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SVAZEK 30 (1985) APLIKACE MATEMATIKY ČÍSLO 5 

ANALYSIS OF INTEGRAL EQUATIONS ATTACHED 
TO SKIN EFFECT 

Ivo VRKOC 

(Received September 26, 1984) 

The paper is a continuation of the paper [1], In [1] the detailed description of the 
problem is given, the mathematical model of the skin effect is established and also 
a numerical method is discussed. 

Nevertheless, for the convenience of the reader we formulate the problem again 
and sketch the derivation of the mathematical model in the introduction of the present 
paper. 

INTRODUCTION 

We investigate the skin effect of the system of n linear parallel conductors whose 
sections Su...,Sn are of arbitrary shapes. We assume that the currents passing 
through the conductors are sinusoidal functions and have the same radian frequency 
co. Let y be the conductivity of the conductors and [i0 the permeability of both the 
conductors and the surrounding medium. The value y is supposed to be constant, 
fi0 = 47rl0"7 H/m. We assume that the conductors are under an effect of a planar 
magnetic field which is sinusoidal with respect to time t with the same radian frequency 
co. We assume that the vector of the magnetic induction is parallel to the sections 
of the conductors. 

Let x, y, z be orthogonal coordinates axes, z being parallel to the conductors, let 
J(x, y) be the phasor of the density of the currents, Iu ...,/„ the phasors of the 
currents passing through Su...,Sn, A(x, y) the phasor of the vector potential 
of the total magnetic field. 

Evidently only the coordinate A(z)(x, y) can be nonzero and can be expressed as 
a sum A(z) = A0

z) + A0
z)

t where A0 is the phasor of the vector potential of the 
magnetic field which is induced by the currents while Aout is the phasor of the vector 
potential of the given magnetic field. Obviously 

AA0*\x, y) = d2Af\dx2 + d2A<?jdy2 = -ju 0 jfr>(x, y) 
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and hence 

Az)(x, y) = ihl(2n) f J^z% n) I n - V . d£ di/ + K, 
J 5 r(x,j;;{,*/) 

for [x, y] e Sj, 1=1,..., n 

where r(x, j ; £, fl) is the distance between the points [x, j ; ] , [£, rj~\, S = uSi9 Kt are 
complex constants. 

Using the second Maxwell equation we obtain 

£<*) == -jcoA (z) + dfjdz 

where f is the phasor of the scalar potential. Since Af = 0, dfjdx = dfjdy = 0 we 
conclude f = kz where k is a constant. The phasor J can be expressed as J(z) = 
= }'E(z). The above mentioned equations yield 

J(z>(x, y) = yE(z) = -jycD A(z)(x, y) + y dfjdz = 

= jk J(z)(£, rj) In r(x, y; {, ly) d^ d^ + c, - jyco ^(z
u

}
t(x, y) 

where 

for [x, y] e St, i = 1, ..., n 

2TC 

Finally, the phasors Ik fulfil Ik = j S k J
(z)(x, y) dx dj;, k = 1, ..., n. 

In the case of one conductor we rewritte the derived equations in the more general 
form (1), (2) while in the case of several conductors we use the form (6), (7). 

In both cases the existence and unicity of the solution is proved. In the last section 
a numerical method is suggested. The numerical method is a modification of the usual 
approach which is described in [3], [4], [5]. The convergence of this method is 
proved under assumptions slightly different from those used in the first two sections. 
Nevertheless, in both cases the assumptions are sufficiently general for applications. 
Moreover, if we assume that the coefficients q, bt fulfil the conditions of Theorem 2 
(Theorem 1) and that the given function h has a modulus of continuity then the 
assumptions of Theorems 3 and 4 are satisfied. 

1. THE PROBLEM WITH ONE INTEGRAL TERM 

Denote by R the n-dimensional Euclidean space, n = 1. Let S be a bounded 
and Lebesgue measurable set in R with a positive measure, h(x) a (complex valued) 
function defined on S and fulfilling j s |h(*)|2 dx < oo, q a real number, I a. complex 
constant and V(r) a real function defined for r > 0 and such that j ^ V2(r) rn~l dr < 
< oo for every A ^ 0. 

362 



Setting of the problem: we should find a (complex valued) function f defined on S.. 
and a (complex) constant c fulfilling 

(-) 

(2) 

/ (*) - k f(y) V(\y - x\) áy - c = h(x) for xeS, 

f(x) âx = l . 

where j is the imaginary unit. 
If a is a complex number then a is its complex conjugate. Re a and Im a are the 

real and imaginary parts of a, respectively. 

