Aplikace matematiky

Helena RiZi¢kové; Alexander Zeni$ek
Finite elements methods for solving viscoelastic thin plates

Aplikace matematiky, Vol. 29 (1984), No. 2, 81-103

Persistent URL: http://dml.cz/dmlcz/104073

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104073
http://dml.cz

SVAZEK 29 (1984) APLIKACE MATEMATIKY cisLo 2
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THIN PLATES

HELENA RUZICKOVA and ALEXANDER ZENISEK

(Received December 27, 1982)

1. INTRODUCTION

In [3] several mathematical models of viscoelastic bending of anisotropic thin
plates are derived by generalizing one-dimensional rheological models, e.g. Voigt’s
model or Zener’s model, to more dimensions. These problems are numerically solved
by a combination of finite elements and Laplace transform in [4], [11], where
further references can be found. The initial-boundary value problem (1)—(6), dealt
with in the present paper, represents according to [3] and [4] the viscoelastic bending
of a thin plate in the cases ¢, = 0, ¢; = 1 and ¢, = ¢; = 1. Moreover, our consider-
ations cover the case ¢, = 1, ¢; = 0. Our numerical approach is more standard than
in [4] and [11]: we combine finite elements with finite differences.

In Section 2 the corresponding variational problem is presented. In Section 3 the
variational problem is discretized by finite elements in space and by finite differences
in time. Triangular finite C!-elements are used including curved triangular C'-ele-
ments along the boundary if it is curved. When the problem is of the first order with
- respect to time (i.e. cy = 0) the discretization in time is done by means of one and
two step A-stable methods. In the case ¢, = 1 we combine the formulas of two step
A-stable methods with the second difference — this is nothing else than the Newmark
method written for the linear equation. In this way we obtain the discrete problem
(21)—(23). Further, applying numerical integration, the discrete problem (27)—(29)
is derived. Existence and uniqueness of a solution of both discrete problems is
proved.

In Section 4 the convergence of the approximate solution is proved and the rate
of convergence is estimated. Theorems 3 and 4 are devoted to the cases ¢, = 1 and
¢, = 0, respectively, when numerical integration is not taken into account. The
effect of numerical integration is studied in Theorems 5 and 6. In Section 5 numerical
results are presented.
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2. FORMULATION OF THE PROBLEM

We shall consider the following initial-boundary value problem

(1) DR i + ¢ DW g + Dw = Q@ in Q x (0, *],
(2 w(xy, X2, t)lr =0,

®) oL =0

(4) (e2D$3% 15 + ¢, DLW 1 + DGw ) vy, = 0,

5) : w(xy, X3, 0) = f(xq, x2),

(6) e W(xy, X2, 0) = c,9(xy, X5),

where at least one of the relations ¢; = 1, ¢, = 1 takes place and where ¢; = O or 1
(i = 1, 2).The summation convention over repeated subscripts is adopted. A comma
is employed to denote partial differentiation with respect to spatial coordinates x,, x,
and a dot denotes the derivative with respect to time t. D}, are constants with the
properties

(7) DE_’;:()I = Dg':'k)t = Df(’;'l)j (m = 09 1’ 2) >
(8) D%éufu Z & V¢ =<¢;;€eR, p, =const >0 (m =01, 2) ,

and Q, f, g are sufficiently smooth given functions. The symbol v denotes the unit
outward normal to the boundary I" of the given domain Q and v,, v, are the compo-
nents of the vector v. The symbols I'y, I', denote parts of I' with the following pro-
perties: 'y ul, =TI, T, nTl,=0.

Before presenting a variational formulation of problem (1)—(6) let us introduce
some notation. By H™(Q) we denote the Sobolev space of real functions which together
with their generalized derivatives up to order m inclusive are square integrable over Q.
The inner product and the norm are denoted by (*, * )0 and ||, o, respectively.
HG(R) is the closure in the H™-norm of the set of infinitely differentiable functions
having compact support in Q. C"(H%Q)) is the space of continuous functions
f:[0, r*] > H*(Q) which have continuous derivatives up to order m on [0, t*].
I*(H%(Q)) is the space of strongly measurable functions f: (0, 1*) - H*(Q) such that

L 1 (O]2.0dt < o0
Let us define the space V, by
9) Vo = {ve H¥(Q) n Hy(Q): dv/dv = 0 on I'y in the sense of traces} .
(Of course, if I'y = I' then V, = H}(Q).) Multiplying equation (1) by v e V,, inte-
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grating over Q and using (4) and Green’s theorem we find

(10) c,a,(W, v) + cya; (W, v) + ag(w, v) = (Q, )00 YveEV,,
where

(11) auli ) = j j

Thus the variational formulation of problem (1)—(6) reads: Find a function w which
has the following properties:

(a) we LX(Vy), we I2(V,), cyw e IX(Vy);
(b) relation (10) holds;
(c) the function w satisfies initial conditions (5), (6).

In what follows we shall suppose that problem (a)—(c) has a solution w. Then this
solution is unique: It is sufficient to prove that the corresponding homogeneous
problem has the trivial solution only. Thus let us assume Q = f = g = 0 and set
v = W in (10). We obtain

(12) ca,(W, W) + cpa (W, W) + ag(w, w) = 0.
Relations (7) and (11) imply

'—liauu a,(u,v) = a,(v,u m =
(19 i) = Sl ) anlus) = anloe) (m=0,1,2),

and inequality (8) gives

(14) an(u,u) 2 K K,=const >0 (m=0,1,2) Vuel,

It follows from (12)—(14) that
(15) %{czaz(w, W) + ao(w, W)} = —2 c;ay (b, W) 0.

