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MULTISTAGE REGRESSION MODEL

LuBoMiR KUBACEK

(Received November 30, 1983)

Summary. Necessary and sufficient conditions are given under which the best linear unbiased
estimator (BLUE) B(Yy,...,Y,) is identical with the BLUE B;(Bs .., Bi—1> Y2; Yi» o0 Y;
are subvectors of the random vector Y in a general regression model (Y, X, X), (81, ... B} = B
a vector of unknown parameters; the design matrix X having a special so called multistage
structure and the covariance matrix X are given.

Keywords. regression model, mixed linear model.
AMS classification: 62J05.

1. INTRODUCTION

The following special structure of the general linear model (Y, XB, X) is frequently
encountered in practice:

Y= Y., X=X, 00 0 ..,0
YZ Cl,l’ xZ’ 0, s 0
Y3 C3,1’ c3,2’ x37 DR o
) Y C,io Cozo Gz - X,
X = 21,1’ 07 H 0 s
05 E2,2’ ’ 0
o, o’ bl EP,P

where Y;, i = 1,2, ..., p, are column vectors of measurements, f; vectors of para-
meters, X;, C; ;, X;; matrices of the corresponding dimensions.

As an example of a real situation producing this structure we may consider the
following problem: Suppose that it is required to determine the value of two sets
of etalons, say, B, = (B{", ..., ") and B, = (B>, ..., B¥’) and that the scheme of

practically feasible measurements is described by the oriented graph in Fig. 1. In
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this graph the vertices represent the etalons and the oriented edges the measurements
of differences between the etalons at the end and the beginning of the arrows; only
the value of the etalon E is given. The measurement in the framework of the first
stage is stochastically independent of the measurement performed at the second
stage. If .#(C} ,) means the column space of the matrix C, ;, then by inspection
of Fig. 1 it can be easily seen that .#(C} ;) = .#(X}). (On the importance of the

@
P

Fig. 1.

condition .#(C, ;) = .#(X,) in the two-stage model see [5].) Another example
see in [1].

The following best linear unbiased estimators (BLUES) of the values B,, ..., B,
in the multistage model can be considered: BLUE Bi(Yl, ..., Y;) of B, based on the
realization of the vectors Y,,...,Y,, i =1,...,p; BLUE B(B,, B2, ... Bi_1, Y))
of B; based on the realization of estimators B, ..., B;_, and on the realization of
Y,i=2,...,p, and BLUE B(Y,, ..., ¥,) of B, based on the realization of the mea-
surement at all stages. This last estimator, however, is not used in practice because
the results of the measurement at the i-th stage (the realization of the vector Y))
must not have any influence on the values f;, B, ..., Bi—;.

The matrix

Var [ByBy, ..., Bi-1» Yi)] — Var [B/Yy, ... YD)],

where Var [Bi(By, ..., B:-,Y;)], Var [[?( ..., ¥;)] are the covariance matrices of
the estimators B:(By, ..., Bi_1» Y)andp (Yl, ..., Y;), is obviously positive semidefinite
(p.s.d.). However, the estimator BB, - ,ﬂ, 1, Y;) requires substantially less cal-
culations than the estimator J; (Y - ., Y;) and that is why only the former is used

in practice.
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If the equality BBy, ... Bi—1. Y:) = BiY1,.... Y,) is valid then no information
on B; contained in Yy, ..., Y; is lost but a substantial saving of calculation is gained.

The purpose of this paper is to obtain conditions for the matrices C;; under
which such a situation occurs.