Theorem 1. Let the assumptions formulated above be fulfilled. Then the problem 

(1), (2) has a unique solution f(x), c given by 

f{x) = f\x) + (l -{f(l,)(y)dy\f^(x)l( f»(y) dy , 

c=(l-[f"\y)dy\j[f^(y)dy, 

' / 

f(x) - k f /uO V(\y - x\) dy = 1 for xeS 

where f ( 1 ) is a solution of 

(3) 

and f{h) is a solution of 

(4) f(x) - Һ f(y) v\\y ~ A) áy = Kx) f°r x e s • 

R e m a r k 1. We shall show that the solutionsf ( 1 ),f ( f t ) exist and are unique. 
As usual we denote by L2(S) the set of all complex valued functions fulfilling 

j s | f(x) | 2 dx < oo. The set L2(S) is a Hilbert space with the scalar product 

(/, o) = ľ /(*) s(x) dx. 
Js 

Define an operator T: L2(S) ~> L2(S) by 

Tf(x) f(y)V(\y-x\)dy. 

The operator Tis symmetric, i.e. (7f, g) = (f, Tg). 

R e m a r k 2. The number (Tf,f) is real for a l l f e L 2 ( S ) and the eigenvalues of T 
are real. (See [2].) 

The proof of Theorem 1 is divided into two lemmas. 
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Lemma 1. If the assumptions of Theorem 1 are fulfilled, then equation (4) has 
a unique solution for every h e L2(S). 

Proof. The homogeneous adjoint equation to (4) is 

(5) f + jqTf = 0 . 

Assume that this equation has a nontrivial solution f. Thus f is an eigenvector of T 
with an eigenvalue }\q (the case q = 0 is trivial). By Remark 2 the eigenvalue ]\q 
has to be real. We have proved the statement that equation (5) has only trivial 
solution f = 0. Since the assumption j^V2(r) r " " 1 dr < co for every A = 0 yields 
that the operator T is compact the assumptions of Fredholm's Theorem [2] are 
fulfilled and Lemma 1 is a consequence of the theorem and of the statement. 

Lemma 2. We have Re | s f
( 1 , ( x ) dx = ( f ( 1 ) , f ( 1 ) ) > 0. 

Proof. Multiply equation (3) byf(x) and integrate over S. We obtain ( f ( 1 ) , f ( 1 ) ) — 
— jg(77 ( 1 )>f ( 1 )) = §sf(1\x) dx. Since the second term is purely imaginary (Remark 2), 
the real part of this equation yields the required relation. 

Proof of Theorem 1. We know that f ( 1 ) , f ( / , ) exist and are unique. For given c 
the solution f(x) of (1) can be written in the form f = f(h) + cf(1). By Lemma 2, 
J s f

( 1 ) ( x ) dx 4= 0 and we can calculate c so that (2) is fulfilled. 

2. THE PROBLEM WITH A FINITE NUMBER OF INTEGRAL TERMS 

Let a finite number of bounded, disjoint and Lebesgue measurable sets S;, i = 1, ... 
..., k, be given. Assume m(S f) > 0 for i = 1,..., k where m is the Lebesgue measure 

k 

in R. Denote S = (J Sh Let a (complex valued) function h(x) be defined on S and 
i = i 

fulfil fs |/?(^)|2 dx < oo. Assume that (complex) constants Ih i = 1, ..., k, and real 
constants q, bh i = 1, ..., k, are given. We assume that bt are nonzero and have the 
same sign. The function Vis the same as in the previous section. 

Setting of the problem: we should find a (complex valued) function f(x) defined 
on S, and complex numbers ch i = 1, ..., k, fulfilling 

k 

I 
i = l 

(6) j(x) - k X b, | f(y) V(\y - x\) áy - cp = h(x) for xeSp 

P = í,.-.,k, 

(7) 
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Theorem 2. Let the assumptions from the beginning of this section be fulfilled. 
Then there exists a unique solution/(x), ct, i = 1, ..., k, O/(6), (7). 

R e m a r k 3. Theorem 2 is valid even if some coefficients b(- equal zero. 
The method of solving the problem is similar to that used in the previous section. 

