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SVAZEK 30 (1985) APLI KACE MATE MÁTI KY ČÍSLO 6 

ON THE ASYMPTOTIC PROPERTIES OF RANK STATISTICS 
FOR THE TWO-SAMPLE LOCATION AND SCALE PROBLEM 

M. N. GORIA, DANA VORLÍČKOVÁ 

(Received April 10, 1984) 

Summary. The equivalence of the symmetry of density of the distribution of ob
servations and the score-generating functions for the location and the scale problem, 
respectively, is established at first. Then, it is shown that the linear rank statistics with 
scores generated by these functions are asymptotically independent under the hypothesis of 
randomness as well as under contiguous alternatives. The linear and quadratic forms of these 
statistics are considered for testing the two-sample location-scale problem simultaneously in the 
last part of the paper. 

Keywords: linear rank statistics, the hypothesis of randomness, alternatives of difference in 
location and scale, contiguous alternatives, score generating function, an asymptotic distribution. 

1. INTRODUCTION 

Let (Xl9 ...9Xm) and (Xm+l9 ...9XN)9 N = m + n9 be two independent random 
samples, and suppose that for some unknown value 9 = (9l9 92) e R2 the variable Xx 

has the same absolutely continuous distribution F as 61 + Xm+1e~02, F having con
tinuously differentiable density f. Various authors namely Duran et al. [3], Lepage 
[9], and Goria [4] have investigated the quadratic form of the linear rank statistics 

m 

$k = X a/<Nv̂ L)> k = 192 with regard to the problem of testing the hypothesis 
i=\ 

H : 9 = 0 against the location-scale alternative A : 9 =j= 0, where jRf is the rank of Xt 

in the combined sample, S± is the statistic for testing the difference in location, S2 is 
the statistic for the scale problem. The former case corresponds to the alternative 
Ax : 03 4= 0, 92 = 0, the latter one to A2 : 9X = 0, 92 + 0. Randies and Hogg [10] 
showed that the statistics S1 and S2 are uncorrelated under the hypothesis provided 
the scores akN(i) satisfy the following relation for i = 1, ..., N: 

(1.1) a1N(i) + a1N(N - i + 1) = c and a2N(i) - a2N(N - i + 1) = 0 . 
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The purpose of this paper is to show that the score generating functions for (H, At) 
and (H, A2), respectively, are odd and even if and only if the corresponding pdf is 
symmetric about the origin. This is done in Section 2, where we also discuss the 
various consequences resulting from it. In Section 3 the asymptotic independence of 
the linear rank statistics Sx and S2 under H as well as under the local (Pitman type 
sequence) contiguous alternatives is established. The asymptotic independence of 
the statistics Sx and S2 considerably simplifies the asymptotic power computations 
of the linear and the quadratic form of the test statistics for the two sample location-
scale problem. This is discussed in the last section. 

2. SOME RESULTS ON THE SCORE GENERATING FUNCTIONS 

Let f, and F"1, respectively, denote the pdf and the inverse of the distribution 
function F such that F~\\\2) = 0. 

Define 

(2.1) U^f)=-f(F~\u))lf(F-\u))^ 

and 

(2.2) cj>2(u9f) = - 1 - F-\u) .f'(F-\u))\f(F-\u)), 0 < u < 1 , 

respectively, the sgf for (H, Ax) and (H, A2), where f indicates the derivative off 
Then Lemma 1 characterizes the behaviour of 4>x(u,f) and <t>2(u,f). 

Lemma 1. Symmetry of pdf f about the origin is equivalent to each of the following 
equalities: 

(2.3) * i ( « , / ) = -</>,(! -uj), 

(2.4) 4>2(u,f) = 4>2(\ -uj), 0 < u < 1 . 

Proof. From the symmetry of the pdf /about the origin, we have 

(2.5) F-\u)= -F~\l - u). 

On substituting (2.5) in (21) and (2.2), it readily follows that both (2.3) and (2.4) 
hold. 