2. DEFINITION AND AUXILIARY STATEMENTS

Definition. A regression model (Y, XB,X) is called a p-stage model, when it
has the structure () and fulfils the condition: .#(C};) = M(X)), i =2,...,p,
=1, 0= 1

Lemma 2.1. Let matrices X, X,, X, ,,S,, be of types n; x ki, n, x kj,
Ry X Ny, N, X Ny, respectively, and let the matrix

S=(Z, S1,2
SZ.]’ SZ,Z
be symmetric and p.s.d. Then the minimum S-seminorm g-inversion of the matrix

X, 0
i is given by th lati

(0, x,2> N glbell y the relation
(xa, 0 ) _(Bi.. B)
0, x/z n(s) (BZ.I’ BZ~2

where

B, ;= (XDns Biz= —{1 = (XD)uz. X1} E01S1020K) i) 5

B2,1 = '—{I - (Xlz)r;(szz)x;.} SZ_.ZSZ,I(xll)r;(*) 5 BZ,Z = (x;) 7;(**) ;

(*) = X - 51,252—,2[52.2 - 52-2<X.2),;(SZ,Z)X,2] sz—,zsz,x 5
(**) = S,,- 52,121_,1[21.1 - El.l(x,l):;(lll,;)xll]):]_,ISI,Z s

and 1 is the identity matrix. (The operations with the upper index ~ and with the
lower index m(+) see in [4].)

Proof. See Theorem 3.1 in [2].

Lemma 2.2. In the 2-stage model

Yl ’ Xl’ 0 ﬁl ¥y = 2;1,1’0
() (e x) @) == ez

the minimum X-seminorm g-inversion of the matrix

(e %)
c2,15 x2
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is
RV RIS
c2,1, X, m(2) Dz,n Dz,z ’
where
D,y = [(Xi)nx] + [(xi)m_(*)]l Sl,zsz_,z{l - XZ[(XIZ)Y;(Sz,z)]’} Cz,l[(xi)v;(zl,n)]’ >
D1,2 = _[(xll);(*)]l s1,252‘,2{I - x2[(x,2);(52,1)],} ’
D, = ~[(X)mssn] Coal(Xi)mes, 0] =
= [Kmss n] S2aZ0all = X [(XD)z, 0]} 5
D,,= [(xﬁ);(sz,z)]"
(#) = Zi1 = 81,2855[82.2 = $2.5(X)) s, X2 8225215
s1,2 = —21,1(x,1)rn~(2,_1)c’z,1 = s,2,1 ’
S;.=X;,+ C2,1[(x’1),;(zx,,)]’ 21,1(x’1),;(z,,,)clz,1 .

Proof. For an arbitrary m x n matrix A, a p.s.d. n x n symmetric matrix N
and a regular n x n matrix R, the minimum N-seminorm g-inversion of the matrix A
can be expressed as follows: A\ = R(AR), gz .nr) If

A (X;, c;,l)’ R - <L —(I'Xa);(zl_uC’z,x), N=X,

o, x/2 0’

then

X, Clz,1>_ _ (', —(xl),.izl_,)c’z,1> X3, 0 )' _

o, x’2 m(E) 0, 1 0’ xlz m(S)

= <|’ _(xll)r;(zx,l)clz,l\ (31,1, B1,2 >
oa 1 / B2,1’ BZ,Z
where
X S
s — 1,12 1,2
<sz,1’ sZ,Z)

and B, ;, i,j = 1, 2 are the matrices from Lemma 2.1. The matrix (**) from Lemma

2.1 in this case is

(#%) = S35 — €, [( Xz, 0] -
CE BB — El,l(xi)r;(z:l,‘)xi} EE (XKD, ) Cot -

As '/”(C,Z,l) - "”(xll)@j{& X{E = C'z,1} and E1,1()(/1)';(}:,,,))(/1 =
= X [(X)mz,.0) T1,1 We obtain (#) < S, ,.If this relation is considered in the

expression
N
(L _(xl)m(zl.x)C'zA) B,,, By,
0, l BZ,la BZ,Z

the lemma is immediately verified.
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3. BLUE IN THE p-STAGE REGRESSION MODEL

For the sake of simplicity it is assumed in the following that the vectors B, ..., B,
are unbiasedly estimable. In the general case the following theorems are valid for
the unbiasedly estimable linear functions of vectors By, ..., B, (for details see Chpt. 4

in [3]).
Theorem 3.1. In the 2-stage model, By(Yy, Y,) = Bo(B, Y2).