Denote 

Pf(x)= !f(y)b(y)V(\y-x\)dy 

where the function b is defined by b(x) = bt for x e Si9 i = 1, ..., k. Similarly we can 
define a function c(x) by c(x) — ci for x e Sh i = 1, ..., k. The set of identities (6) 
can be rewritten as 

(8) f-jqPf-C = h. 

Lemma 3. Let the assumptions of Theorem 2 be fulfilled. Then 

(9) / - ]qPf = h 

has a unique solution for every h e L2(S). 

Proof. Define an operator 

P*f(x) = b(x) V(\y - x\)f(y)áy for xeS. 

The operator P* is adjoint to the operator P in the sense (P/, g) = (/, P*g). The 
homogeneous equation adjoint to (9) is 

(10) / + jgP*/ = 0 . 

First, we prove a statement that (10) has only the trivial solution. Assume, on the 
contrary, that (10) has a nontrivial so lu t ion/ Identity (10) can be rewritten as 

\v(\y-x\)f(y)dy=jf(x)l(qbi) for xeS, 

(the case q = 0 is trivial). If we multiply this equation by f(x) and integrate over S 
we obtain 

(-Г.Л-JЅ í \f(*)\2àxlШ 
í=1 Js, 

The expression on the left-hand side is real and the expression on the right-hand side 
is purely imaginary and nonzero. The statement is proved. Now Lemma 3 is a con
sequence of Fredholm's theorem and of the statement (as in the first section). 

Let f(i) be a solution of (9) where h(x) = 1 on St and h(x) = 0 on the other Sp's 
(p = 1 , , . . , k, p 4= i). Lemma 3 yields that these solutions exist and are unique. 
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Denote 

i dx for p, r = 1, ..., k , v = ľ /<r,(*)< 
J s p 

and let A be the k x k matrix with the elements apr. 

Lemma 4. We have det A =}= 0. 

Proof. Assume det A = 0. Then Az = 0 has a nontrivial solution z. Denote by 
k 

zt the i-th component of z and/ ( 0 ) = £ / ( t ) z f . Certainly the function / ( 0 ) is again 
i = l 

a solution of (9) where the right- hand side h(x)is a function which equals zt on St-. 
We denote this function by h(z\x). Moreover, we have 

J / (0 )(x)dx = 0 for i = 1, ..., k. 
J St 

Consider equation (9) with h = h{z). Multiplying this equation by bj'{0)ix) and 
integrating over St we obtain 

bi f |j(0>|2 dx - j f l f Pj(0>(x) bJ^Xx) dx = z.b, f j(0>(x) dx = 0 . 
J St J Si J Si 

If we sum these equations over all i's we obtain 

k f [ V(\x - y\) b(x)f^(x)'b{yjf^(y) dx dy = £ b, f |j(0 '(x)|2 dx . 
J s J s i=1 J Si 

The right-hand side of the identity is nonzero real. The left-hand side is purely imagin
ary since the integral expression can be written as (Tb/(0), b/(0)) and thus is real 
(Remark 2). The contradiction proves Lemma 4. 

Proof of Theorem 2. The solution /(x) of (6) can be written as f(x) = fih\x) + 
k 

4- YJ c i / ( l ) ( x ) ' w r i e r e f{h) -s t r i e solution of (9). Since det A 4= 0 we can calculate 
i = l 

ct such that condition (7) is fulfilled. 

3. NUMERICAL SOLUTION 

Let St be disjoint, bounded and Lebesgue measurable sets, m(Sf) > 0 for i = 1,. . . 
..., k. The function Vis the same as in Section 1. 

Remark 4. If m(Sf) = 0 then also the corresponding It has to be zero. 

Definition. A finite system of sets {Xs} is called a covering of {St} if Xs are disjoint, 
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Lebesgue measurable sets, every Xs is a subset of some Sh m(Xs) >0 , m(S — (J Xs) = 
s 

= 0 and if in every Xs one point xs is chosen. These points will be called distin
guished points. 

The norm of {Xs} is defined by 

d({Xs}) = max sup {\u — v\:u,v eXs} . 
s 

Definition. A function e(r) is a modulus of continuity if it is defined for r — 0, 
e(0) = 0, e is continuous and nondecreasing. If, moreover, \h(u) — h(v)\ = e(\u — v|) 
for u, v e Sh i = 1, ..., k (h a function defined on S) then e is a modulus of continuity 
of the function h. 