As we assume initial conditions (5), (6) to be homogeneous the expression
c,a,(W, W) + ao(w, w) is initially zero. By (15) this expression either decreases and
therefore becomes negative or remains equal to zero. Since (14) holds, however,
only the latter alternative is possible. Then, according to (14), |w||, o = 0 Vi€ [0, *]
which was to be proved.

3. FINITE ELEMENT SOLUTION
We shall solve the variational problem (a)—(c) approximately, approximating the

space V, by a finite dimensional space created by finite C*-elements and discretizing
the time variable by finite differences.
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We shall use triangular elements. In the case of polygonal boundary I' we shall
consider both a triangular C!-element with a full polynomial of the fifth degree [12]
and Bell’s C'-element [1]. In the case of curved boundary I' we shall consider Bell’s
elements on the interior triangles (whose sides are straight); along I'; we shall con-
sider curved C'-elements with a cubic curved side (see [14]), along I', curved C'-
elements with a quintic curved side [7]. Details concerning the construction of these
elements can be found in [14], [8]- For our considerations we shall need only the
fact that each finite C'-element of this kind corresponds to a polynomial v*(¢, n)
of degree N*,

(16) N*=4+n,

where n = 1 for elements with straight sides, n = 3 for elements with a cubic curved
side and n = 5 for elements with a quintic curved side. ((16) is a special form of the
relation N* =4m + 1 + (n — 1) m obtained for curved C™-elements in [14].)
The polynomial v*(¢, 1) is a C'-element constructed on the unit triangle T;, which lies
in the ¢, n-plane and has the vertices R,(0,0), R,(1,0), R5(0, 1). The form of the
correspondence is given by the mapping of T, on the element considered.

In the rest of this section we shall restrict ourselves to the case of curved boundary.
The considerations in the case of a polygonal boundary are similar and simpler.

Let us construct a domain ©, (an approximation of Q) and :ts triangulation T,
in the same way as in [14], [7]. Using finite C'-elements just mentioned we can
construct on the triangulation 7, a finite dimensional space ¥, which is a subspace
of C'(Q,). Every function v e V, is uniquely determined by the parameters D*o(P;),
]oc] < 2, prescribed at the nodal points P; of 7, (P; are the vertices of the triangles from
which 7, consists). Let ¥, be a subspace of V), defined by

=0},
Tny

where I'), is the boundary of Q, and I, is the part of I', approximating I';.
According to [14], [7] the spaces V}, V;o have the following property (P): Let
u e C*(Q) satisfy boundary conditions (2), (3) and let u; € V}, be the interpolate of u
(i.e. D*u,(P;)) = D*u(P;), |« < 2 at all nodal points P;). Then u, € V.
Let us choose an integer M, set At = t*/M and define

o
Iy 0x4

o

0%,

(17) Vho={vth:v

(18) tw=mAdt (m=0,1,...,M).

If f = f(xy, x,, t) then the symbol /™ will denote a function in two variables x, x,
defined by the relation

(19) " Efm(xl’ xZ) Zf(xla xZ’mAt)'
Setting finally - :

(20) 5rh(“, ”) = J]‘ D(i;'il“,ijv,ktdx (" =0,1, 2)
2n
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we can define the discrete problem for the approximate solution of our variational
problem (a)—(c):
Letp = 1or2. Foreachm = 0,1, ..., M — pufind a function wj** e V,, such that

m
(21) e, @y (A%wy, v) + Ateydy,( Zoocpw,',"“’, v) +
=

un
+ APag (Y Bwi TP, v) = A3 Y B,0" 1P, v)o.0, V0E Vo
p=0 P

=0

with initial condition (22) for & = 1 and initial conditions (22), (23) for p = 2:

(22) wy = f(x1, x2) 5
(23) wl} = fapr + At gapr b

where f?" € V, and g°”" € V), are approximations of the right-hand sides of (5) and
(6), respectively. The relation (23) is motived by the Taylor expansion. In ap-
plications we usually define f*" = f™ g% = g™ where f" and g™ are inter-
polates of f and g in V,, respectively. However, we shall see in Section 4 that there
exist better approximations of f and g.

Remark. If ¢, = 0 we can choose both u = 1 and u = 2. However, the initial
condition (6) is not prescribed for ¢, = 0 and therefore we cannot use (23). Instead of
it we compute w;' by means of a one step method. If ¢, = 1 then u = 2.

The operator 42 is defined by

(24) AZFm — Fm+2 _ 2Fm+1 + Fm.

For p =1 we have

(25) db==1, ay=1, =9, py=1-9 (9=}
and for u =2

(26) 2o =~1+4+8, ay=1-29, ay =9, Po=13—19+06,8 =14 —25,
Bo=39+6, (924 6>0 for ¢;=0,6=20 for ¢, =1).

If ¢, = 0 then (25) and (26) define the coefficients of the u-step A-stable method (see
[10], [13]). If ¢, = 1 then (24), (26) define the Newmark method which is uncondi-
tionally stable for 9 = 4,6 = 0 [17].

The symbol J in (21) denotes a continuous extension of the function Q to a domain
d>QuQ

As usual, we approximate the integrals defining the forms d,(+, *) and (+, *)o o,
in (21) by quadrature formulas with integration points lying in Q. This is done in the
same way as in [5] or [14], [10]. Thus we obtain the forms a,(+, *) and (+, *),.
Now we can formulate the fully discretized problem for the approximate solution of
the variational problem (a)—(c) in the domain Q,:
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Let o = 1 or 2. For each m =0, 1,..., M — u find a function wj'** € V,, such
that

"
(27) cra (42w, v) + At cpag (Y wwi TP, v) +
r=0

" u
+ A% ag (Y BwptP, v) = AP(Y B,Q" TP, v), VoeV,,
p=0 p=0
with initial condition (28) for u = 1 and initial conditions (28), (29) for u = 2:
(28) WI? = fﬂpr(xl’ x2) )

where the meaning of f*7" and g“?" is the same as in (22), (23).