Now let 

4>i(uJ) = -4>i(l - uj), "0 < u < 1 , 

that is 

f'(F-\u))lfKF-\u)) = -f'(F~\l - u))jf(F~\l - «) ) . 

This is equivalent to 

(2-6) {f(F~\u))Y = {f(F-\l - « ) } ' . 
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On integrating (2.6) and observing that the constant of integration vanishes at u = \, 
we have 

f(F-\u))=f(F-\\-u)) 
or 
(2.7) {F-\u)y = {-F-\i-u)y. 

On integrating (2.7), we have (2.5) as the constant of integration is again zero at 
u = \. This proves the symmetry off. 

Now suppose 

<t>2(uj) = <£2(1 - " , / ) , 0 < u < 1 , 
that is 

(2.8) {F-\u)f(F-\u))}' = {-F-\l - u)f(F-\l - «))}'. 

Then, we have 

(2.9) F-\u)f{F-\u)) = - E - ^ l - u)f(F~\l - «)) 

or 

{log(F-1(«))}' = { l o g ( - r - 1 ( l - « ) ) } ' . 

which yields 

(2.10) F-J(u) = - k F - ^ l - u). 

By putting (2A0) in (2.9) and then letting u = \ in the result, we have k = 1. This 
completes the proof of Lemma 1. 

Hajek & Sidak (1967, Chap. 1, p. 20) show that the function (j>i(u,f) is monotone 
provided the pdffis strongly unimodal and vice versa. 

Below we give several consequences resulting from Lemma 1 and thus we assume 
throughout this section that the pdf f is symmetric about zero. 

Corollary 1. Let <t>k(u,f), for k = 1, 2 be square integrable. Then cov (̂ >1? (U,f), 
(j>2(U,f)) = 0, where U is the uniform r.v. on the interval (0, 1). 

Proof. The square integrability of (j)k(u,f)\ guarantees the existence of the 
c o v l ^ U j f ) , (/>2(U,f)}. The statement of Corollary 1 follows by straightforward 
computations using (2.3) and (2.4). 

Let the alternative A be defined by the density 

h(x,6u62) = Q-e>f{Q-dix-91)}, 

and let I(#) = (1^(9)), i,j = 1, 2 be the information matrix, where 

fd log h d log h^ r ffí\ _ v (d l o § 
д j 

Then, we readily find that I12(0) = e " " 2 . E{</>.(U,/) <t>2(U,f)} = 0. Thus the in

formation matrix in the present case is diagonal. 
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Define the scores and the approximate scores generated by ^k(u,f), respectively, as 

akN(i,f) = E<t>k(KJ) 
and 

akN(hf) = UEUNJ), 

where UN is the ith order statistic in a random sample of size N from the uniform 
distribution. Obviously, 

EUN
N~i+i = 1 - EUN, 

and 

E<MUri+1,j) = E<Mi-U;, j). 

These results together with (2.3) and (2.4) yield: 

Corollary 2. The scores and approximate scores satisfy the condition (1.1) with 
c = 0. 

Let the linear rank statistic defined by <fik(u,f) be 

m 

(2.11) Tk = £ akN%, f), k = l,2. 
i = l 

Then, from Corollary 2, we obtain: 

Corollary 3. Linear rank statistics Tx and T2 are uncorrected under H. 
Note that Corollaries 1, 2 and 3 hold in general for any two square integrable 

functions satisfying the conditions (2.3) and (2.4). 

3. ASYMPTOTIC INDEPENDENCE OF St AND S2 

Here we shall first derive the joint asymptotic distribution of St and S2 under 
the hypothesis as well as under the local contiguous alternative, and then show that 
if the scores defining these statistics satisfy the condition (1.1), then the statistics 
are asymptotically independent. 