If a covering {Xs} of {St} is given we consider the system of algebraic linear equa
tions (11;), (12), i = 1, ..., k, for constantsfl5 .. .9fx, cl9 ..., ck, where « is the number 
of elements of the covering {Xs}: 

(H t) fP " h I *t I f f K(|JCP - j/|) dy - 2, = h(xp) for all p 
t = l Xsc:St JXs 

fulfilling Xp c St and for i = 1, ..., k , 

(12) I / > ( * . ) - - / . for i = l , . . . , f c . 
X5CSi 

If a solution of ( l l f) , (12), i = 1, ..., k, is given we can define f(x) = fp for x eXp, 
f(x) = 0 for x e S - (JXS and c(x) = ct for x e Sh i = 1, ..., k. We denote by 

Sol (h,Ih {Xs}) the couple [f(x), c(x)]. 
The function f(x) and the constants ĉ  will be considered an approximation of the 

solutionf(x), cu i = 1, . . . , k, of (6), (7). 
We shall use Flypothesis (H) in this section: 

(H) System (6), (7) with h(x) = 0, It = 0 for i = 1, ..., k, hOs Only 
the trivial solution f(x) = 0, ct = 0 for i = 1, ..., k . 

Theorem 3. Let the sets Sf be disjoint, bounded, Lebesgue measurable with 
m(St) > 0 for i = l , . . . , k, let f, i = 1, ..., k, be aiven (complex) constants, let 
a function h(x) be defined on S and let the function V be the same as in Section 1. 
If h has a modulus of continuity and if Hypothesis (H) is fulfilled, then system 
(6), (7) has a unique solution. 

Theorem 4. If the assumptions of Theorem 3 are fulfilled then for every s > 0 
there exists S > 0 so that system (11£)5 (12), i = 1, ..., k, has a unique solution 
if the covering {Xs} fulfils d({Xs}) < S and moreover 

\f(x) - f(x)| < s , |ei - ct\ < e., i = 1, ..., k , 

where f(x), ct is the solution given by Theorem 3 and [f(x)> £(*)] = S°* (h, I;, {Xs})-
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These two theorems will be proved simultaneously but the proof will be divided 
into a series of auxiliary results. 

Theorem 5. (auxiliary). Let Hypothesis (H) be fulfilled. Let the following assump
tions be fulfilled 

(i) a sequence of coverings {X(r)} fulfils d({X(r)}) —> 0 for r -> oo, 

(ii) I^r), I(r), i -= 1, . . . , k, r = 1, . . . , are complex numbers with limI^r) = It, 
r-»oo 

(iii) h(r)(x), h(x) are functions defined on S having the same modulus of continuity 
e(r) and fulfilling h(r\x) —> h(x) uniformly. 

Assume that Sol (h(r), I(r), {X(r)}) exists for every r and that there exists a cons

tant M such that 

(13) f | / ( r )(x) |2 dx 4- f |c(r)(x)|2 dx ^ M , 
Js Js 

where [f(r), c(r)] = Sol (h(r), I(r), {K(r)}). 
Then such a subsequence of {X(r)} can be chosen that the corresponding f(r), c(r) 

converge uniformly to a sollution f(x), ct of (6), (l). 
This theorem is proved in Appendix. 

Lemma 5. (on regularity). If the assumptions of Theorem 4 are fulfilled, then there 
exists 30 > 0 such that the linear system of algebraic equations (11,-), (12), i = 1, . . . 
. . . , k, is regular if d({Xs}) < S0. 

R e m a r k 5. The number S0 is independent of h(x) and It. 

P r o o f of Lemma 5. Assume, on the contrary, that for every <Sr = 1/r there exists 
a covering d{X(r)} < 5r such that the determinant of (11/), (12), i = 1, . . . , k, is zero. 
Thus this system for h(x) = 0,1 ( = 0 has a nontrivial solution to which there corre
sponds a nontrivial f(r)(x), c(r)(x). Since the system is homogeneous we can assume 

\\f"(x)\2dx+[\cҢxf 
Js Js 

dx = 1. 

Hence the assumptions of Theorem 5 are fulfilled and there exists a subsequence 
of J(r\x), c(r)(x) converging uniformly to a solution f(x), ct of (6), (7). Since the 
convergence is uniform we conclude 

1 |/(x)l 2 dx + \c(x)\2 dx = 1 

and we obtain a contradiction with Hypothesis (H). 
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Lemma 6. (boundedness). Let Hypothesis (H) and conditions (i) to (iii) be fulfilled. 
There exist numbers d1 > 0, Mx > 0 such that 

f | j w ( x ) | 2 dx + f |c«(x)|2 dx :S M. . / 4 { Z ^ } ) < St . 
Js J s 

where [f(r\ c(r)] = Sol (h(r), I{[\ {K(r)}). 

