Aplikace matematiky

Igor Bock; Ivan Hlavacek; Jan Lovisek
On the optimal control problem governed by the equations of von Karman. 1. The

homogeneous Dirichlet boundary conditions
Aplikace matematiky, Vol. 29 (1984), No. 4, 303-314

Persistent URL: http://dml.cz/dmlcz/104098

Terms of use:

© Institute of Mathematics AS CR, 1984

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104098
http://dml.cz

SVAZEK 29 (1984) APLIKACE MATEMATIKY CisLo 4

ON THE OPTIMAL CONTROL PROBLEM GOVERNED
BY THE EQUATIONS OF VON KARMAN
1. THE HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

IGOR Bock, IVAN HLAVACEK, JAN LOVISEK

(Received December 5, 1983)

A control of the system of nonlinear Kdrmdn's equations for a thin elastic plate
by means of the right-hand side of the equilibrium equation is considered. Thus the
transversal loading plays the role of the control variable. In Part 1 we consider
only Dirichlet boundary conditions, i.e. the edge of the plate is clamped.

Using some results of Ciarlet and Rabier [ 1], the set of admissible control func-
tions is chosen so as to obtain the unique solvability of Kdrmdn’s system.

We prove the existence of the optimal control, the differentiability (Fréchet)
of the state function with respect to the control variable, the uniqueness of the optimal
control under certain conditions, and derive necessary conditions of the optimality.

1. FORMULATION OF THE PROBLEM

We shall be dealing with the system of equations

(1.1) ANy =[d.v] — Ay + v,

(1.2) Ao = —[r, )], (x1,x,)eQ,

where

(13) [0, 9] = @12 + @22¥11 = 2012012,
J:(if% ij=1,2.

Here y = y(x;, x,) means the (reduced) deflection of the plate, ® = &(x,, x,) is
the (reduced) Airy stress function, A expresses the magnitude of the external forces
acting on the boundary of the plate in the direction of the normal vector and v is
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the (reduced) load acting in the direction perpendicular to the middle surface of the
plate.

We assume that the plate is clamped, i.e.

Ay
(1.4) _1‘:Ei=0 on (Q.
on
The reduced Airy’s function also satisfies the homogeneous boundary conditions

(1.5) (D:aij:() on 0Q.
an

We denote by I7(Q) (1 £ p < o) the space of all real functions which are inte-

grable in the Lebesgue sense with the power p on Q. LZ(Q) is a Hilbert space with
the scalar product

(1.6) (u, v)o = j‘ uv dx, dx,
2

and the norm

(1.7) [ullo = (u, u)o™ .
Denoting
olel
T o oxy o = o + s,

we define for any integer m > 1 the space
WmP(Q) = {u l ue I’(Q), D'u e I/(Q) for locl < m}

with the distributive derivatives. W™?(Q) is a Banach space with the norm

1/p
i = ( j lufr dx, dxy + Y j » dx, dxz) g
0 1<|alsm JQ

Further, we introduce the space

D*u

H}(Q) = {u |ueW>XQ), u= ‘2—“ =0 on ag},
n

where the boundary conditions are satisfied in the sense of traces on 0Q (see [4]).
H}(Q) is a Hilbert space with the scalar product

(1.8) ((u,0)) = > j D*uD*v dx, dx, = J‘ Au Avdx, dx, .
2 2

lal=2

The latter identity can be shown by integrating by parts and using the homogeneous
boundary conditions. The norm in H(Q),

(1.9) I (CA)
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is equivalent to the original norm [u|/, ,f In the sequel we denote by H™*(Q) the
space of all linear continuous functionals over HZ(Q) with the norm

(1.10) 1/]

= sup {f, ).

loll =1
weHo2(2)

-2

Definition 1.1. The couple (y, ) e (H3(Q))* is called a weak solution of the
problem (1.1)—(1.5) if

(1.11) (vs @) = ([P, ] @)o — HAY, @)o + (v, 0)o
(1.12) (2. 9) = =([v, v]. ¥)o

Jor all (¢, )€ (H3(Q))*.
The expression ([@, y], ), is well defined, because [®, y] e L'(Q) and ¢ € C(Q)
due to the continuous imbedding H3(Q) G C(R). The same holds for ([, ¥], ¥)o-
It is more convenient for our further considerations to introduce a canonical
form of the system (1.11), (1.12). Let us define operators M : I’(Q) - Hy(Q), B :
:(H3(Q))* » Hy(Q) by the relations

(1.13) ((Mv, 9)) = (v, @)o

(1.14) (B, ¢). 0)) = ([3-¥]. ¢)o

for all ve I(Q), ¢, y, ¥ € HY(Q).

