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31(1986) APLIKACE MATEMATIKY No. 6, 427-440 

CONJUGATE GRADIENT ALGORITHMS FOR CONIC FUNCTIONS 

LADISLAV LUKSAN 

(Received June 27, 1985) 

Summary. The paper contains a description and an analysis of two modifications of the 
conjugate gradient method for unconstrained minimization which find a minimum of the conic 
function after a finite number of steps. Moreover, further extension of the conjugate gradient 
method is given which is based on a more general class of the model functions. 

Keywords: Unconstrained optimization, conjugate gradient methods, conic functions, 
algorithms. 

AMS classification: 65K10. 

1. INTRODUCTION 

The conjugate gradient method was introduced by Hestenes and Stiefel [9] for 
finding solutions of systems of linear equations with symmetric positive definite 
matrices and, lately, by Fletcher and Reeves [7] for unconstrained minimization. 
Since then it has been frequently modified and improved by many authors. Dixon 
[6] and Sloboda [13] have proposed conjugate gradient methods which use no perfect 
line search. Beale [2] and Powell [11] have described conjugate gradient methods 
with improved restart procedures. Fried [8], Boland et al. [4] and Kowalik et al. 
[10] have proposed further modifications of the conjugate gradient method which 
are based on some nonquadratic models. Most recent papers by Sloboda [14], 
Shirey [12] and Abaffy and Sloboda [1] generalize the previous results and give 
conjugate gradient methods which minimize the so called /-quadratic functions 
after a finite number of steps. 

Another class of functions, which generalize the quadratic function, contains the 
so called conic functions. These functions were introduced by Bjorstad and Nocedal 
[3] for line search and by Davidon [5] and Sorensen [15], who used them for the 
construction of a new class of variable metric methods. In this paper, we propose 
new modifications of the conjugate gradient method, which minimize conic functions 
after a finite number of steps. Section 2 contains some results concerning conic 
functions. Section 3 is devoted to the derivation and analysis of a basic modification 

427 



of the conjugate gradient method. It also contains a detailed description of a new 
algorithm. Section 4 is devoted to the investigation of an imperfect version of the 
conjugate gradient method. Section 5 proposes a further extension of the conjugate 
gradient method, which is based on a more general class of the model functions. 

2. CONIC FUNCTIONS AND CONIC INTERPOLATIONS 

Let Rn be an rc-dimensional vector space. Let F: Rn -> R be a quadratic function 
and I: Rn -> R a linear function, both defined in the space Rn. Then the function 

(2.1) F(x) = £ 
Ңx) 
Ңx) 

defined in the open halfspace X = [x e Rn: l(x) > 0} is called a conic function. 

In order to simplify the notation, we omit the parameter x. We denote by F, g, G 
and F, g, G the value, the gradient and the Hessian matrix of the function F(x) 
and F(x), respectively, at the point x e X. Furthermore, we denote by I abd c the 
value and the gradient of the function l(x). Note that G is a constant matrix and c 
is a constant vector. We assume throughout this paper that G is a positive definite 
matrix. 

Using (2.1) we get the formulae 

(2-2) F = £ , 
F 

T2 

g = — g Fc = — q Fc . 
l2 l3 l2 / 

Many properties of the conic functions have been described in the paper of Davidon 
[5]. We summarize one of his results in the folloving lemma. 

Lemma 2.1. Let xeX and x2 = x + a2s e X be two different points. Then 

(2-3) 

where 

Lemma 2.1 gives the possibility of determining the ratio l2jl from the values F 
and F2 and from the gradients g and g2 computed at two different points x and x2. 

