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A NOTE ON THE COMPUTATIONAL COMPLEXITY
OF HIERARCHICAL OVERLAPPING CLUSTERING

MiIrKO KRIVANEK

(Received October 15, 1984)

Summary. 1n this paper the computational complexity of the problem of the approximation
of a given dissimilarity measure on a finite set X by a k-ultrametric on X and by a Robinson
dissimilarity measure on X is investigated. It is shown that the underlying decision problems are
NP-complete.

I. INTRODUCTION

In the past a large variety of clustering definitions and methods have been developed
and used. To introduce the topic of hierarchical overlapping clustering let X =
= {xy,...,X,} denote n objects which are to be clustered and d a dissimilarity
measure on X, ie. d: X x X — Rg (nonnegative rational numbers), d(x, y) =0
iff x = y and d(x, y) = d'(y, x) for x, y e X.

A clustering is any partition of X into k non-empty sets, i.e. clusters. Informally
speaking the problem of hierarchical clustering is to find a sequence of nested
clustering (with respect to the partition refinement) which must induce an ultrametric
on X. The optimization problem of hierarchical clustering is formulated as the
approximation of a given dissimilarity measure on X by an ultrametric on X. Recently
this problem has been shown to be NP-hard [6].

Some authors [1, 2, 4] proposed a more general problem of hierarchical clustering
in which the aim is to construct a certain sequence of coverings of X which starts
with the partition of X into singletons and ends with the trivial partition {{X}}. As
the clusters may overlap this latter problem is often referred to as the problem of
hierarchical overlapping clustering.

In this note we study the NP-completeness of the computational problems of
hierarchical overlapping clustering. We show that two underlying decision problems
are NP-complete. The first is the problem of the approximation of a given dissimilarity
measure on X by a k-ultrametric on X [3, 4] and the second is the problem of the
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approximation of a given dissimilarity measure by a Robinson dissimilarity measure
on X [1].

Finally we state one open problem using graph-theoretical concepts.

Our NP-completeness terminology using graphs is that of [2].

II. BACKGROUND

Throughout this paper let X = {x,, ..., x,} be a set of objects and d a dissimilarity
measure on X.
The dissimilarity measure d on X is said to be a k-ultrametric on X if

(1 VSc X, |S|=k, Vx,yeX
d(x, y) < max {d(v, w) |ve S U {x, y}, we S}.

The I-ultrametric on X is simply called an ultrametric on X. .
The dissimilarity measure d on X is said to be Robinson if there is a permuation 6
of the set {1, ..., n} such that

(i) d(xou)s xﬂ(i)+1) = d(xo(i)a xo(i)+2) ... = d(xe(i)’ xn)
(ii) d(xe(i)« ~\'0u)+1) = d(xl)(i)——la Xe(.')+1) =...= d(xl’ Xa(i)+1)
foralli=1,..,n.
Every set-function pair (P, f) satisfying the following conditions (i)—(vi) is called

a pyramid on X:
(i) Pe22(X)),
(i) X e P,
(i) 0 ¢ P,
(iv) (VxeX) {x} e P,
(v) f: P > Z; (nonnegative integers) and

(Vh,h' e P) f(h) = 0<|h| =

f(hy < f(h)<>h < h and h + I,
(vi) the function rp: X x X — Zg defined by

re(x, y) = min {f(h) | {x, y} = h}

is a Robinson dissimilarity measure on X.

Remark. If r is an ultrametric on X then the pyramid (P, f) on X is called the
hierarchy on X.

It can be easily observed [1] that the set of all lnerarchxes on X is strictly included
in the set of all pyramids on X.

The height ¢ of a pyramid (P, f) on X is defined as follows:

. = |Range f| — 1.
Obviously 1 £ ¢(P) < n — 1 for every pyramid (P, f) on X.
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Now we introduce the decision problems of hierarchical overlapping clustering
whose NP-completeness we shall be interested in.

Problem p. Instance: Dissimilarity measure d on X, positive integer k;
Question: Is d a k-ultrametric on X?

Problem =. Instance: Dissimilarity measure d on X, positive integer k;
Question: Is there a pyramid (P, f) on X such that
Y ld(x, y) = rolx, )| < k?

x,yeX

II. RESULTS

Theorem 1. The problem p is NP-complete.

Proof. As is customary with such proofs, we omit the trivial verification that p
belongs to NP.

Let d be a dissimilarity measure on X such that d(x, y)e{1,2} (x + yeX).
Let us define the graph G = (X, E), where

{x,y}eE<d(x,y)=1.
There is a very simple condition which is equivalent to the k-ultrametric inequality

(1). The condition is that

(2) d is k-ultrametric on X iff G contains no subgraph isomorphic to the graph

K., — e (i.e. complete graph on (k + 2) vertices without precisely one edge).