The operators M and B are well defined, because the right-hand sides of (1.13),
(1.14) represent linear bounded functionals over Hg(Q) for all ve [*(Q) and v,y €
e H{(Q).

Let ¢ > 0 be such a number that

(1.15) [ollo < c]o| forall @eHI(Q).

The existence of ¢ follows from the equivalence of norms ||| and ||+, ,. We have,
for v e I}(Q),
[Mo]]? = (v, Mv)o < oo [Mo]o < c]o]o [Mo] .

Hence the operator M is linear, bounded and
(t.16) [Mu]| < ¢|oo, veIXQ)
with ¢ defined in (1.15).

Similarly, the operator B : (Hg(Q))> - Hg(RQ) is bilinear over (Hj(Q))>. In fact,
if (v, n) e (H5(Q))?, then we may write

|B(y, m)|? =J [y, n] B(y, n) dQ éj Ly n]| 42 max |B(y. n)] =
= iyl - Jnl - 1By m)]
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using the form of [y, #] and the continuous imbedding Hg(2) Q3 C(Q). Hence there
exists a (finite) norm of B

(1.17) 1B = sup  |B(y.n)| .
iyl =lin]l=1
(v.me(Ho?(2))?

_Further, we introduce operators L: Hy(Q) — Hp(Q) and C : H}(Q) - Hg(Q) by
the relations

(1.18) Ly = M(=Ay),

(1.19) C(y) = B(B(r.y). 1), reHYQ).

Operators C, L are compact, L is, moreover, selfadjoint and positive (see [1], L.

2.2.5.L.2.3.1). Then (see [3], VIL. Ch. 4, Th. 3.4) the number

(1.20) uy = L = “sup ((Ly, )
yll=1

veHo()

is the greatest eigenvalue of L. We denote by

1
(1.21) 2y = — = inf ((Ly, y))"!
fy o dlvii=1
yeHo2(2)

the smallest characteristic value of the operator L.

It can be easily seen that (y, ®) € (H (Q))” is a solution of the system (1.11), (1.12)
if and only if

(1.22) y — 2Ly + C(y) = Mv,

(1.23) & = —B().y).

We proceed now to the formulation of the optimal control problem for the equation
(1.22) which is (together with (1.23)) equivalent to the system (1.11), (1.12).

Let U, be the set of functions v € I*(Q) such that the equation (1.22) has a unique
solution y = y(v). Let J : U,, — R be the cost functional of the form

(1.24) J() = F(3(v)) + i(e)

where ¢ : Hy(Q) > R, j : I(Q) — R are certain functionals.

Problem P. To find such a control u e U,, that

(1.25) : J(u) = min J(v),
(1.26) y(u) = 2Ly(u) + C(y(u)) = Mu..
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2. EXISTENCE AND UNIQUENESS OF A SOLUTION
OF THE STATE PROBLEM

Theorem 2.1. Let
(21) [Mof < [B]7",
(2.2) i< 24(1 = | BJ]*? | Mv|?73).

where 2y is defined in (1.21). Then there exists a unique solution y(v)e Hy(Q)
of the equation (1.26).

Moreover, y(v) satisfies the estimate
(23) )] = KG)* o]
where

(2.4) K(3) = min{l,l - %}

1

Proof. The existence of a solution y(v) is verified in [1], Th. 2.2.1. If 2 > 0,
then the uniqueness can be verified in the same manner as in [1], Th. 2.3.1. If
4 £ 0, then we have from (1.26)*)

(23) ly@)] = Mo,
by virtue of the positivity of the operator Land the relation ([1], Lemma 2.2.6)
(2.6) 0 <((Cy.y)) = |B(y,y)|* forall yeHQ).
Let vy, y, be two solutions of (1.22). Then, for 2 < 0,
”)"1 — .VZHZ = ((C(}'z) - C(yl)v Vi — J’Z)) .
Following the method of the proof of [1], Th. 2.3.1 we arrive at
Iy = val|* < [B]* [Mo]* [y0 = va]®.