Now we will prove a lemma, which will allow us to determine the vector c from 
the values F, Fx, and F2 and the gradients g, g1? and g2 computed at three different 
points x, x l 5 and x2 lying on a line. 
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Lemma 2.2. Let xeX, xl=x + alseX, and x2 = x-fa2seX be three 
different points. Then 

(2 4) c = - 1 ('2292-l29)«i - ( / f g i - / 2 g ) « 2 

2(l2F2-IF)al-(l1F1-lF)a2' 

Proof. Since g, g1? and g2 are gradients of the quadratic function which has the 
Hessian matrix G, we can write, by (2.2), 

afis = gt- g = l\Qi - l2g -f 2c(/fFf - IF) 

for 1 _ / _ 2. Therefore 

gg2 ~ / 'g + 2 c ^ 2 ~ IF _ /2gx - /2g + ^ /tF! - /F 

which implies (2.4). • 

Lemma 2.2 together with Lemma 2A offer the possibility of determining all 
parameters of the linear function l(x). Therefore, we can compute the value and the 
gradient of the quadratic function F(x) from the value and the gradient of the conic 
function F(x), which is necessary for developing the conjugate gradient method. 

We suppose throughout this paper that the conic function (2.1) is cupped (see [5]) 
which means that g(x) = 0 if and only if x e Rn is a minimizer of F(x). 

3. THE BASIC CONJUGATE GRADIENT METHOD 

The conjugate gradient method for minimizing a conic function F: X -> R over 
the open halfspace X c Rn is based on the iterative scheme 

(3.1) xi+1 = xt + <xtsi9 

ieN = {1, 2 , . . . } , where st is a direction vector and at is a steplength. We assume 
in this section that the steplengths are chosen by the perfect line searches so that 

(3.2) sjgi+1=0 

for 1 e N. The following lemma is essential for conjugate direction methods. 

Lemma 3,1. Let F: X —> R be a conic function. Consider the iterative scheme 
(3.1) with the steplengths chosen by the perfect line searches. Let the direction 
vectors satisfy the conditions sJGsj = 0 for 1 _ i < j _ k and s]c = 0 for 1 :_ 
_ i < k with k _ n. Then 

(3.3) sja, + 1 = 0 

for l ^ i ^ k . 
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Proof . The equality s]gk+1 = ° follows from (3.2). Using (2.2) we get 

s]gk+i = s] ( r r - 9k+i~-— Fk+ic J = 
lk+i lk+i / Lk+\ 

for 1 = i < k, since s]c = 0 for 1 = i < k by the assumption. Therefore s]gk+i =- 0 
if and only if s]g fc+1 = 0. Let yy = gj+i - g/ = «/&./ for i <j = k. Then 

/c 

s;g.<+ i = slg ř + 1 + £ sTyy 
i = i + i 

fc 

= lhis]gi+i + ^i+iFi+1s]c + X CCJS]GSJ = 0 
j = i+\ 

by (2.2) since s]c = 0 and sTCsy = 0 for i < j = k by the assumption and s]gi+x = 0 

by (3.2). • 

Lemma 3.1 shows that the conjugate directions have to be generated in such a way 
that the first n — 1 of them lie in the subspace which is orthogonal to the vector c. 
Then s]gn+x = 0 for 1 = i = n. If in addition st #- 0 for 1 = i = n, then grt+1 = 0 
and, consequently, x„+1 is a minimizer of the conic function F. Let 

(3.4) P = I-C4 
c c 

be the orthogonal projection matrix associated with the subspace which is orthogonal 
to the vector c. It is advantageous to generate the direction vectors si9 1 = i < n by 
orthogonalizing the projected gradients Pgu 1 = i < n. Since 

* , _ , (£ , , _ |,«) _ I,», 
for 1 = i < n, we can derive the formulae for the direction vectors in the same way 
as in the case of minimization of a quadratic function with a single linear constraint. 
Thus we obtain 

(3-5) sx = -Pgx 

^ si=-Pgi+§^si_x 
y i - i S t - i 

for 1 < i < n. These vectors are different from zero in the regular case when Pgt + 0 
for 1 = i < n. 

The direction vector sn cannot be determined by the above scheme since Pgw = 0 
in the regular case (as follows from Lemma 3A). Therefore gn is parallel to the vector c 

and we have to use the general formula 

"" 1 vTc 
(3-6) S „ = c - I ^ S j . 

' = i y-,Si 
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The following algorithm summarizes our results. 

Algorithm 3.1. 