Proof. Assume, on the contrary, that there exists a subsequence of {K(r)} (which 
we denote by {X(r)} again) such that d({X(

s
r)}) -> 0 and 

oo . f |/(r)(*)|2 d* + I I ^ M I 2 d* -> °° for 

Js Js 
We can multiply f(r\ c{r) by numbers zr > 0, zr -> 0 such that 

*r ( f |/(r>W|2 dx + f |£(r)W|2 d x ) = ! ' 
V J s J s / 

The multiplied functions belong to Sol (zrh, zrIh {K(r)}). Thus the assumptions 
of Theorem 5 are fulfilled and at the same time zrli —> 0. As in the previous proof 
we can choose a subsequence converging to a nontrivial solution of (6), (7). 

P r o o f of Theorem 3. Consider a sequence of coverings {K(r)} fulfilling (i). By 
Lemma 5 and Lemma 6 there exists a sequence Sol (h, Ih {K(r)}) which is bounded 
in the sense of (13). An application of Theorem 5 yields the existence of a solution 
of (6), (7). 

P r o o f of Theorem 4. Letf(x), c(x) be the solution of (6), (7) given by Theorem 3. 
Assume, on the contrary, that there is a sequence of coverings {K(r)} fulfilling (i) 
so that / ( r )(x), c(r)(x) given by (11*), (12) does not converge uniformly to f(x), c(x) 
for r -> co. Certainly there exist a number s0 > 0 and a subsequence of {K(r)} 
(which we denote by {K(r)} again) so that 

(14) sup {|j(x) - J<-\x)\ + \c(x) - c<"(x)|} ^ £0 > 0 . 
JCeS 

By the same reasoning as in the proof of Theorem 3 we conclude that there exists 
a subsequence of {K(r)} so that the corresiponding f(r\x)9 c(r\x) converge uniformly 
to a solution f(x), t(x) of (6), (7). Inequality (14) yields 

(15) sup {\f(x) - f(x)\ + \c(x) - t(x)\} ^B0>0. 
xeS 

The existence of two different solutions of (6), (7) is a contradiction with Hypothesis 
(H). 
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APPENDIX 

In this section we shall prove the auxiliary Theorem 5 and inequality (16). 

Lemma 7. Let D = diam S. There exists a function e(r) such that e is a modulus 
of continuity and 

j [V(\u - y\) - V(\v - y\)]2 dy g e2(\u - v|) for u,veR, \u\, \v\ S D 

is valid. 

Proof. First we prove a statement: For every e > 0 there exists d > 0 such that 

I {v(\u - yl) - v(\v - yl)]2 d y < fi2 f o r \u - v\< d, \u\, \v\ = D . 

Let £ > 0 be given. There exists a continuous function VE(r) such that 
% 

o 
(V(r) -VE(r))2rn-ldr < e2 , 

and since V£ is continuous there exists 5 > 0 such that 

\Vs(a) - VE(b)\ < s for 0 ^ min (a, b) S max (a, b) ^ 2D , \a - b\ < 5. 

We have 

/ [ [V(\u - y\) - V(\v - y\)Y dv ^ / [ [Kflii - y|) - Vs(\u - j | ) ] 2 dy + 

+ / [ [V(\v - y\) - Vz(\v - y\)Y dy + I [ [Ve(\u - y\) - V/> - j | ) ] 2 dy rg 

^ 2 / ( a„_ ! [ [V(r) - VE(r)Y rn~» dr\ + es/m(S) < 

< e(2v
/(a„_1) + Vm(S)) for |w - v\ < 5 , \u\, \v\ < 2D , 

where a„ is the volume of the n-dimensional unit sphere. The statement is proved 
and Lemma 7 is its easy consequence. 

Lemma 8. There exists a constant M2 such that 

| / » (x ) | < M 2 for xeS, 

where [fir\ c w ] = Sol (h(r), lf>, {^r)}) is given in the auxiliary Theorem 5. 
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Proof. System (l l f) can be rewritten as 

/<">«>) = O(r>(x;r>) + h(r)(x(r>) + ]q l b , f f{r)(y) V(|x(r> - y\) dy . 