This inequality can be true only if y, = y, = y(v). It remains to verify the estimate
(2.3). We obtained the estimate (2.5) for 2 < 0. If 2 > 0, then from (1.26) and (1.21)

we have the estimate
A
(1= e
‘1
consequently,

@) )5 (1= 2) e

‘1

2

IIA

[Me] [y s

3

and (2.3) follows from the estimates (2.5), (2.7).

*) Note that the case A < 0 is not discussed in [1].
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3. EXISTENCE OF OPTIMAL CONTROL

Let us now define the admissible set of controls
(3.1) U= {0 24@) s ol = 1517 kG
¢

where o is an arbitrary number satisfying 0 < o < 1, ¢ > 0 is a constant defined
in (1.15), and K(2) is defined in (2.4), 2 < A,.

If ve U,, then using (1.16) we obtain
(3.2) M| < of B 7" K(2)

and the inequalities (2.1), (2.2) are fulfilled. Hence for every ve U,, there exists
a unique solution y € Hg(R) of the state equation (1.25).
We can now formulate the existence theorem for the optimal control.

Theorem 3.1. Let ¢ : H}(Q) — R, j : I}(22) - R be weakly lower semicontinuous.
Then there exists a solution u € U, of Problem P.

Proof. There exists a minimizing sequence {u,} < U,

ad>

(3.3) lim J(u,) = inf J(v).

n— o0 veUga

The set U,, is bounded in I* and hence there exists a subsequence (again denoted by)
{u,} such that

(3.4) u, —~u (weakly)in I(Q), ueU,,

because U, (being convex and closed) is weakly sequentially closed in L*(Q).
Using the inequalities (2.3), (3.2) we obtain the estimate of all states

(3.5) [¥(0)| < «|B|~" K(4)"* forall veU,.

Hence the sequence {y(u,)} is bounded in Hg(Q) and there exists a subsequence
(again denoted by) {u,} such that

(3.6) Yu= Yo in H(Z)(Q) s Yn = y(un)
and
(37) yn - )”Lyn + C(y") = M“” °

The operators L: Hg(Q) — Hy(Q), C : Hy(Q) — Hy(<) are compact and Ly, — Ly,,
C(y,) = C(yo) strongly in Hj(Q). M : I}(Q) - H{(Q) is linear bounded and the
relation (3.4) implies Mu, — Mu (weakly) in Hy(Q). Proceeding to a weak limit
in (3.7), we arrive at

(3.8) Yo — ALy + C(yo) = Mu..
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From the uniqueness of the solution of (1.26) we have yo = y(u) and y, — _v(u).
The weak lower semicontinuity of ¢, j implies

J(u) = #(y(u)) + j(u) < lim inf Z(¥(u,)) + liminf j(u,) <

n— o n—ow

< liminf J(u,) = inf J(u).

n—o. veligg

Consequently, u is a solution of Problem P.

4. DIFFERENTIABILITY OF THE STATE FUNCTION

Let us show that the mapping y(*): U, — Hi(2). y(v) — ALy(v) + C(y(v)) =
= Mv, veU,,, is Fréchet differentiable and the derivative y'(v): *(Q) —» Hy(Q)
1s a solution of the problem

(4.1) [ —AiL+ C(y()] v (v)h=Mh, heIXQ),
where
(4.2) C'(y)n = 2B(B(y.n.y) + B(B(v, y).n),

y,HE H(ZJ(Q) s
C'(v)e L(H{(Q); Hy(Q)) is the Gateaux derivative of the operator C at the point
v e HyQ).
Lemma 4.1. The operator A(y(v)) : Hy(Q) » Hy(Q), A(y(v)) =1 — AL+ C'(y(v)),
is linear, symmetric and positive definite.

Proof. The linearity follows from (4.2). The symmetry of A(y(v)) results from the
symmetry of the operator Land the properties

(4.3) B(y, z) = B(z, y) R
(4.4) ((B(y, 2), w)) = ((B(y, w). )
for all y, w, z € HY(Q) (see [1], Lemma 2.2.1, 2.2.3).
Let w € Hi(Q). Then by virtue of (4.3), (4.4) and (3.5) we may write
((A(x(0) w, w)) = [[w]* = A((Lw, w)) + 2] B(y(v). w)[* +
+ (B(0(0), 5(¥), B(w, W) 2 K(2) [w]* = [B]* [»(0)]* |w]* 2 K() (1 = o) [w]?.

Hence

(4.5) ((A(¥(v)) w, w)) = C(4) |w|> for all we H}(Q),
where
(4.6) C(l) = (1 — @)K(2) > 0,

which concludes the proof.