Step 1: Determine an initial point x and compute the value F := F(x) and the 
gradient g : = g(x). Set k : = 0. 

Step 2: If the termination criteria are satisfied (for example if \\g\\ is sufficiently 
small) then stop. 

Step 3 : If k = 0 then set s: = — g, k := 1, / := 1 and go to Step 4 else go to 
Step 5. 

Step 4: Use an imperfect line search procedure to determine two points x t : = 
:= x + axs, x2 := x + a2s. Compute the values Fi := F(xi), F2 := F(x2) and the 
gradients gt := g(xi), g2 := g(x2) (suppose that F2 = min (F, Fl9 F2)). Compute 
the values 

Qi-= V((-7i - Ff - *\gTsg\s), 

Qi 3= V ( ( f 2 - Ff - a2
2g

TsgT
2s), 

ÌI 
atg

тs 
ÌI 

Ғi - Ғ - (?. 

h 
a2g

тs 
h 

F2~ F - Q2 

and the vector 

C . = _ 1 (?2g2 - g_«l ~ (/igl ~ g)^2 

2 (l2F2 - F) ai - (liFi - F) a 2 ' 

Go to Step 9. 

Step 5: If k = 1 then set u := c else set 
T 

u := u s . 
T y s 

Step 6: Set v : = (cTgjcTc) c — g. If either k = n or vTv _ egTg, set s : = 
: = — sgn (gTu) u, k : = 0 and go to Step 8. 

Step 7: If k = 1 then set s : = v else set 
T y v 

s := v s . 
T 

y s 

Set k : = k + 1 and continue. 

Step 8: Use a perfect line search procedure to determine the point x2 := x + OL2S 
such that sTg(x2) = 0. Compute the value F2 : = F(x2) and the gradient g2 : = g(x2). 
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If k 4= 0, compute the values 

Q2-= V ( ( f 2 - Ff - a.2

2g
Tsgls), 

a2g
тs 

and the vector 

Һ : = 
F2 - F - вz 

y-=(Цg2-g) + Џ(hғ2-ғ). 

Step 9: Set x : = x2, F : = F2, g : = g2, I : = l2l and go to Step 2. 

C o m m e n t s . 1) The algorithm is invariant under the initial scaling. Therefore 
we set Z = 1 in Step 3. 

2) We use the ratios /x = ljl, l2 = l2jl instead of the values l u l2 in Step 4 and 
Step 8. 

3) The vector y = g2 — g appears both in the numerator and in the denominator 
of the formula for deriving the direction vector (see (3.5) and (3.6)). Therefore we 
use y = y\l2 instead of y in Step 7 of the algorithm. 

4) Step 4 serves for the determination of the vector c only. Therefore it can be 
reduced to the computation of two values Fu F2 and two gradients gl9 g2 provided 
QU O2 exist and lt > 0, l2 > 0. 

M o d i f i c a t i o n s . 1) The value of the linear function l(x) remains unchanged 
in Step 8 of the algorithm when it is used for the conic function. Therefore we can 
easily set l2 = 1. However, the value l2 computed by means of the parameter O2 

is useful for checking the suitability of the conic function as a model for the general 
objective function. In the case of perfect line search, we have gTs = 0 so that Q2 = 

= |P2 - 4 
2) The vector c can be recomputed in Step 8 of the algorithm. In this case, both 

Step 4 and Step 8 are replaced by their combination which use a perfect line search 
procedure and compute the vector c from three values and three gradients of the 
objective function. 

The following theorem is an immediate consequence of (3.5), (3.6), and Lemma 3.1. 

Theorem 3.1. Algorithm 3A finds a minimum of the conic function F: X -> R 

with G positive definite after n perfect steps in the regular case. 

Now we are analysing the singular case when Pgt = 0 for some i < n. If this is 
the case then gt is parallel to c and, consequently, xt is a minimizer of the conic 
function F(x) with the constraint l(x) = lt. Therefore, it is also a minimizer of the 
quadratic function F(x) with the same constraint and we can use the following 
lemma. 