It should be noted that the computing experience shows that in the case of equations
with constant coefficients (as equation (1)) it is advantageous to use quadrature for-
mulas only on the curved triangles. On the triangles with straight sides it is better to
use the technique using standard matrices [9]. This approach saves the computer
time.

In Section 4 the error analysis is presented for problems (21)—(23) and (27)—(29).
Now we prove existence and uniqueness of a solution of these two problems.

Lemma 1. Let the boundary I be piecewise of class C*. Let every triangulation t,
satisfy the condition

(30) h|h = ¢y (¢o = const > 0, h = min hy, h = max hy),

Tet, Tetn

hy being the greatest side of the triangle with straight sides having the same vertices
as T. Then for h < I, where h is sufficiently small, we have

(3]) C1”U”§»Qh = ‘7rh(v> U) = Cz“””%a,. Yoe Vi,

where C,, C, are constants independent of h and v.

Proof. The first inequality (31) tollows from the results introduced in [15]. The
second inequality (31) is obvious.

Lemma 2. Let the assumptions of Lemma 1 be satisfied. Let the quadrature for-
mulas on the unit triangle T, for the calculation of the forms a,,(u, v) be of the degree
of precision 2n + 4, where n depends on T€ t, and is the same as in (16). Then for

h < I, where I is sufficiently small, we have
(32 Callofan = an(0,0) < ol Vo€ Vio.

where C;, C4 are constants independent of h and v.
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Proof. According to (16), 2N* — 4 = 2n + 4. Thus we can use Theorem 7 from
[14] and Theorem 3.1 from [7] and prove the first inequality (32) similarly to [14,
Corollary 1]. The second inequality (32) is a straightforward consequence of the
second inequality (31) and [14, Theorem 7] and [7, Theorem 3.1].

Theorem 1. a) Let the assumptions of Lemma 1 be satisfied. Then for sufficiently
small h, problem (21)—(23) has one and only one solution.

b) Let the assumptions of Lemma 2 be satisfied. Then for sufficiently small h,
problem (27)—(29) has one and only one solution.

Proof. a) As relation (21) represents for each m a system of linear equations it
suffices to prove that the following homogeneous probiem has only the trivial solu-
tion: Find a function wj** € V,, such that

(33) ol (Wi, V) + At ey, dy (Wit v) +
+ A¢% B g (wit* v) =0 Voe V.

Letus set v = wy'**1n (33) and use the first inequality (31). Then we obtain wj ™ = 0.
b) Using the first inequality (32), part b) can be proved in the same way as part a).

Theorem 1 is proved.

It should be noted that part a) of Theorem 1 can be proved without the restriction
h <k, i.e. for every h. The only change is that in the proof we use the first inequality
(31) with a constant C,; dependent on h. However, in Section 4 we shall need ine-

qualities (31) with constants independent of .
In the case of polygonal boundary I" inequalities (31) hold for every h and without
assumption (30). Thus we can state the following theorem:

Theorem 2. a) Let the domain Q have a polygonal boundary I'. Then problem
(21)—(23) has one and only one solution for every h.

b) Let the domain Q have a polygonal boundary I' and let the quadrature for-
mulas on the unit triangle T, for the calculation of the forms au(u, v) be of the
degree of precision 6. Then for sufficiently small h problem (27)—(29) has one and
only one solution.

4. ERROR ESTIMATES

We start with some definitions and a lemma. The symbol w will denote the Calderon
extension of the exact solution w to the domain &, where § > QU Q, Vh < h.

The function n € V), satisfying
(34) don(W — n,0) =0 VveV,
is called the Ritz approximation of the function w.

87



Lemma 3. Let in the case of a curved boundary I' the assumption of Lemma 1
be satisfied. Let the solution w(x,, x,, t) satisfy

(35) w(xy, x5, 1) € H**(Q) Vie(0, *]

where k = 4 when we use only triangles with straight sides and full polynomials
of the fifth degree, and k = 3 in the remaining cases. Let W(x,, x,,t)e H***(Q)
be the Calderon extension of w(xl, Xy, t) from Q to 4 ie.

(36) ”W”k+2,5~2 = C5|lw”k+2,na

where Cs is a constant independent of w and t. Let y(xy, x,, t) € Vo (Vt € (0, t*])
be the Ritz approximation of the function W(x,, x,, t). Then there exists a constant C
independent of w, h and t such that

(37) “W - 'I”z,m = Chk“W”Hz,Q .

Proof. Let W, e V), be the interpolate of the function W € H**2((3). Then, according
to corresponding interpolation theorems on classical and curved triangles (see
[2, p. 812 and 819] and [14, p. 358]),

(38) % = Will2.0, < CH sz
The triangular inequality gives

(39) 1% = nl20, = % = 120, + 1 = Wi, 0, -

As 1 € Vo, Wy € Vyo We have n — W, € V0. Using the first inequality (31) and relation
(34) we obtain

(40) Cl”’? - WI”;Q,, =< 50;,(’1 - W, n - W’,) =

= 50:;(“’ — W, n - W’l) = K”W - WIHZ,Qh "'7 - W’”Lﬂl- 4

where the constant K does not depend on h (because D), are constants). If 5 & W,
then we obtain from (40)

(41) In = Will2.0, = (K[CL) W = Wi, 4, .

Inequality (37) follows from (36), (38), (39) and (41). If # = W, then (37) follows
from (36) and (38). Lemma 3 is proved.