Proof. In the model

[02) (e ) () == o]
Y:)? \Czus X5/ \B2)’ 0, I,/

according to Lemma 2.2 the BLUE of B, is

o =00l (& 5 L (7)-
= [(X)misan] 12 = Coa[(XD iz, ) Y1) -

If in the regression model (Y,, C, 8, + X,B,, X, ,) (2nd stage) the BLUE
Bi(Y)) = [(X)mz, 1] Y1 from the model (Y, X, B;, E; ;) (Ist stage) is used instead
of B, then the model

(YZ - CZ,Iﬁl(Yl): xzﬂz’ 22,2 + C2’1[(x,1)r;(xl'l)]’ 21,1 .
'(xrl)r;(xl,1)c,2,1 = Sz,z)
is obtained. In this model the BLUE B,(B,, Y,) of B, is Ba(B1, Y2) = [(X)ms, 0] -
. (YZ - c2,1ﬂ1(Y1))- Thus ﬁz(ﬂl, Yi) = ﬂZ(Yl, Yz).

Remark 3.1. If &, ; = o1V;, X,, = 03V,, where the values o}, 05 are not
known but the value ¢ = o307} is known, then the situation is not changed essentially.

. (V4 O . .
In Theorem 3.1 the matrix (0 ! v ) can be used instead of the matrix X. The case
’ 2
of ¢ unknown is investigated among other things in [5].
Theorem 3.2. If the condition C,;=0<=i—j=2, i=3,..,p, j=1,...

..i — 1 is fulfilled in the p-stage model then B(B,_,Y) = B(Y;,.... V), i =
=2,..,p.

Proof. The case i = 2 is proved in Theorem 3.1. Let p = 3. Models

’YI xl’ os 0 pl /21,1’ 0’ 0
YZ > CZ,I’ XZ’ o ﬁZ ’ 0, E2,27 o
Y3, 0, C3,2= x3 ﬁ?a 0’ 07 2“3,3
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and

p S
Y2 s CZ.I’ xZ 0 BZ ) <S SI.3> >
Yy 0, 0 X3/ \Bs >t 33

X, 0\ (Y
Y:=Y3_(o’ c3v2){<cal1 XZ):l(z)} <Y:>,

where

x s o 7 - !’ ,
Saa = ~(0.G) %[(C; 1 x):l <£)} E=Sis,

S;3=1X;;+ cs.z[(x'z),;(sz,z)]’ sz.z(xlz);.(sz,z)cla,z >
S;,=X;, + CzAl[x;),;(:‘,,J’ 21.1()([1)';():1,1)02,1 >

are equivalent (each model is the result of a transformation of the other by a regular
matrix). That is why the BLUE B4(Y,, Y,, Y5) from the first model and the BLUE
Bs(Y1, Y5, Y3) from the second model are identical. Due to Theorem 3.1 we have

e 0) = e (1= 000 (20 S L ()

where
xla o 17 ! Yl - 7\ — ’
(0’ CSYZ) {[<C2-1’ X2> :]M(T-)} <Y2> B Cs‘Z[(XZ)M(SM)] .

. {Yz - C2,1[(x'1);;(zl_l)]' Y1} = Cs.zﬁz(yn Yz) = Cs,zﬁz(ﬁp Yz)-

The matrix (+*) can be expressed as follows:

r—-xX|/X 0 \']| X 0 Y
%) = S5, — S X7 L r > 'S, ;=
(++) 33 31 { I:(CZ,I’ xz) :Im(E) <cz,1= X, e
X 0 \'|
=S,,—(0,C b )J }’ ) M
3,3 ( 3,2) {[(cl,l’ x2 n(E)

X 0 \] X 0 X 0 \'|” 0
’ E B E 1, ) ( 1, >}2_2 [( 1, >] ( : ).
{ [(CZ,I’ X, ]m(E) Co X, Cots X3/ fumy \Ci.2