Lemma 3.2. Let F(x) be a quadratic function with a positive definite Hessian 

matrix G. Let gt = g(x;), 1 ^ i ^ 3, be the gradients of the function F(x) at the 
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points xt e KM, 1 = i __ 3. Then gt, 1 __ i __ 3, are parallel only if xh 1 __ / __ 3, 
lie on a line. 

Proof . We can write g{ = G(xt — 3c), 1 __ i __ 3, where x is a minimizer of the 
function F(x). The gradients gh ! __ /__ 3, are parallel only if 

02 - 01 = ^(X2 ~ * i ) = ^2c , 

g3 - gl = ^ ( x 3 ~ * l ) = ^3C 

for some vector c e Bn. Therefore 

X2 Ai == A2\j C , 

X3 — xi = / i 3 CJ C 

and the points xf, 1 __ f __ 3 lie on a line. • 

Lemma 3.2 can be used in the singular case. Let Pgt = 0 and Pg2 = 0 at two 
different points x1 and x2, respectively. Then gt = Xtc and g2 = X2c by (2.2) and 
(3.4). Let x3 be a minimizer of the conic function. Then g3 = 0 and, consequently, 
^ 3 = I3c by (2.2). Therefore, using Lemma 3.2, we can write 

(3.7) x3 = x2 + a(x2 - x_) 

for some steplength a. The points x! and x2 such that Pax = 0 and Pg2 = 0 can be 
obtained in two immediately consecutive cycles of the algorithm. Therefore we can 
find a minimizer of the conic function in the second cycle by the special step (3.7). 

4. THE IMPERFECT CONJUGATE GRADIENT METHOD 

Algorithm 3.1, described in the previous section, uses a perfect line search proce­
dure in Step 8. If the objective function F(x) is conic then the line search function 
<p(oc) = F(x + as) is also conic and we can use the interpolation formula described 
in [3]. Thus we can find a minimizer a2 of the function <p(oc) by the formula 

(4.1) 
kV £_ _ ! 
/ / 9Ts 

so that the perfect line search procedure requires only two values F, Fx and two 
gradients a, gx of the conic function computed at two different points x and x_ = 
= x + oc^. Note that ltjl = 1 when sTc = 0 so that (4.1) reduces to the quadratic 
interpolation formula in this case. 

Now we are describing the algorithm which is based on the idea used in [13] and 
which does not use a perfect line search procedure when sTc = 0. Note that it allows 
us to save the computation of the value Fx and the gradient gt when sTc = 0. 
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Theorem 4.1. Let F: X -* R be a conic function. Consider the iterative scheme 

(4.2) xi+1 = Xi + otiSi 

i eN , such that 

(4.3) s, = - f t . 

and 

s г = - f t í + ^ 1 * ' 
yi-lSi-i 

/ o r 1 < j < n where 

(4-4) fti = P9l 

and 

S i - i f t , - ! 

for 1 < i < n with 

(4.5) J V i = l\9t - lli9t-i + 2c{liFi - h-tFi-i) 

for 1 < i < n. Then the direction vectors sh 1 _ i < n, are nonzero and mutually 
conjugate provided Pgt 4= 0 and h{ ={= 0 for 1 51 i < n {regular case). Moreover, 
s\c = 0 for 1 _ i < n. 

Proof. We prove this theorem by induction. Suppose that sk + 0 and sT
kc = 0 

and, moreover, s\Gsk = 0, s\hk = 0 and ti\hk = 0 for 1 5̂  i < k where k = n — 2, 
which certainly holds for k = 1 provided Pgj =f= 0 and hx 4= 0. 

(a) Using (4.4) we get 

sT
khk+1 = slyk-

S^SJhk = 0 

since sjc = 0, and 

sjhk 

slhk+1 = s1yk-
Sj£S1hk = 0 

since sT
tc = 0, s\hk = 0 and sTj;fc = (Xis\Gsk = 0 for 1 = i < k by the assumption, 

(b) Using (4.3) we get 

fci\+i ~ -slhk+i = 0 

and 

fc>*+- - -s]hk+1 + ^ A 5 T _ I / 7 ; + I = = 0 

yi-i^-i 

for 1 < i <j & since sT/^+i = 0 for 1 5| i g k by (a). 
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(c) We have gThk+1 = 0 for 1 = i <, h by (b) since the vector Pg{ is a linear 
combination of the vectors hj9 1 = j = i, by (4.3) and (4.5) and since hT

+lC = 0 
by (4.4). 