Using the Holder inequality, 

|/<r>(x<r>)| = |c<r>(x<r>)| + |h<r>(x<r>)| + 

+ \q\ max \bt\ I f |/<r>(y)|2 dy y f [V(|x<r> - y |)]2 dy . 

Since h{r)(x) converge uniformly to h(x) and h(x) is bounded, sup |h ( r )(^ r )) | < oo. 
By Lemma 7, sup fs [V(|x — y\)]2 dy < oo. If we take into consideration (13) 

xeS 

and miSj) > 0 we conclude that sup |c(r)(xpr))| < oo and Lemma 8 is valid, 
r 

Lemma 9. There exists a modulus of continuity e+(r) such that 

| / c ' - ) « r ) ) - j W W r ) ) | ^ e
+ ( | x < r > - x < r > | ) for < > , 

x(r) e Sh i = 1, ..., k, where xp
r), x(r> are distinguished points of {K(r)}. 

Proof. We have 

;«(x<r>)-/<r>(x<r>) = 

= h(x<r>) - /<*<r>) + j q Ybx [ p\y) [V(|x<r> - y\) - V(|x,r> - y\)] dy 
* JsT 

so that similarly as in the proof of the previous lemma 

i/w«))-/w(*ni^<K)-*j,)i) + 

+ \q\ max |&T| / f |j<r>(y)|2 dy / f [V(|x<r> - y|) - V(|x<r> - y |)]2 dy = 

= <|x<,r> - x<r>|) + \q\ max |bt|Me(|x<,r> - x<r>|). 
T 

The statement of the lemma is valid for e+(r) = e(r) + |q | max \bx\ Mz(r). 
t 

Proof of Theorem 5. Let St be the closure of Sf. Since St are bounded the sets 
St are compact. 

We define functions f{r)(x; i) for x e St i == 1, ..., k: 

Re/ ( r ) (x; i) = min |Re/(r>(x<,r>) + e+(|x(r) - x|): for all 

distinguished points x{r) of {K(r>} from S J , 

Im/ ( r ) (x ; i) = min {lm/(r>(x(r>) + e+(\x{
p
r) - x|) : for all 

distinguished points x(;> of {K(r>} from St} . 
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R e m a r k 6. By Lemma 9 w e have f(r)(x(r); i) = f^O")) for the distinguished 
points x(r) from St. 

Lemma 10. The functions f^(x; i) are uniformly bounded: 

\f(r\x; 0| = (M2 + e+(diam S,)) ^ 2 for xeSi9 

and the functions f(r)(x; i) have a common modulus of continuity: 

\frXx;i)~f*\y;i)\£e*(\x-y\) for x,yeSt, i=l,...,k, 

where e*(r) = j(2) sup {e+(<x) - e+(p) : a = /? + r, j8 = diam St} and diam St = 
= sup {|u - v| : u, ve St}. 

Proof. The bound for Ref ( r )(x; i) and Imf ( r )(x; i) is a consequence of Lemma 8 
and Lemma 9. Consider now x, y e St. Let the minimum in the definition of 
Ref ( r ) (x; i) be realized by a distinguished point x(r), x(r) e St. We conclude 

Re f ( r ) ( j ; 0 - R e f ^ x ; i) = 

= min { R e f ^ x f ) - Ref ( r )(4 r )) + e+(\x(r) - y\) -

- e+(\x(
p

r) - x\) : x? e S,} = e+(|x(r) - y\) - e+(\x? - x\) = e*(\x - y\). 

Since this bound is symmetric with regard to x, y and is valid also for the imaginary 
parts of f(r)(x; i), Lemma 10 is proved. 

Since the functions c(r)(x) are constant on Sl9 bounded ((13) and m(St) > 0) we 
can choose a subsequence of {X(r)} such that the subsequence of c(r)(x) converges 
to a constant cv Since f(r)(x; 1) fulfil the conditions of Arzela's Lemma we can 
choose a new subsequence f(r)(x; 1) converging uniformly to a function f(x; 1). 
We repeat this construction for S2,..., Sk. We denote f(x) = f(x; i) for x e Si9 

i = 1, ..., k. 

Lemma 11. The function f(x) and the constants ch i = 1?... , k, form a solution 

"f (6), (7). 