In what follows we give a polynomial transformation from the problem 3-satis-
fiability [2], page 259, to p. The problem 3-satisfiability is defined as follows:

Instance: Set U of variables, collection C of clauses over U such that each clause
has |c| = 3;
Question: Is there a satisfying truth assignment for C?

Solet U, C = {¢y, ..., ¢} be an arbitrary instance of 3-satisfiability. Let G = (V, E)
be the graph such that

V={<o,iy|oee;}, E={{o,i), <6,j)}|i+jand o+ 3}.

R. Karp has shown [5] that this graph G contains a complete graph on k vertices as
its subgraph iff 3-satisfiability has “yes’’-solution.
Further let us consider the graph G' = (V", E') where

V'=Vu{v,v}, o F0v"¢V are “new” vertices joined to V;

E'=Eu{vv}u{nv} (veV).
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Clearly the construction of the graph G* can be carried out in polynomial time. Now
we shall prove that
(3) .G contains a subgraph K, iff G' contains a subgraph K, , — €.

Let the set {vj,..., v} induce in G the complete graph K,. Then the set
{vy, ..., vy, v', 0"} induces in G* the graph isomorphic to Ky, — e.

Conversely, let {vy,..., 0,4, be the subset of V' which induces a subgraph
K., — e in G'. As the graph K,,, — e contains two subgraphs K,,,; we have
[V {vy, ..., 442} = k and the set {vy, ..., 145} — {v/, 0"} induces in G the com-
plete graph K,. Let us set

X=X,

dix,y)=0 if x=y,
=1 if {x,y}eE",
= 2, otherwise.

Using (2) and (3) we obtain that the dissimilarity measure d on X is not a k-ultra-
metric if and only if 3-satisfiability has “yes”-solution. This concludes the proof. [J
Now we turn our attention to the problem =. First we prove one auxiliary lemma.

Lemma 1. Let d be a dissimilarity measure on X such that Range d = {0, 1, 2}
and let (P, f) be the optimal solution of m with respect to this instance. Then
Range f = {0, 1, 2}.

Proof. Let d be a dissimilarity measure on X such that Range d = {0, 1, 2} and
let (P, f) be the optimal solution of m with respect to this instance. Let us suppose
that Range f + Range d. Let x, y € X be two objects such that d(x, y) = 1. Let us
consider the pyramid (P', f*) defined as follows:

1) If Range fn {1} + 0 then
P =‘".L") {x}uX U {h|heP and f(h) = 1},
f'(h) =% 1 for all he P with the property f(h) = 1,
f({x})=%0(i=1,..,n) and f'(X) =2

2) If Range fn {1} = 0 then
P =‘“_C) {x}uXu{xy} f({xy}) =" ];
F({x))=*0(=1..n)and f\(X) =42

Now one can easily observe that

Y |d(x, y) = re(x, y)| <WZ€X|d(x, »=rly. O

x,yeX
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Theorem 2. The problem w is NP-complete.

Proof. The problem = is obviously in NP. To prove the NP-hardness of © we use
the problem Hamiltonian path (cf. [2], page 199), defined as follows.

Instance: Planar cubic graph G = (¥, E) which has no face with less than 5 edges.

Question: Does G contain a Hamiltonian path?

Let G = (V, E), |Vl = n, be an arbitrary instance of Hamiltonian path. The
instance of m will be constructed as follows:

X =V(G),
dx,y)=0 if x=y,
1 if {x,y}eEG),
2, otherwise.
Let (P, f ) be the solution of & with respect to this instance. It follows from Lemma

1 that Range f = {0, 1, 2}. We complete the proof by proving the following equi-
valence:

The graph G contains a Hamiltonian path iff

Y Jdix, y) = relx, )| 2+ 1.
X 2

X,y€

Let G contain a Hamiltonian path H = {{x;, X,}, {3, X3}, ..., {X,_y, x,}}. Then
for the pyramid (P, f) on X where

P=U{x]UHUX, f(x})=0 i=1,...n,
i=1

flhy=1 for heH and f(X)=2,
we get
Y ld(x, y) = rp(x, y)| =4n + 1.

x,yeX

Conversely, let us suppose that there exists a pyramid { P, f) on X such that Range f =
={0,1,2} and that ) |d(x,y) — rp(x, y)| < in + 1. Further, let G contain

x,yeX
no Hamiltonian path. We examine two cases:

a) |P| = 2n.
Then the pyramid (P, f) on X has exactly (n — 1) subsets hy, ..., h,_, such that
n
|hi| = 2. As Y |d(x,y) — rp(x, )| £ 4n + 1 the set H = {J h; is a Hamiltonian
x,yeX i

i=1
path in G, a contradiction.

b) |P| < 2n.
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Then there exist m, | < m < n — 2, elements hy, ..., h,, of Psuch 2 < ‘h,-l <n-1,
i =1,..., m. We transform the case b) to the case a) in such a way that using the
pyramid (P, f) on X we construct a sequence of pyramids (P, f;) on X. Each member,
say (P;yq, fi+1), is constructed from the precedent member (P;, f;) by the following
recursive rule: “Replace a set he P;, h = {x;, x;,, ..., x;,}, | 2 3, by (I — 1) sets
{xi5 x5} {xiy Xi,}s oo {Xi,_ > X5} and put fi({x, y}) = Lif x,yeh, fi, (h) =
= f(h), heP;, otherwise.”