First we prove convergence of the solution of problem (21)—(23). In order to
estimate the expressions |W" — wi|; o, (m = 4, ..., M) let us set

(42) ‘ =W, e =" =W
Then
43) 1™ = wilz0, £ 18720, + ed] 2, -
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The first term on the right-hand side of (43) can be estimated by means of Lemma 3.
It remains to estimate the second term. The complete result is contained in Theorems
3 and 4.

Theorem 3. Let ¢, = 1 and let in the case of a curved boundary I the assumptions
of Lemma 1 be satisfied. Let

(44) we C"+3(H"+2(Q)) ,

where k is defined in Lemma 3 and q = 2 for 9 = $ and q = 1 for 3 & % (¢f (25),
(26)). Then for m = 2,..., M and for sufficiently small h the following estimate
holds:

1
(45) [ — w20, £ C{d1® + B* + _ZOHQQHZ,Q,‘ + 417 e — &3]0} >
=

where the constant C does not depend on At and h.

Theorem 4. Let ¢, = 0, ¢c; = | and let in the case of a curved boundary I' the
assumptions of Lemma 1 be satisfied. Let
(46) we CTH(H(Q)).

Then for m = p,...,M (u =1 or 2) and for sufficiently small h the following
estimate holds:

n—1
(47) [#" = Wiz, < C{41" + B* + ZO|\8;;HZM} ,
=

where the meaning of k, q and C is the same as in Theorem 3.

Proof of Theorems 3 and 4. For the sake of simplicity we shall write ¢” instead
of ¢j. First we prove Theorem 3. Some of our arguments are similar to considerations
from [16].

Let W, w and W denote the Calderon extensions of functions w, w and W, respectively,
from Q to Q. Let us define a function Q by the relation

(2) = . p(h T 0) ~ — 0
(48) CzDijsz,ijkl + HDijktW,ijkt + Dijklw.ijkl =0.

Equation (48) is identical with equation (1) for (x,, x,) € Q. Let us multiply (48) by
an arbitrary function v € ¥}, and integrate over Q,. We obtain

(49) czﬁz,,(ﬁ'?, v) + Cld”,(;i;, v) + do,(W, v) = (0, v)o.q, -
Relations (34) and (49) imply

2 2
(50) A doy( Y Bp™ TP v) = ALP( Y B,0"7, v)o 0, —

p=0 p=0
2
— ey A Gy (Y B, 0) — ¢ A2 ay( Y BT, v).
p=0 p=0
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Let us add to both sides of (50) the expression
2
ol (420", 0) + ¢y At d@(Y an™ P, v)
p=0
we obtain

2 2
51) 2@ (A%0™, v) + ¢; At Ay (Y an™ P, v) + At G Y BT, 0) =
p=0 p=0
2 2
= A( Y. B,0" 7, v)o.0, + €1 At @y Y, (an™ " — At BR"T). 0) +
p=0 p=0

2
+ ¢,y (4™ — A7 Y, ﬁpW"‘“’, v).
p=0

As w = & + n, we have
(52) 0= WP — &P,

Let us insert (52) into (51) and use the notation

(53)

( ~m+p__ Atﬁp%m%—p),

(54) = oc LR
2 ~
(55) ym = AZW™ — A2 Zoﬁpwm+p;
p=
we obtain
2
(56) @, (470", v) + ¢y At dy( Zooc,,r]"‘*”, v) +

2
+ At aOh(Zﬁpnm+p v) = At (Zﬂ Qm+p’ D)O,Qh +
+ ¢y At dy(n" — o™, v) + ey (Y7, v) — €28, (478", v).
Let us subtract (21) from (56) and use (42). We get
2
(57) C2d5(A%", v) + ¢y At @y Y we™ P, v) +
p=0
2
+ At? 50,,(}: ﬂpa"'“’, v) = czdz,,(y"', v) — czﬁz,,(Azé"', v) +
p=0

+ ¢, At d, (7" — 0", v) Yve V.

Let us substitute into (57) the expression

2
(s8) 0= T 0 Vi

p=0



Adding up the obtained relation from m = O up to m = s — 2 we get

s—2 s—2
(59) Zo(czzf'" + ¢y At B" + A2 C™) = ZO(CZD'" - E™ 4 ¢ At F™),
where
2
(60) : A" = ay (4%, Y agmtr),
=0
~ 2 ’ 2
(6]) B™ = 51,,( Z oc,,s"‘“’, Z ocps"'“’),
p=0 p=0
2 2
(62) cn = don( Y. Bpe™ ", ) “p8m+p) >
p=0 r=0
2
(63) D™ = a,,(y™, Zoocps"'“’) ,
p=
2
(64) Em = a, (4%, Y o,emtr),
p=0
2
(65) Fro= ay,(n" — o, Y a,e"tr)
p=0

The left-hand side of (59) will be estimated from below and the right-hand side from
above. Using (24), (26) and the notation 4¢™ = ¢™** — &™ we obtain from (60)

A™ = ay (At — Ae™, 94emtE + (1 — 9) 4e™).
Taking into account the relation 3 = { we can find that
A" = Y[ a,,(4em L, 4™ Y) — d,,(de™, 4e™)] .
Similarly, using (26), (62) and $ = 4 we obtain
C™ = dg,(9em2 + =9t — (%t +(1—9)em),
O™+ (1= 9) e+ 9™t + (1 — 9) ™ + 0d%™) =
2 (9" + (1 — 3) ™™, ™2 + (1 — 9) &™) —
— d(Y™ T+ (1= 9)e™, e+ (1 — 9)e™) +
+ 8l (de™ T, Ae™TY) — ddg,(Ae™, 4e™)]