(d) The condition sT
+1c = 0 follows from (4.3) since hT

+1c = 0 by (4.4) and 

5
Tc = 0 by the assumption. Moreover, s k + 1 4=0 since sThk+ x = 0 by (a) and hk+1+ 0 

by the assumption so that hl+1sk+1 = -hT
h+1hk+1 4= 0 by (4.3). Using (4.3) we get 

sT
kGsk+1 = -sT

kGhk+1 + & ^ slGsk = -sJGhk+1 + ^ V ^ fksk - 0 
yksk yksk 

and 

tf&*+1 = STGhk+1 + % ± 1 ^ = _ 1 ^ ^ = 

y*s* af 

= - - a?+iffi+i - I W K + 1 - - ( / I + 1 F I + 1 - w)cThfc+1 = o 
a, a, 

for 1 <; i < fc since 5T5sfc = 0 for 1 < i < k by the assumption, gThfc+i = 0 for 
1 ^ i ^ fc by (c) and hT

+ xc = 0 by (4.4). Note that a4 4= 0 if ft, * 0. Q 

Theorem 4A shows that the vectors sh 1 = i < n, generated by the formula (4.3), 
are nonzero and mutually conjugate in the regular case. These vectors span a sub-
space which is orthogonal to the vector c so that 

i=i sTGSi cTG~1c 

This equality can be easily verified by multiplying it by the linearly independent 
vectors Gsh 1 = i = n — 1, and c\ Using (4.6) we can find a minimizer of both the 
quadratic function F(x) and the conic function F(x) subject to the linear constraint 
l(x) = /,,. It is given by the formula 

(4.7) xn+1 = xn + sn 

where 
n-\ T n-1 T 

(4-8) - » - ' - Z - g L ^ = - I «i*?+i ^ -i • 
i = l S; GSf .-=1 S f y f 

The point x „ + 1 e l given by (4.7) is the same as that obtained by means of n — 1 
perfect steps with the directions (3.5). Therefore, we can continue in the same way 
as in the previous section. Let 

(4.9) Xn + 2 = Xn+1 + an+lSn+l 

where 

(4-io) s „ + 1 = c_
n£zl£Si 

i=iy\Si 
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and where the steplength an+x is chosen by the perfect line search so that sT

+ 1gn+1 = 
= 0. Then s\yn+1 = 0 for 1 ̂  i < n by (4.10) and s]a„+1 = 0 for 1 g i < n since 
g„+1 is parallel to the vector c. Therefore 

S i y « + 1 = S i ( ^ + 2gn + 2 ~ W l g n + l ) + 

+ 2sTc(ln+2F„ + 2 - ln+1Fn+1) = ln+2s
T

ign + 2 = 0 

for 1 _ i < n, which together with sT

+ 1g„+ 1 = 0 implies gn+2 = 0 and, con­
sequently, xn+1 is a minimizer of the conic function F(x). 

The following algorithm summarizes the above results. 

Algorithm 4.1 

Step 1: Determine an initial point x and compute the value F := F(x) and the 
gradient g := g(x). Set k := —1. 

Step 2: If the termination criteria are satisfied (for example if ||g|| is sufficiently 
small) then stop. 

Step 3: If k < 0 then set s := -g, k := 1. / := 1 and go to Step 4. If fc = 0, 
go to Step 6. If k > 0, go to Step 5. 