309



By virtue of Lemma 4.1 there exists a unique solution z(h) € H(Z,(Q) of the equation

(4.7) A(y(v)) z(h) = [I — AL+ C'(¥(v))] z(h) = Mh
for every h e I}(Q).
Let
(4.8) w=wh) =y + h)—po)—z2h); v,o+heU,.

If we verify that |w| = o(h), we shall obtain z(h) = y'(v) h.
Using (1.26) and (4.7) we have

A(y()w = [I = 2L+ C'(y(v))]w = C'(¥(v)) (¥(v + h) — ¥(v)) -

—[QKW+M—CUMH:JECO@D~CU@+WMPNL

where
(4.9) n=y(v+h)— yuv).
As ||y(@)|l, [»(v + h)| are bounded for all v,v + heU,, (see (3.5)), by rewriting

the expression

[C((e) = C(x(v) + sm)]
and using the boundedness of B and the positive definiteness of 4(y(v)) we obtain
the estimate

(4.10) wl = €2 I

Let us estimate ||| = |y(v + h) — y(v)|. The function n € H3(€2) fulfils the equation
(4.11) n — ALy + C(y(v + h)) — C(y(v)) = Mh.

Using Lemma 2.25 of [1] and estimates similar to that established above, we obtain

K(2) [n]* = [[B]* max {[yy@)* [ 7 + W]} [n]* = e[A]o ]

with the constant ¢ defined in (1.15). Estimating the values |y(v)[%, [¥(v + h)|* as
in (3.5), we arrive at

(4.12) Inll = [K@) (1 = o))" []lo = C3(4) Ao
and from (4.8), (4.10),

wll = [[y(v + h) = y(v) = =(h)]| = 0(h)

follows. Hence we have verified the following theorem.

Theorem 4.1. The mapping y(+): U, — Hy(Q) determined by the equation
y(v) — ALy(v) + C(¥(v)) = Mv, veU,, is Fréchet differentiable for all functions
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vell,, and
(4.13) [T = 2L+ C'(y(v)] ¥(c) h = Mh

holds for all h e [2(Q). (U,, denotes the interior of U,,.)

5. UNIQUENESS OF THE OPTIMAL CONTROL

Let us assume that the functionals #, j are, moreover, Fréchet differentiable and
satisfy the conditions

(5.1) F'3) = I ) yvi = v Z2mlyy =y, m>0,
for all y,, y, € Hy(Q),

(52) G'(0g) = Jj'(02), vy = 1200 Z Nty = vaf 55 N >0,
for all v,, v, € [*(Q), while #' satisfies the condition

(5.3) 120« S o] + ¢ forall yeHy(R); ¢ >0.

If u e U, is the optimal control, i.e. a solution of Problem P, then {J'(u), v — u), =
> 0forallveU,,. Let uy, u, be two optimal controls. Then

(5:4) I '(uy), 0= upde = CF(3(uy)), v'(uy) (v — uy)> +
+ <J.’(“1)a UV—Upo 20,
T'(uy), 0 = uydg = CF'(0(u2)), ¥'(uz) (0 = uy)> +

+ <J"(”2), U— Uy =0
for all ve U,,.

Inserting u,, u, in (5.4) and adding we obtain
(5:3) 0= (F'(W(uy)) = ' ((w2) p(uy) = y(2)> +
+ Gluy) = J'(ua)s us = e =
= (I 0(a)), vuz) = p(u) = ¥ (u) (w2 = ug)> =
= (I (), p(s) = W) = 5'(us) (4 = w2)> .
Let us denote
(5.6) wy = y(uz) = y(uy) = ¥'(uy) (uz — uq),
Wy = )’(“1) - Y(“z) - yl(llz) (“1 - “2) ., h= J’(uz) - J’(“1) .
We derive an estimate for wy, using (1.26) and (4.7):
(5.7) [I - AL+ C'(¥(uy))] w, =
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= C(3(un)) — CO(u2)) + Co(ur)) (1) = o(ay)) =
= [ et = ) + s = .