It follows from (61), (31) that B™ = 0. Thus using Lemma 1 we get for 41 < 1

s—=2
(66) go(/fm + At ¢;B™ + A1 C™) = 1C, 41* P — 3C,[4e°|5.q, — 3C, AP R,
where
(67) —R = —[9" + (1 = 9)&°|3,0, — 3]e’ — |30, 2

z —Ky([ez.00 + [°]3.00)
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with
K, = max {9, 9(2% — 1) + 26}
and
P=[9 +(1L=9)& 20, + (L +0)[e~ e 30, =
=@+ 1+8) )50 +[(1L—9*+1+6] &30 +
+ 2[9(] -9 -1~ 5] (&, 8‘_1)2_9,‘ .
As ¥l —9)— 1 -6 <O0for 9 =14, 6= 0, we have for any t > 0
281 — 9) — 1 = 3] (5, & V)0, =

2 [0~ 9) = 1 = 3] (<ol + 11 )
We can set
L[+ =91 =9 +[1+0+ (1 —9](1 +6+ 9
a A1+ 6+ (1 — 92 [1 +6—9(1 — 9)]

thus obtaining

(6:) Pz Ky(|&f3.00 + &7 Y2.00) 5
K, = min 1+9
2 {2[1+5+(1—9)2]’
T+8)[t+6+(—97]
[1+6~3(1‘9)]2+(1+5+92)[1+5+(1—9)2]}'

According to (26), we can write

M

(69)

ae"P = A3 4" + €M)

p=0

Using (63) and (69) we obtain with respect to the boundedness of d,,(u, v)
s—2
(70) Y D" =ay(y A 94 4+ &) — @y, ()°, 9 4e° + £°) —
m=0
s—2
- Zldzh(ym — YL 94 + M) £ gcz{”yrz”z,ﬂh ("85“2,9,. +
+ €7 2,00 + [9°]2.0. (I 2,00 + [°]2.04) +
s—2
+ 147 oo (7 . + 720}

From the Calderon theorem and from (55) we obtain

2
”ymnlsﬂh = C”AZWM — 4 Zoﬁpwm+p|’k+2,0 .
p=
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Let g = 2 (i.e. 3 = 1). Then the Taylor theorem yields

2 2 4. %1 1 4..%2
Azwm_AtZZﬁpwm+p:§At4aW _*AtétaM
p=0

ot* 12 at*
a4wk3 a4wx4
—(F +8) At —— — (3 — 0) At* —— .
@ ) or* G ) or*
Hence by means of (44)
(71) 17720, = C 4r*.
Let ¢ = 1 (i.e. $ > }). Then the Taylor theorem yields
2
Alwm _ AIZ Z ﬁpwm+p —
p=0
4 93w 1 3w Pw* 33ws
4P |22 Y (9425 — (1 - 20 .
[3 o 3 or ( ) or & ) ar ]

Hence by means of (44)
(72) [y 2.0, < C 42
From (71) and (72) we obtain
(73) [y"]2.0, £ C 4122
Similarly we can derive
(74) [4y™] 2.0, < C 4173

Relations (70), (73) and (74) imply
(5) 4773 55 Car 11 o+ [laad + 45 [0
Using (64) and (69) we obtain similarly as in the case of relation (70)
— Y B2 96,3 (14 [ o + 476 e+
+ 3 148 o [ L)

Relations (42,), (44), Lemma 3 and the Taylor theorem imply

| 478720, = [47% — 470" 2 q, < Ch¥| 40w
Thus

(06  —artY B S OMAY [+ 3 i + [ ]

cize S CAURE (j=2,3).



Using (65) and (69) we obtain similarly as in the case of relation (70):
s=2 1
ZOF"' = 9C2_ZO{(1|”S_2”2,9h + [0 2]2.0,) £ 20, +

+ (172,00 + [@0°2.04) [€°] 2.0 +,:_;1(HA“"'_1”2,9;. +

+ 40" 2 0,) "2 04} -

In the same way as in [10, p. 432] we obtain

|7 2,00 < C A1*Y, 0|5 0, < CH* 4t

Similarly
47|50, £ C A2, |d0™|; 0, £ Ch* Af*.
Thus
s—2 - s—1
(77) At71 Y Fm < C(h* + 40) {4t Y ||€"][2.0, +
m=0 m=0

+ 3 (o + [0}
Dividing (59) by 412 and using (66)— (68), (75)— (77) we obtain
09) X1 P = Kot + [, +
b4 B[S+ 1) + 4 [0

where K, is a constant independent of h, At and s. Now we shall use five times the
inequality

(79) |ab| < = wa® + > b>.

In all five cases we set a = At? + h*. As to b and 7 we define (denoting by K; the
absolute constant obtained after the i-th step):

1. b = HsSHZ’Qh, T = K,,
2. b= e Y0, T=K,2
3.b=|e'fr0, T=1,

4. b = “80”2’9", T =1,

5

b= "0, T=K,2.
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The result is
(80) [0, < K{412% + h®* + At72||4e°)|3 0, +

1 s—1
o .;0“81“%-9»‘} + 4t ;0”8"'”%,9»- .
Using the discrete form of Gronwall’s lemma (see e.g. [6, p. 176]) we obtain

1
[°15.0 = K{42® + B2 + 3 e']3,0, + 4172 46%]3 0.} "
Hence

1
(81) le*] 2,0, = C{dt* + h* +,;0“'9i”2,9h + At 4e% 5 0} -

The assertion of Theorem 3 follows from (42), (43), (81) and from Lemma 3.
Now we prove Theorem 4. In this case ¢, = 0. Let us divide (57) by 4t and set
n
(82) v=) BE"PEV,,.