Step 4: Use a perfect line search procedure to determine two points x1 := x + 
+ ajS, x2 := x + a2s such that sTg(x2) = 0. Compute the values Fx := F(x1)i 

F2 : = F(x2) and the gradients gt := g(xt), g2 := g(x2). Compute the values 

вi:~ V((ғi - f)2 - « î^ï*) > 
Ѓ2=- V(( ғ 2 - ^7)2 - a тö т sg т s), 

7 . a i g T s 
* i • — > 

F! - F - Ql 

7 . a2gT^ 
í2 . — , 

F2 - F - Q2 

and the vector 

c . = - / (?2g2 ~ g) " l ~ (?ig l ~ g)^2 

2 ( ? 2 F 2 ~ F ) a 1 - ( Z 1 F 1 - F ) a 2 ' 

Go to Step 9. 

Step 5: If k = 1 then set h := g — (cT f̂/cTc) c, w := c, and v := 0 else set 

T T T T 
C V S y . y C ? ? S a 

h := y c h , u := u s , v : = v — a l7 — s . 
.7 np T , ' T -* T 

c c s /z J s s y 
If either k = n or hTh ^ ^aT« then set k : = 1 — k. 
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Step 6: If k < 0 then set s := — sgn (gTv) v, k := 0, and go to Step 8. If k = 0 
then set s := —sgn (gTu) u, k := 1 and go to Step 4. If k > 0 then continue. 

Step 7: If k = 1 then set s := —h else set 

, yT^ 
s := -h + -—s . 

yTs 
Set s := —sgn (sTg) s and k : = k + 1. 

Step 8: Use an imperfect line search procedure to determine the point x2 : = x + 
+ a2s. Compute the value F2 := F(x2) and the gradient g2 := g(x2). If k > 0 
then compute the values 

Q2'=y/((F2 - F)2 - *2
2g

TsgT
2s), 

7 . _ a2#Ts 
h •— - — , 

and the vector 

J>:=--('202-<7) + y ( ' 2 r 2 - I O . 

Step 9: Set x := x2, F := F2, $ := #2 , a := a2, / : = ~l21, and go to Step 2. 

Comment s , 1) The algorithm is invariant under the initial scaling. Therefore 
we set / = 1 in Step 3. 

2) We use the ratios lx = / J / , l2 = l2jl instead of the values ll9 l2 in Step 4 and 
Step 8. 

3) We use y = y//2 instead of y in Step 7 of the algorithm. It only changes the 
absolute values of the vectors sh 1 _ i < n, but it has no effect on their conjugacy. 

4) The value of the linear function l(x) remains unchanged in Step 8 of the algo­
rithm when it is used for the conic function. Therefore we can easily set l2 = 1, 
However, the value l2 computed by means of the parameter Q2 is useful for checking 
the suitability of the conic function as a model for the general objective function. 

5) The algorithm uses a perfect line search procedure in Step 4. It can be reduced 
to the determination of two points xx = x + axs and x2 = x + a2s only, when the 
objective function is conic and when we use the interpolation formula (4.1). 

6) The imperfect line search procedure which is used in Step 8 of the algorithm 
can be reduced to the determination of the only point x2 = x + a2s. 

5. FURTHER EXTENSION 

Consider the objective function of the form 

(5-1) F(x) = (p(F(x), l(x)) 
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such that d(p(F(x), l(x))jdF > 0 for all x e Rn, where F(x) is a quadratic function 
with a constant positive definite Hessian matrix G, and l(x) is a linear function with 
a constant gradient c. Using the same notation as in Section 2, we can write 

(5.2) F = cp(F, / ) , 

g = <jg + TC , 

where a = d(pjdF and T = dtpjdl. Comparing (5.2) with (2.2), we can see that both 
Algorithm 3.1 and Algorithm 4.1 can be easily generalized for the objective function 
(5.1) provided it is possible to compute a(x) and T(X) at an arbitrary point xe Rn. 
The following lemma allows us to determine the vector c from the values F, Fu 

and F2 and the gradients g, gl9 and g2 computed at three different points x, x1, 
and x2 lying on a line. 