Since the asymptotic results deal with a sequence of situations similar to the given 
testing problem, let (mv, nv), v = 1, 2, ... be a sequence of pairs of positive integers 
such that Nv = mv + nv -> oo as v -> oo. For each v let Hv be the sequence of null 
hypotheses such that under Hv, the joint density of (Xvl, ..., XvNv) is given by 

Pv = nj(*,-)-
i = i 

Let Rvi be the rank of Xvi among (Xvl, ...,XvNv). Now we consider the linear sta-
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tistics Skv = ]T akNv(
Rvt)> w n e r e akNv(

i) a r e t n e s c o r e s o r approximate scores generated 
i = i 

by the functions (j)k(u)9 such that 

(з.i) Jш«)î 
1 

dw < oo , k = 1, 2 . 

Condition (3A) guarantees the existence of the covariance matrix of the random 
functions 01(U), and $2(U), which we denote by D = (dl7), i,j = 1,2. Then we 
have the following theorem. 

Theorem 1. Suppose that (3A) hold and min (mv, nv) -> oo as v -» oo. T/ien the 
random vector (5 l v , S2v), urcder Hv, is asymptotically bivariate normal with the 
expectation (mvalx, mva2v) and the covariance matrix (mvnvJNv) D, where 

Nv 

akv = ^"HE^vO'))-
i = l 

Proof. To prove the theorem, we must show that for all values of the real vector 
(A1? X2), as min (mv, nv) -> oo, the statistic 

Sv = £ v S * v - m v a t v ) ( ^ a A 
(==1 V Nv j 

-1/2 

where 

<. = IK»vO")-«*v}2/Ovv-i), 
i = l 

т2 , -2 is asymptotically univariate normal with zero expectation and variance Ax 4- A2 + 
-f 221/l2^, where O = d12(dlldl2)~1/2. 

From Hajek & Sidak [5], Chap. 5, we find that it suffices to show that the result 
holds for the asymptotically equivalent statistic 

S* = Ý,k{Skv - mvakv)[-~^ dkk) 

Now if we define the row vector 

m i • 
_ j ^ /nvNv tJuy1 / 2

; ПvІVvíl22\"1/2 

, i = mv + 1, . . . , JVV 

mv 

and the row vector 

^NV(^VÍ) = {aiNXRvi) , a2Nv(Rvi)} > / = 1, . •., Nv, 

429 



then Sv can be rewritten as 
lVv 

^ v = Z CivflNv(^vi) • 
i=l 

To complete the proof, we merely need to verify the following conditions of Theorem 
2.2 of Beran [1]: 

(3.2) £ ||cf||
2 < d2 < oo , 

i = l 

(3.3) Max ||c/v|| -> 0 , v-> oo . 

Condition (3.2) is satisfied with d2 = k]\dll + k\\d22, whereas (3.3) is equivalent 
to the assumption min (mv, nv) -> oo as v -> oo. 

From Corollary 3 and Theorem 1, we have 

Corollary 4. Suppose afc Nv(i)'S are generated by the square integrable functions 
(j)k(u), k = 1, 2, satisfying (2.3) and (2.4). Then, as min (mv, nv) -> oo, the statistics 
Slv and S2v, under Hv, are asympotically independent normal with expectation 
mvakv and variance (mvnvlNv) dkk, k = 1, 2. 

Corollary 5. The Imp rank statistics Tlv and T2v, defined by (2.11), corresponding 
to the symmetric pdf f with finite Fisher information matrix I\0), under Hv, as 
min (mv, wv) -> oo, are asymptotically independent normal with zero expectation 
and variance (mvnvJNv)Ikk(0), k = 1, 2. 

Let the location-scale alternative A be defined by the density 

(3.4) h{x,e) = ^2\f{^2\x - eK\))}, 
where the vector 9' = (0(1), 9(2)). 

We assume that the sgf (j)k(u,f), k = 1, 2 exist and that 

(3.5) [ {<t>k(u,f)}2<iu<co, k=l,2, 

holds. Let Av be a sequence of alternatives such that under Av, the random variables 
(Xvl, ..., XvNy) are jointly distributed with the density 

mv NV 

(3.6) <zv = n H*.-> a*) n *(* . .°). 
i = l i = mv + I 

where 9'iv = (ov(l), 0V(2)} = 9'v, i = 1, . . . , mv. 
Let 

(3.7) Hovll — 0 , 

(3.8) mvl|0v |2 < b2 < oo , 

(3.9) mv6»vJ(0) 9V -> p2 < oo 

430 



hold. Then the densities qv are contiguous to pv (see Beran [1]). Proceeding as in the 
proof of Theorem 1 and using Theorem 3.2 of Beran [1], we obtain the following 
assertion. 