The equivalence
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. X 0
< I E: (0, C =F r )}
{ ( 3’2) (C2,17 x2

implies the identity (x%) = S, ;. Thus we obtain B5(Yy, Yo, Y3) = Bs(Y1, Y2, Y3) =
= [(Xé)l;(sj,l)]l {Y3 - C3,2L(XA’2)7;(52,2)]/ <Y2 - CZ,I[(xll)y;(}:]_‘)]' Y1>} =
= [(xls)y;(sa,g)]’ (Ys - Cs,zﬂz(ﬁp Yz))-

If in the model (Y3, C;,8, + X35, Z;.5) (3rd stage) the BLUE B,(Y.. Y,) =
= B,(B,,Y,) from the model

Yl Xls 0 ﬁl z:1,1: o >:|
Yz ’ C2,1a X, B ’ 0, E2,2
is used instead of B, then the model obtained is

{Yz - Cs.sz(ﬁu Yz), X3Bs, T35 + C3_2[(X’2),;(sz,2)]' Sz,z(xlz)y;(sZ,z)C;,z = 53,3}’

where
S20 =2, + Co[( XDz 0] E1.a(X Dz, 0C2,1 -
In the last model the BLUE of B; is

Bs[ﬁz(ﬁv Yz): Ys] = [(x:’»)r;(s:,,;)]/ [Ys - cs,sz(ﬁp Yz)] :

Thus B3[BZ(B1’ Yz)’ Ys] = Bs(yu Y, Y3)~
For p > 3 the procedure is analogous.

Remark 3.2. If the condition €, ; =0<«i—j22 i=3,..,p, j=1 ..

.. i— 1 is not fulfilled then Var [B(By, ..., Bi_y). Y;] — Var [B(Y, ... Y] + 0.
To see this, it is sufficient to investigate the case p = 3 with C; ; + 0.
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Siahrn

MNOHOETAPOVY REGRESNY MODEL

LuBoMmiR KUBACEK

Regresny model (Y, Xp, X) sa charakterizuje ako mnohoetapovy, ak

(Y, XB, %) =
Yl x19 0’ > 0 I‘1 El 1 o’ ’ o
= ’ CZ 1 x2: s 0 : s Y= 22’2,
Y, C,.i» Coos .. X, B, 0, 0, cen Zpp

pricom #(C} ;) = M), i=2,...,p, j=1,...,i— 1. Odhady vektora B; je povolené kon-
Struovat len na zaklade realizacie vektorov Yy, ..., Y,i=1,..,p.

V préci st uvedené podmienky, za ktorych najlep$i nevychyleny linearny odhad vektorového
parametra f;, ktory je zaloZeny na realizacii vektorov Yy, ..., Y, i = 2,..., p, je totoZny s naj-
lep§im nevychylenym linearnym odhadom vektorového parametra f;, ktory je zaloZeny na od-
hadoch parametrov By, ..., f;_; a vektora Y;, i=2,..., p.

Pesrome

MHOI'OSTAITHAA PEIT'PECCUOHHAS MOJIEJIb

LuBoMirR KUBACEK

IIpuBenensl HEOOXOIUMBbIE M TOCTATOYHBIC YCIIOBYSI, IIPU KOTOPBIX HAITyyllas JNHEHHAs OLEHKA
(BLUE) B(Yy, ..., Y;) coenaymaer ¢ BLUE B,(B,, By, ---» Bi—1> Y); Yi» ---» Y; — CYBBEKTODBI Bek-
topa Y B obmeit perpeccuontoit momemn (Y, XB, X) (Bi, ..., B})’ = B — BeKTOp HEU3BECTHBIX
napamerpoB. Marpuna 1miana X ¢ 0coboif, Tak HAa3bIBAEMOW MHOTOITAIHOM CTPYKTYPOii ¥ KOBa-
pHAIIMOHHAsA MAaTPULIA X JAHBI.

Author’s address: RNDr. Ing. Lubomir Kubdek, DrSc., Matematicky Ustav SAV, Obrancov
mieru 49, 814 73 Bratislava.
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