Proof. First, we denote the subsequence of f(|,)(x; i) which converges uniformly 
to f(x; J) byf(r\x; i) again. By Remark 6 we h a v e f ( ^ ° ; 0 = f(r)(x(

p
r)) = f(?. Thus 

using (ll j) , we have 

M4\ 0 - k £ bt f f\y; t) V(\& _ j,|) dy - 2<'> = 
<=1 Js, 

= Kx?) - n X bt I f [f'\r, t) - /W(x<'>; 0] V{\>fp - y\) dy 
r=i xs(r>cs, J x,v> 
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for x(r) e Sh i = 1,.,., fc and 

j(r)(*; 0 - j _ S &« f f(r) G>; 0 n i * - >1)°> - ^r) = *•(*) + J ' " . 
'=1 Js« 

where 
j « = /i(x^>) - h(x) + j(r'(x; i) - j(r)(xj,'>; i) + 

+ k _>. f j(r>(y; t) [V(|x^ - ?|) - V(|x - y\)] dy -
t J s t 

-i«I>. I f [f^O-j^K^OJni^-jDdy, 

where x|,r) is the distinguished point of {X(
s
r)} in S; nearest to x. Assume for a while 

that S - (J^_r) for all r. Then |x - x£r)| -> 0 for r -> co. By (hi), Lemma 10and 
s 

Lemma 7 we conclude that J(r) -> 0 for r -> oo. Thus f(x), ct fulfil equation (6). 
Equation (7) forf(x), ct can be proved in a similar way. 

It remain to prove that f(r)(x) converge to f(x) uniformly. 
Since f(r)(x) is constant on X(r) and/(r)(x) = f(r)(xp

r)) = fp9 where x(;} is the distin
guished point in X(p, we have 

|/(r>(x) - j w ( x ; i)| _ e*{\x - x<'>|) ^ e*(d({X?})) -, 0 

for r -> oo. This proves that also f(r)(x) converge uniformly to f(x). If S + \JX(
s
r} 

s 

we put St = n ( U ^ r ) n Sf). We have proved thatf(x), ct- fulfil (6), (7) with St replaced 
r s 

by S^ But m(St. - S,) = 0, i = 1,..., k, and we can extend f(x) by (6) onto S. 
Theorem 5 is proved. 

Lemma 12. Let the assumptions of Theorem 3 be fulfilled. Then 

(16) |/(ii) - f(v)| <£ e(\u - v|) + |g| max \bt\ e(|u - v|) / [ |f(j;)|2 dy 
1 V Js 

for u,veSt, i = 1,..., k . 

Proof. Let u, v e S;, then using (6) we can derive 

f(U) - f(v) = *(«) - h(v) + j8 $ > f /(y) cni« - >i) - F(b - *l)] d^ • 
1 hi 

By the Holder inequality and Lemma 7 we obtain the statement of Lemma 12. 

References 

[1] D. Mayer, B. Ulrych: Integralni model povrchoveho jevu a jeho numericke reseni. Elektro-
technicky casopis 35, 1984, c. 10. 

373 



[2] L. Liusternik, V. Sobolev: Elements of Functional Analysis. New York: Frederick Ungar 
Publishing Company Inc. 1961. 

[3] M. B. Kanmopoeun, B. H. Kpbuioe: npH6jra>fceHHi>ie MeTOAbi Bbiciuero aHajnoa, Foe. H3A. 
Tex.-Teop. JIHT., MocKBa 1952. 

[4] L. Collatz: Numerische Behandlung von Differentialgleichungen, Springer Verlag, Berlin— 
Gottingen—Heidelberg 1951. 

[5] D. A. H. Jacobs ed.: The State of the Art in Numerical Analysis. Acad. Press, L o n d o n -
New York—San Francisco 1977. 

S o u h r n 

ANALÝZA INTEGRÁLNÍCH ROVNIC POPISUJÍCÍCH 
POVRCHOVÝ JEV 

Ivo VRKOČ 

Článek navazuje na práci [1], kde je odvozen a diskutován matematický model 
povrchového jevu. V případě jednoho vodiče v proměnném magnetickém poli je 
fázor hustoty elektrického proudu ve vodiči určen rovnicemi (1), (2). V případě 
více rovnoběžných vodičů obdržíme systém (6), (7). V první a druhé části článku jsou 
řešeny problémy existence a jednoznačnosti řešení daných rovnic. V třetí části 
článku je navržena numerická metoda výpočtu řešení a je dokázána její konvergence. 
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