Theorem 2. Let (3A), (3.5), (3.7)-(3.9) hold. Then, for min(m v , nv) -> oo, the 
random vector (Siv, S2v) is, under Av given by (3.6), asymptotically jointly normal 
with the expectation 

m 
mvakv + — 

N 
" 4 f <M«) (ť?v(l) H"J) + W) 4>2{u,f)) dui , k = 1, 2 , 

and the covariance matrix (mvnv\Nv) D. 
From Corollary 3 and Theorem 2 we have 

Corollary 5. Under the assumption of Theorem 2, if the functions (j)k(u), k = 1, 2, 
satisfy (2.3) and (2.4), the statistics Slv, S2v are, under Av, asymptotically in
dependent. 

As an example we may choose 

(3.10) e v ( i ) = ( ^ y 1 / 2 A!, 0,(2) = ( ^ y 1 / 2 A2. 
\ ™v / \ nv J 

It can be easily verified that, for min (mv, nv) -> oo and mv\nv tending to a finite 
limit, the conditions (3.7) —(3.9) are satisfied. 

Corollary 6. Under (3.1) and (3.5), for min (mv, nv) -> oo and mv\nv tending to 
a finite limit, the random vector (Slv, S2v) is asymptotically jointly normal under Av 

defined by (3.6) and (3A0) with the expectation 

mvdkv + (mvnv\Nv)
ll2\\ <j)k(u) ( ^ Arffaf) + ^ A2<t>2(u,f) Jdiii , fc = 1, 2 , 

(Jo V^v Nv / J 

and the covariance matrix (mvnv\Nv) D. If, in addition, 4>k(u), k = 1, 2, satisfy 
(2.3) and (2.4) the statistics Siv, S2v are under Av asymptotically indepedent. 

Corollary 7. Suppose that, in addition to the conditions of Theorem 2, the pdf h 
in (3.4) with 9(1) = 0 is symmetric about the origin. Then, the Imp rank statistics 
Tlv and T2v defined by (2.11) are, under Av given by (3.6), asymptotically in
dependent and normal with expectations (mvnv\Nv)

112 9v(l) / 1 1 (0), (mvnv\Nv)
1/2 9v(i). 

. I22(0), and variances mvnvIhk[0)\Nv, k = 1,2, where Ikk(0) is the element of the 
Fisher's information matrix. 

4. RANK TESTS FOR THE TWO SAMPLE LOCATION-SCALE PROBLEM (//, A) 

In the absence of Imp rank test for the problem (H, A), analogically to the para
metric approach, the linear and quadratic form of the Imp rank test statistics 7\ 
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and T2 have been suggested in the literature; see Goria [4] for details. Clearly, 
the asymptotic power computations of these statistics are considerably simplified 
if the underlying pdf is symmetric about the origin. Below we discuss each of these 
combinations. 

4.1. Linear combination of Tx and T2 

The statistic T = kjTi -j- k2F2 arises if one considers the problem of testing H 
against the alternative A(6) defined by the density 

h(x90) = b(0)f{b(9)(x - a{9))} , 

such that a(0) = 0 and 6(0) = 1. 
It can be easily found that the sgf in this case is 

<f>(uj) = k! 0 J . (M, / ) + k2 0 2 (w, / ) , 
% 

and the corresponding linear rank statistic T can be shown to be Imp for (H, A(6)) 
under the conditions of Theorem 4.8 of Hajek& Sidak (Chap. 2, p . 70 — 71), and its 
asymptotic normality under Hv and Av follows from Theorems 1 and 2. 