p=0

Adding up the obtained relation from m = Oup to m = s — u we get

s—pn s—n
(83) Y(Gm"+ AatA™) =Y Jm,
m=0 m=0
where
- » n
(84) G" =y X a™ " Y Be™),
p=0 p=0
- 3 u
(85) H" = dOh( 24 Bp8m+p’ Z Bp8m+p) s
. p=0 p=0
n
(86) Jn = ay(n" — ", Y Bemtr).
p=0

Similarly as in [10, pp. 430—431] we obtain
soh ol
) 562 Kol ~ K2 [T
Lemma 1 and relation (85) give
) s—p s=u B )
(88) YH" 2 C Y| X Bl
m=0 m=0 p=0
Similarly as in [10, pp. 432—433] we obtain

s—p s=p p
(89) YoJm< CAndr + B Y || Y Bt -
m=0 m=0 p=0
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The inequality which follows from (83), (87), (88) and (89) can be estimated in the
same way as [10, (171)]. The result is

(90) [0, = CAr + B 4T [61]2.0)-

The assertion of Theorem 4 follows from (42), (43), (90) and Lemma 3. Theorems 3
and 4 are proved.

At the end of this section we shall briefly analyze the effect of numerical integra-
tion. Let us define the error functionals by

o1 Ew) = (9o — (0 .
(92) E(D{u 10 40) = G(u, 0) — a,ufu, v).

Let us express (*, *)o.o, and d,,(, *) in (56) by means of (91) and (92), respectively,
subtract (27) from (56) and use the relation

(93) g =n —wl.
We obtain
2
(94) c2ay (A%, v) + ¢y At aq,( Zoocpsj,"“’, v) +
=

+ A1% ag, ioﬁpa"’“’, v) = cdy(y", v) — ¢ @, (4%E", v) +
fe=
+ ¢y 4t dp(n™ — o™, v) + Ar* E( ioﬁp@"”’v) -
=
— ¢, E(D$3 AP0 1) — ¢y At E(DS), ioocpn',"i;”’vy,\.,) -
fi=
— A41? E(D(i?,‘),pioﬁpnf';f”v,k,) .

We shall use (94) for estimating |, g, Let us assume that ¢, = 1 and set v =

IMN

e P in (94). Adding up the obtained relation from m = Quptom =s — 2

=
and dividing the result by 4¢> we obtain
s=2 s—2 o
(95) (4724 + ¢, A7 B" + C") = Y (472 D™ — At > E™ +
0 m=0

e  AtTEFM 4 K™ — AT — ¢ AT M™ — N™),

where D™, E™ and F™ are given by (63), (64) and (65), respectively, A™, B and C™"
by the relations which we obtain from relations (60), (61) and (62), respectively,
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by omitting tildas, and where

(96) | E(Y 8 sz 2l

p=

(97) L = E( fk)l 4? m) ij ( Z o 'Bh kl) ,
2 2
(98) M™ = E(D (111131 ") ( Z agey

(99) ' = E(D ?k)t( Z Bo™ "), ( Z o) ki) -
In estimating the terms (96)—(99) we shall use the following lemmas:
Lemma 4. Let O(x, x,, t) e H(Q) Vt € [0, t*] and let v e V. Let the quadrature

formulas on the unit triangle T, for the calculation of the form (u, v), be of the
degree of precision

(100) : d=n+k+1.
Then :
(101) |E(Q™)| = Ch| Q™[ [10] 2.0

where C is a constant independent of h, O and v.
1t should be noted that n appearing in (16) and (100) depends on Te t,. We have
n = 1 for triangles with straight sides and n> 1 for curved triangles (n = 3 if the
curved side lies on I'y; and # = 5 if the curved side lies on I',). As E(f) = Y E4(f)
=

the proof of Lemma 4 is a consequence of [14, Theorem 9] and Cauchy’s inequality.
Relation (100) is relation [14, (157)] written for r = k, N* = n + 4 (see (16)) and
m = 1.

. Lemma 5. Let the assumptions of Lemma 1 be satisfied. Let the degrees of preci-
sion of the quadrature formulas on the unit triangle T, for the calculation of the
Sorms a,(u,v) (r = 0,1, 2) be given by (100). Then

(102) IE(Dukm ijV, kl)l thw”k+2,Q anz,n,, >
where C is a constant independent of h, w and v.

Proof. The proof is a consequence of the proof of [14, Theorem 8]. As in [14]
it is sufficient to estimate terms of the form

(103) E*(c*D'n*D%v*)
with |y| = || = 2 for interior elements and 1 < < |, ]5' < 2 for boundary elements.

97



The function c* has the property D*c* = O(h2~ 117+ 1t follows from [14,
(174)] that

(104) IE*(C*DYI'[*D"U*)| < Chs+3—|v|—|6]HU”?”TjiOh;j!n*[H 1 To >
where
(105) s=k+[9| -2.

It remains to estimate the term depending on #*. We can write

s s
(106) Zoh;jln*l.iﬂvl,% é,zoh?{‘"* = (W) * o +
j= j=

+

(mr®)* = W*|jpr,me + [9¥ 7o) 5
where n,W is the interpolate of W on T. We have (using [14, (153), (106), (73)])
(107) _z;)h?.i’l* — ()51 11,10 £ Ch’jn* = (g ®)¥|jy110 <
i<
Chz** M= (g = #ly,r + |9 = 729 51,0) <
< Chy 7 (I = Wlar + W[ ¥sn,)

IIA

Similarly
(108) S (er)* = ey r, S € LW 1e) = s r S

] Y Sl L

(109) .Zoh;jlw*liﬂvl,% = Ch[r."l_l HW”k+2,T .
j=
Substituting (106)—(108) into (104) and using (105) we obtain
(110) IE*(C*DW’]*Ddu*)l < C“U“z,T(”n - WHZ,T + ]1k|‘wHk+2’T) )
We have
(111) E(Dijkm,ijv,kl) = ;ET(Dijklr’,ijv,kl) :

Each term on the right-hand side of (111) can be written as a sum of terms (103).
Thus, using Cauchy’s inequality and Lemma 3 we obtain from (110), (111) the
estimate (102). Lemma 5 is proved.