Lemma 5.1. Let x e Rn, xx = x + ocxs e Rn, and x2 = x + a2s e Rn be three 

different points. Then 

(5.3) C = 

£ _ _ £ „ . _ ( < _ _ £ „, 
(72 (7/ V^l °V 

( 7 2 <7 
- I Oí 

Proof. See proof of Lemma 2.2. • 

The most complicated problem associated with the function (5.1) is the determina­
tion of the values o~ and T. We confine ourselves to the objective function of the form 

(5.4) F(x) = F(x) lk(x), 

defined in the open halfspace X = {x e Rn, l(x) > 0}, which is a generalization of the 
conic function (2.1). Using (5.4) we get the formulae 

(5.5) F = F lk, 

g =g lk+jFc, 

so that a = lk and T = kFJl, and (5.3) implies 

(5.6) c = 
ïHb-ř-f-

íkF2 _ kF\ _ íkFj _ Jď \ 

\ l k
2

+ l lk + 1 ) a i [l]*1 lk+ 

The following lemma offers the possibility of determining the ratio l2// from the 
values F and F2 and the gradients g and g2 computed at two different points x and x2. 
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kF9 = 0 , 

Lemma 5.2. Let xeX and x2 = x + a2s eX be two different points. Then the 
ratio l2jl is a solution of the equation 

(5-7) ' ^ 

kF (jj+2- ((2 + k) F + a2g*s) (jY'+ ((2 + k) F2 - a2g\s) fa 

Proof. Using (5.5) we get 

F = l~kF , g = rkg - kFl~ik + 1)c . 

Since the quadratic function has to satisfy the equality 

F2~F = ^(gls + g^s) 

and since a2c
Ts = l2 — l, we get after substitution 

rkF2 - l~kF = - (a2l~
kgT

2s + a2r
kgTs - kF2l2

k ^ ~ - kFrkh^S\ , 
2\ l2 I J 

which gives (5.7) after rearrangements. • 
Using the above investigation we can see that both Algorithm 3.1 and Algorithm 

4.1 find a minimum of the function (5.4) after a finite number of steps if we replace 
(2.3) and (2.4) by (5.7) and (5.6), respectively, and set 

<-) , . . , , - , - 6 - 4 - ^ - ^ ) , . 

Note that the equation (5.5) has a real solution /2/l ^ 0 if FF2 > 0, which is usually 
satisfied for x2 sufficiently close to x. The following table contains some special 
models. 

Table 1 

k model degree of (5.7) 

- 3 F(x) = F(x)ll3(x) 3 
- 2 F(x) = F(x)ll2(x) 2 
-1 F(x) = F(x)ll(x) 1 

1 F(x) = F(x) l(x) 3 
2 F(x) = F(x) l2(x) 4 

Note that k in (5.4) can be any real number. 
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Souhrn 

ALGORITMY SDRUŽENÝCH GRADIENTŮ PRO KONICKÉ FUNKCE 

LADISLAV LUKŠAN 

Příspěvek obsahuje popis a analýzu dvou modifikací metody sdružených gradientů pro 
nepodmíněnou minimalizaci, které naleznou minimum konické funkce po konečném počtu 
kroků. Navíc je prezentováno další zobecnění metody sdružených gradientů založené na obecnější 
třídě modelových funkcí. 

Pe3K>Me 

AJirOPHOMbl COnPiDKEHHBIX TPA^HEHTOB RJlfL KOHHMECKHX <í>yHKLí;HÍa 

LADISLAV LUKŠAN 

CTaTtH coAep̂ KHT onHcaHHe H aHajiH3 ABVX MO/rH^HKaHHit MeTO/aa conpflaceHHbix rpa/THeHTOB 
fljifl MHHHMH3amíH 6e3 orpaHHMeHHH, KOTOpbie HaxoflflT MHHHMyM KOHHHecKOJi (])yHKHHH nocue 
KOHeMHoro HHCJia inaroB. KpOMe Tóro yKa3ano /aajibHeniHee o6o6m;eHHe MeTO/aa conpíDKěHHbix 
rpaAHeHTOB, ocHOBaHHoe Ha 6onee o6meM KJiace MOAejibHbix (JWHKHHM. 
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renskou věží 2, 182 07 Praha 8. 
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