Lepage [7] considers the statistic T* = k1T1 4- T2 and shows that T*, under 
contiguous alternatives A*, is asymptotically normal where A* is defined by the densi
ty qv in (3.6) such that 

ef
iv=(Al(mvnv\Nv)-

i'\ A2(mvn,/Nv)-
1/2), i = 1, 2, ..., mv , 

and ki = Ai/A2-
Notice that Lepage's assumptions for proving the contiguity of qv to pv are not 

comparable to those of Beran as the densities qv fail to meet the requirements of 
Beran. The asymptotic normality of Tunder contiguous alternative can be established 
by an appropriate modification of the results of Lepage. In [8], he studied further 
the asymptotic efficiency of the statistics of the type T*. 

The linear statistic Thas the defect that it may have negligible power in the direc
tion far from the one chosen to maximize its power. 

4.2. Quadratic form of Ti and T2 

Let T* be the standardized Tk under H and let 

(lQ\, where g = J 1 2 (0) , ( / u (0) /22(0))" 

Q = (T*,T*)B~lK), 

ft — n^- t /2 

then the quadratic form 
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appears to be a natural choice of a test statistic for the problem (H, A). This statistic 

is particularly suitable if it seems likely that there may be relatively small departures 

from H in several respects simultaneously. Clearly it follows from Theorems 1 and 2 

that Q under Hv and Av is asymptotically xl ar1d x\\S)^ where the non-centrality 

parameter S can be obtained from Q by replacing T* by its expectation under qv 

in Theorem 2. 

Further, the statistic Q reduces to 

Qx = (I?)2 + (r2y, 

if the pdf f is symmetric about the origin. It is the statistic Ql9 which has been the 

subject of research by several authors. 

Lepage [9] derives its distribution under the alternative A*, and shows further 

that Qxis asymptotically most powerful maximin test for testing Hv against the alter

native A*(3), where A*(S) is defined by the densities qv such that the pdff is symmetric 

about the origin and A^I^O) + All22(0) = 3. 

Duran et al. [3] derive the expression for the asymptotic power efficiency of the 

statistics of the type Qi in the setting of Chernoff& Savage, while Goria [4] uses 

this expression and shows that it is better to use the statistic Q1 among all statistics 

of this type, obtained through an arbitrary mixture of the rank statistics satisfying 

conditions (1.1). 

Another statistic having a similar advantage as Qx is Q2 = \T*\ + \T*\, which 

surprisingly has not been investigated in the literature even though its asymptotic 

power can be easily evaluated under continuous alternatives Av. Both Qx and Q2 

have the disadvantage that if there is clear evidence of discrepancy from H, they by 

themselves give no indication of the nature of the departures. Further inspection of 

the data is always necessary to interpret what has been already found. 

Cox&Hinkley ([2], pp. 122—123) advocate that it is more useful to use T* 

and T* separately, and, in case of significant departures from H, the statistic 

Max( |T* | , \T*\) can be employed using bivariate normal tables or the univariate 

normal in the symmetric case, to detect the most significant departure from H. 

The relative performance of these tests from the asymptotic power efficiency 

point of view and their asymptotic power behaviour in the non-symmetric case is 

referred to a later publication. 
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S o u h r n 

O ASYMPTOTICKÝCH VLASTNOSTECH POŘADOVÝCH STATISTIK 
PRO PROBLÉM DVOU VÝBĚRŮ LIŠÍCÍCH SE POLOHOU A MĚŘÍTKEM 

M. N. GORIA, DANA VORLÍČKOVÁ 

V článku je nejprve dokázána ekvivalence symetrie hustoty rozdělení a lichosti 
a sudosti funkce generující skóry statistik pro test rozdílu v poloze resp. měřítku. 

Potom je ukázáno, že lineární pořadové statistiky se skóry odpovídajícími těmto funk
cím jsou asymptoticky nezávislé jak při hypotéze náhodnosti, tak při kontiguitních 
alternativách. V závěru jsou uvažovány kvadratické formy těchto statistik, na nichž 
lze založit test hypotézy náhodnosti proti alternativě rozdílu v poloze i měřítku 
současně. 
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