Using the mean value theorem we arrive at the relations

69 = e ([ 0w - ot + atnes i)

llnl] =1 //2
((y[;cwo<uz-+ )0 ) s 1))

where 1(s) € (0, s). The second derivative C” has the form

(5.9) C'(y) (n, n) = 2B(B(n, n), y) + 4B(B(y, n). n)
for all y, n e Hy(Q).
Using the estimate (3.5) we have

(5.10) ol = 3518 KG)' ]
By virtue of positive definiteness in (4.5), (4.6) we obtain, from (5.7) and (5.10),
511 Il = 32 K2 18] Dol
From (5.5), (5.6). (3.5), (5.1), (5.2), (5.3), (5.11) we have the inequality
(5.12) 0= [=m + (coa|B| ™" K(2)"> + ¢;). 60 C(2)"" K(2)"/*||B|] .
Al = Ny = w5

= sup
[Ihlp=1

3

Setting h = u; — u, in (4.12) we obtain

(5.13) Inll = K@) (1 = 22)]" Juy = sl

and combining it with (5.12) we are led to the inequality

(5:14) 0= {[=m + (coa B| ™" K(2)"* + ¢)) . 62 C(1)"" K(2)"'* || B]] -
LK@ (1= o)) = N} luy = w5

Now it is easily to derive sufficient conditions for the uniqueness.

Theorem 5.1. Let the functionals #, j be lower bounded, weakly lower semi-
continuous with Fréchet derivatives satisfying the conditions (5.1),(5.2),(5.3). If

o K |
(1 = P K(A)] 2,

where K(4) = min {1,1 — A/A,}, ¢ is defined in (1.15), then there exists a unique
solution u of Problem P.

N>[ m+ (o a|BI ™ KG)' + 1)
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6. NECESSARY CONDITIONS OF OPTIMALITY

If J(u) = min J(v), then

veUgqa

(6.1) I (), y'(u) (v —u)y + '(u),r —udeg =0 VoeU,.
where
(6.2) [1 = 2L+ C'(y(u)] ¥ (u) h = Mh “heI¥Q).

As we have seen above, the operator A(y(u)) = I — AL+ C’'(y(u))is linear symmetric.
The system (6.1), (6.2) can have the form

(6.3) (p+ Roj(u),v—u)y =20 forall velU,,
(6.4) [1 =L+ C(y(u)]p = RF'(y(uw),
where R, : (I(Q))* - IX(Q), R:H Q) - Hy(Q) are the Riesz representative
operators and we have used the relations
) @) (0 = u)p = (RFOGW), y'(u) (v = u) =
= ((A(x()) p, y'(u) (v = w)) = (P, A((w)) y'(u) (v — w))) =

= ((p, M(v — u))) = (p, v = u)p .
Further,

(6.5) y(u) — AL(u) + C(y(u)) = Mu .

The system (6.3), (6.4), (6.5) is the optimality system for Problem P. The problem
(6.4) is the adjoint problem to the problem (6.5).

Remark. It is possible to obtain similar results for the optimal control problem

(6.6) J(2) = min J(u) = min [#(x(x)) + /)]
where
(6.7) W) — pLy(n) + C((n)) = F;
Fe Hy(Q), y(u) € Hy(Q). Uy = (= 0. 24(1 — B[ [ F*?)),
¥ < 181"
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Souhrn

O PROBLEMU OPTIMALNIHO RIiZENi PRO KARMANOVY ROVNICE
I. HOMOGENNI{ DIRICHLETOVY OKRAJOVE PODMINKY

IGgor Bock, IvaN HLAVACEK, JAN Lovi§Ek

Je studovana uloha fizeni systému nelinedrnich Kdrmanovych rovnic pro tenkou
desku prostfednictvim pravé strany rovnice rovnovahy. Okraj desky se uvaZzuje
dokonale vetknuty. Pomoci nékterych vysledkd prace [1] je vybrana mnoZina
piipustnych funkci tak, aby stavova uloha byla jednoznacné fesitelna.

Dokazuje se existence feSeni optimaliza¢ni Glohy, diferencovatelnost feseni stavové
ulohy vzhledem k fidici proménné, jednoznacnost za urcitych podminek a odvozuji
se nutné podminky optimality.

Authors’ addresses: RNDr. Igor Bock, CSc., Elektrotechnick4a fakulta SVST, Gottwaldovo
nam. 19, 81219 Bratislava; Ing. Jean Hlaraéek, CSc., Matematicky ustav CSAV, Zitna 25,

115 67 Praha; Doc. Ing. RNDr. Jdn Lorisek, CSc., Stavebna fakulta SVST, Radlinského 11,
884 20 Bratislava.

314



		webmaster@dml.cz
	2020-07-02T05:17:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