Theorem 5. Let the assumptions of Theorem 3, Lemma 2 and Lemma 4 be satisfied.
Let 8Q[0t € C(H*(Q)). Then for m = 2, ..., M and for sufficiently small h the fol-
lowing estimate holds:

(112) ”Wm - WhmHZ,Q;, =
1
< C{ar + 1+ Y Jeila0, + At en — ] 2,0.)
j=0
where the constant C does not depend on At and h.
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Proof. We have
(113) [ = wilz0, = €720, + (682200 -

The first term on the right-hand side of (113) can be estimated by means of Lemma 3.
The estimate of the second term will be obtained in the same way as in the proof of
Theorem 3: by estimating the left-hand side of (95) from below and the right-hand
side from above.

First we estimate the last four terms on the right-hand side of (95). Using (96),
summation by parts (see (69), (70)), Lemma 4 and the Taylor theorem we obtain

(114) SZ_:ZK'” — (iﬁ Qs 2+p(9A8S 1 + g; 1)) _
m=0 p=0
- Zlb(gﬁ (Qm*P — Gn=t4r) (94e) + €7)) —

Q”(SAE,, + &) <

MN

- B(Y

gscw{ugz il | o

]

+ Z [ Zﬁp o HP“I«QZ leh™ ]l 2.0. +
+ Ilpzzoﬂ,,é”llk,bi;oIIe}.II2,9,.} <
1 s—1
< C”k{i;o[“&i—iﬂz,ﬂh + Jenl2.00] + Atmzlﬂs,’:'“z,gh} .

Similarly, using (97) - (99), summation by parts, Lemma 5 and the Taylor theorem,

we can estimate
s—2

(115) S (=472 — ¢ 47 M™ — N™) <
m=0

s—1 1
< {4t Y [5la.on + 2115 oo + Jeilz0]} -

The remaining terms in (95), which contain 4™, B", C", D", E™ and F™, can be
estimated similarly as in the proof of Theorem 3 (instead of Lemma 1 we use Lemma
2). We obtain an inequality of the same form as inequality (78). The rest of the proof
is the same as the corresponding part of the proof of Theorem 3.

Similarly, generalizing the proof of Theorem 4 we can prove:
Theorem 6. Let the assumptions of Theorem 4, Lemma 2 and Lemma 4 be satisfied.

Then for m = p,...,M (u =1 or 2) and for sufficiently small h the following
estimate holds:
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=1
(116) " = will20, = C{A8" + K + .ZO““J-“Z.Q..} ;
=

where the meaning of k, q and C is the same as in Theorem 3.

Remark. The assumptions of Theorem 5 can be weakened. If we define the forms
a,(u, v) (r = 1,2) by means of quadrature formulas of an arbitrary degree but
with positive weights then a,(v, v) = 0 (this follows from (8)). Thus B™ > 0
and we can change Theorem 5 in the following way: Let the degrees of precision of
the quadrature formulas on T, for the calculation of ao,(u, v) and a,,(u, v) (r = 1, 2)
be 2n + 4and n + k + 1, respectively, and let the formulas of the degree n + k + 1
have positive weights. Let the remaining assumptions of Theorem 5 hold. Then for
m = 2,..., M and for sufficiently small 1 the following estimate holds:

1
(17) 5" = wilae, < ClA + 0+ X [el2.q, + A e = all4]
j=o
where ||v]|% = az(v, v).
5. NUMERICAL RESULTS

Example 1. We solved problem (1)—(6) with Q being a rectangle with sides
a,bI'y =I,I,=0,¢c,=10r0, c, =1or0. The functions Q, f, g were chosen
in such a way that the problem has the solution

(118) w(xy, x5, 1) = @(t) u(xy, x5),
where (1) is a function of time variable ¢ and
(119) u(xq, x;) = [x4(a — x;) x,(b — x,)]*.

As the problem is symmetrical the space discretization was done for one quarter
of Q only. It was divided into four equal rectangles and each of them by diagonals
into four triangles. The number of unknowns is thus 65 for the full polynomial of
the fifth degree and 45 for B:zIl’s element. Numerical integration was not used. In
the case ¢, = 1 the initial condition (6) was approximated either by the Taylor
theorem

(120) wa(xy, X5, A1) = (9(0) + 4t ¢(0)) u(xy, x,) ,
or by using the exact value
(121) wy(xy, X5, At) = (A1) u(xy, x,) .

The results are expressed by the absolute value of maximum relative error in percent,
i.e. by
(122) ‘ max |(Dw™ — Dw)[D'w"| . 100,

where in each time step maximum is taken over all nodal points and over ‘yl =0,1,2.
Some results are presented in Tables 1 and 2 for the case a = b, D{ipw ;5 = 4°w,
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(m =0,1,2), (4% denotes now the biharmonic operator), ¢(t) = 1 — exp (—1)
and Bell’s element. We make the following remarks:

1. Using a one step method for ¢, = 0, ¢(f) = ¢ we obtain the maximum relative
error 1-93% (constant in all time steps) which may be considered as the error of the
space discretization. This error is achieved at d*w/dx] at the point (3a/8, b8) whereas
the relative error at w(%a, %b) is only 0-005%. The great difference between the maxi-
mum error and error at w(}a, 1b) appears always when the error of the space dis-
cretization prevails. However, if the error of the time discretization is dominant

Table 1. Maximum relative error in % for one step methods.