Further we shall use the equality
(4) (VheP, — Py, |h| = 3)
2 [dx y) = re(e )| = X Jd(x y) = repea(x 9)| = o(h) = ¥(h),
x,yeX X, Y€

where

@(h) = |{x,y} | x, yeh and d(x, y) = 2}|,

Y(h) = the minimum number of edges in a graph G, on the set h, such that
(G' — G(h)) U (G(h) — G') is a Hamiltonian path, where G(h) is the
subgraph of G induced by the set of vertices h.

We claim that
%) o) > (), |n] =3

Forhe V(G),3 < Ihl < 5, this inequality can be checked e.g. by exhaustive search,
utilizing the fact that an induced subgraph of G contains neither a circuit C5 nor C,.
For greater cardinalities of h this follows directly from the selfevident inequality

(’2>>2i+1 for i 6,

since each subgraph of G has the maximum degree 3. Thus in virtue of (4) and (5)
we have
Z Id(X, y) - rPi(x’ y)| > Z ld(X, y) - rPH-x(x’ y)' .
x,yeX x,yeX
So starting from the pyramid (P, f) = (Py, f,) and taking into account the pyramid
(P, f+) (from the constructed sequence of pyramids) such that |P,| = 2n we obtain
Yo ld(x, v) = re(x, p)| > X |dix, ¥) = re(x, V)]
x,yeX x,yeX
The proof is complete. 0O
In the rest of this section we shall deal with special variants of the problem m.
Let us denote by x; the decision computational problem defined in precisely the same

way as the problem © with the exception that the aim is to find a pyramid on X with
the height i.
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Lemma 2. We have
W, CMyyy, i=1,2,....

Proof. Let (d, k) be an instance of the problem n;. The corresponding instance
(d', k') of the problem ;. ; will be constructed as follows:

1) d' is a dissimilarity measure on X' = X U {z}, where z ¢ X is a “new” object
joined to X and
d'(x,y) =d(x,y) if x,yeX,
d'(x, z) = n* max {d(x, y) | x, y e X},
d'(z,z) = 0,
) K =k
To conclude the proof it is sufficient to verify the obvious equivalence

¥ [dx,3) = ro )| £ ks 3 [dlx,5) = ol ) S

X, )€ x,yeX
where
P =Pu {z} u X', (Vh € P) f'(h) = f(h) and

f({z}) =0, f(X)=n*max{d(x,y)|x,yeX}. O

Using the transitivity of oc, Lemma 1, Lemma 2 and Theorem 2 we obtain the fol-
lowing assertition:

Theorem 3. The problems =, i = 2, are NP-complete. O

IV. CONCLUDING REMARKS

Let n’ denote the computational problem of hierarchical overlapping clustering
defined in precisely the same way as the problem m where we subject the pyramid
(P,f) on X to the additional condition |P| — n — 1 = i. Similarly as in Lemma 2
we have n’ oc ni™1, i = 1,2,.... It is of particular interest even from the point of
view of hierarchical custering to decide the NP-completeness of the problem m?.
Note that the problem = (as the problem =) has the trivial solution in polynomial
time and that its solution is a hierarchy on X. On the other hand the solution of r?
is a hierarchy on X as well. The special variant of the problem n? can be equivalently
restated in the graph-theoretical framework as follows:

“Given a graph, find the minimum number of edge-changes (i.e. additions or
deletions of an edge) which results in a graph which is exactly the union of one
complete and one discrete graph.”

We conjecture that even this variant of n? is NP-complete.

Acknowledgment. The author wishes to thank Dr. J. Moravek for his critical
reading of the manuscript.
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Souhrn

POZNAMKA O VYPOCETNI SLOZITOSTI s
HIERARCHICKEHO POKRYVANTI

MirkO KRIVANEK

V tomto Elanku se zkoumd vypocetni sloZitost problému aproximace dané miry
nepodobnosti na kone¢né mnoziné X pomoci k-ultrametriky na X a Robinsonovy
miry nepodobnosti na X. V obou pfipadech je ukdzdno, Ze se jednd o NP-tplné
problémy.
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