O N Í N LEŠANOVSKÝ 

V článku je uvažován systém s jedním prvkem, který může být v k + 1 stavech. 
Inspekce prvku jsou prováděny v diskrétních časových okamžicích. Proces zhoršo
vání prvku se předpokládá markovovský. Prvek svou činností přináší určitý zisk, 
který klesá se zhoršujícím se jeho stavem. Výměna prvku je spojena s náklady 
na pořízení jiného. Článek přináší efektivní algoritmus nalezení takové strategie záměn 
prvků, která maximalizuje průměrný výnos systému za jednotku času. Použití 
tohoto postupu vyžaduje zkoumat nanejvýš log2 k časově stacionárních strategií. 
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