3 12 12 1/2 12 1/3 1/4
At 1/8 1/4 1/2 1 12 12
t
05 2-04 2-35 3-63 547 8-34
1-0 2-01 2:24 3-20 7-50 4-39 6-64
15 199 2:16 2-87 3-50 523
2:0 1-97 2-10 2:61 4-79 2-80 4-10
2:5 1-96 2:05 2-41 2:25 322
3-0 1-95 2:02 2:27 3-30 1-84 255
35 1-95 1-99 2:16 1'54 2:05
4-0 1-94 197 2:09 2-55 1-42 1-68
45 1-94 1-96 2-04 1-58 1-42
5-0 1-94 1-95 2-00 2:20 169 1-51

Table 2. Maximum relative error in % for two step methods.

) 0 1 1 1 1 1 1 1 1 1

o 1 1 1 0 0 0 1 1 0 0

9 12 12 12 12 06 06 12 12 12 12
5 112 112 1/12 112 03 03 1/12 1/12 1/12  1/12
At 18 18 1/8 18 1/8 18 1/4 1/4 1/4  1/4
1

At 206 638 0 638 638 0 1302 0 1302 0
0-5 214 619 005 737 753 021 1264 008 1408 036
1-0 209 566 025 805 840 043 1130 026 1512 096
15 205 490 056 765 819 051 939 045 1427 123
2:0 202 405 093 605 673 044 723 075 1137 115
2:5 200 322 130 438 507 1115 515 114 745 1-46
3-0 198 2:52 162 234 292 197 339 149  2:69 163
35 1196 201 186 336 297 274 2:09 177 557 193
40 195 1469 201 602 587 330 160 196 1026 3-14
45 195 155  2:09 740 7-50 3-52  2:06 2:07 12:65 408
50 194 153 211 7118 751 337 210 211 1221 442
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then the relative error is almost of the same magnitude for all D'w, y[ =0,1,2, at
all nodal points.

2. In the case ¢, = 1 the sign of the error changes repeatedly. This can explain the
fact that in some time steps greater error is obtained for ¢! = 0 than in the case
¢! > 0. (In our example =° = 0 always holds.)

3. In the case ¢, = 0 the best results are obtained for the one step method with
9 = 1. This corresponds to the properties of the one and two step A-stable methods
for solving a single ordinary differential equation of the first order. In the case ¢, = 1
we got better results for ¢, = 1 than for ¢, = 0 not only for ¢(t) = 1 — exp (—1)
but also for some other functions ¢(t) and even for the solution of a single differential
equation of the second order.

Example 2. We reproduced an example solved in [11] by a combination of finite
elements and the Laplace transform. The data are given so that problem (1)—(6)
should describe the viscoelastic bending of an orthotropic simply supported plate
loaded by the uniform load. In this example ¢, = 0 and the initial condition (5) is
given by
(123) D)W Xy, X2, 0) = const # 0.

Other details concerning the data can be found in [11]. In [11], the exact values of
w(x;, X,, ) at the centre of the plate, computed by means of an infinite series, are also
given. If we divide the quarter of the rectangular plate into 16 triangles in the same
way as in Example 1 (the problem is again symmetrical in space), use the full poly-
nomial of the fifth degree and the one step method with § = 0-5, 4t = 0-2 in (0, 1],
At = 0'51in (1,2], 4t = 1 in (2, 10] and 4t = 5 in (10, 100], we get results which
coincide with the exact solution up to 4 significant digits. However, we get surprisingly
good results even if we divide a quarter of Q only into two triangles, use Bell’s
element and make only three time steps with 4t=10, 4t=20and 4¢ = 70, successively.
The relative errors then are 1-139¢ for t = 10, 2-129; for t = 30 and 1-467; for
t = 100. It should be noted that the function w at the centre of the plate is approxi-
mated better than w elsewhere except the boundary and much better than the first and
second derivatives of w.

All computations have been performed in the Computing centre of Technical
university of Brno on the computer DATASAAB D21.
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Souhrn

RESENI VISKOELASTICKE TENKE DESKY METODOU
KONECNYCH PRVKU

HELENA RUZICKOVA, ALEXANDER ZENISEK

Reseni w problému (1)—(6) predstavuje pro ¢, = ¢; = 1 nebo proc, =0, ¢; = 1
viskoelasticky prithyb tenké desky (viz [3], [4]). Varia¢ni formulaci (a)—(c) problému
(1)—(6) diskretizujeme vzhledem k prostorovym proménnym metodou koneénych
prvkl pii pouziti trojuhelnikovych C!-prvki.. Diskretizace vzhledem k Casové
proménné je provedena jedno- nebo dvoukrokovou diferenéni metodou
s krokem 4t. V souvislosti s metodou kone¢nych prvkit analyzujeme také vliv nu-
merické integrace a k¥ivé hranice. PIn€ diskretizovany problém je definovdn vztahy
(27)—(29). Hlavni vysledek prdce je odhad chyby formulovany ve v&tdch 5 a 6 ve tvaru

o7 = willla0n = CLAt + B+ o] + [le]] + ez 47 e" = 2,0,
kde ¢ = 1 nebo 2 v zdvislosti na pouzité diferen¢ni metode¢, k = 3 nebo 4 v zdvislosti
na koneénych prvcich, €° a ¢! jsou chyby zpiisobené aproximaci poddte¢nich podmi-
nek, W je presné a wj, pfiblizné feSeni v Case m At. Pfitom pfedpokldddme dosta-
teéné vysoky fdd pfesnosti pouZitych integranich formuli a dostatenou hladkost
dat. V zdvéru prdce jsou uvedeny numerické vysledky.
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