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DIFFERENTIAL STABILITY OF SOLUTIONS 
TO AIR QUALITY CONTROL PROBLEMS IN URBAN AREA 

PIOTR HOLNICKI, JAN SOKOLOWSKI, ANTONI ZOCHOWSKI 

(Received November 19, 1985) 

Summary. The convex optimal control problem for a system described by the parabolic equa­
tion is considered. The form of the right derivative of an optimal solution with respect to the 
parameter is derived. The applications to an air quality control problem are discussed. Numerical 
result are provided. 

Keywords: Differential stability, convex optimal control, air quality control problem. 

I. INTRODUCTION 

The paper concerns an optimal control problem for the atmospheric pollutant 
dispersion in the urban scale. 

The computer forecasting model of the system [2] is used for the control purposes. 
The model is based on the two-dimensional advection — diffusion equation, which 
is numerically solved by a combined FE — characteristics method [3]. The convex, 
state and control constrained, optimal control problem is formulated. 

The method of the sensitivity analysis of constrained optimization problems 
[8 — 12] is applied to the problem under consideration. We refer also to [5] for the 
results in the general convex case for the constraints depending on the parameter. 

The Lipschitz continuity of an optimal control with respect to the coefficients 
of the state equation is obtained. The directional derivative of an optimal control 
with respect to the parameter is derived in the form of an optimal solution to an 
auxiliary optimal control problem. Numerical results for an example are presented. 
The results have been announced in [13]. 

2. FORECASTING MODEL 

We consider the urban-scale forecasting model [2] intended for short-term pre­
diction of air pollution in a large city. The horizontal scale of the simulated dispersion 
process is 20 —40 km, while the time horizon of model's prediction is 1 ~ 3 days. 
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The input data can be divided, in general, into the following three groups: i) the 
structural data independent of time, ii) the meteorological forecast, iii) characteristics 
of the emission sources. 

Fig, 1. Domain of simulation 

The physical process of pollutant dispersion in the atmosphere is considered 
in a square domain Q = (L x L) (see Fig. 1). The process is described by two-
dimensional, averaged over the mixing height H, advection — diffusion equation 
of the form [1, 6] 

dc 
(2.1) — + w. Vc - KH Ac + yc = Q + (E - vdc)\H in Q x (0, T) 

dt 

together with the boundary conditions 

dc_ 

dn 

c = 0 on S~ , 

(2.2) = 0 on S+ , 

c(0) = y° in Q, 

and the initial condition 

(2.3) 

where 
S+ = {(*, t)edQ x (0, T)\w.n = Q}, 

S~ = {(x, t)edQ x (0, r ) | * . n < 0} . 

Here we use the following notation: 

c — pollutant concentration in [ug/m3], 

w = col (u, v) — wind velocity vector in [m/s], 
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KH — horizontal diffusion coefficient in [m2 /s], 

— averaged over height H pointwise emission field in [|^g/m3 s] , 

— area emission field in [ug/m2 s] , 

— dry deposition coefficient in [m/s], 

— wet deposition factor depending on the precipitation intensity. 

The values of the wind field vector w(x, y, i) in the domain Q x [0, T] are predicted 
by a special procedure which calculates successively: 

i) the averaged over Q x [0, T] value w0 based on the meteorological forecast, 

ii) topographical correction wt depending on the ground topography and aero­
dynamical roughness, 

iii) thermal correction we depending on a city "heat island" effect. 

Finally, we set 

(2.4) w = w0 + wt + we. 

The model generates a sequence of forecasts of pollutant concentration within 
a period T, which is discretized with a time interval ST Its length is determined by 
the frequency of the introducing meteorological data (in our case ST = 6 hrs). 
Each time interval is segmented with a discretization step % of a numerical procedure 
solving the advection — diffusion equation (see Fig. 2). 

tnne 
bh 12h 18h 2kh 

Fig. 2. Time discretization 

All time-dependent data at the inner points of the interval 5T are linearly inter­
polated. The initial-boundary value problem (2.1) —(2.3) is numerically solved by 
an effective combination of the method of characteristics with the finite element 
procedure [3]. 

The forecasting model was tested on real data for Warsaw and Krakow areas [2] . 

242 



3. CONTROL PROBLEM 

Basing on the forecasting model, the real-time emission control problem for the 
system of sources covering the area was formulated. The general idea of controlling 
consists in minimizing the environmental impacts by redistributing the production 
(emission) among the set of selected sources, according to the meteorological situation. 

In order to define an optimal control problem, we introduce the state equation, 
the cost functional and the constraints in the following form: 

State equation: find concentration c = c(u; x; t), for a given vector function 
u e L2(0, T; RN), (x, t) e Q x (0, T), which satisfies the parabolic equation 

dc " 
(3.1) —+w.Vc-KaAc + yc=Q + y£XlF/ui), in flx(OJ) 

dt i = l 

with the boundary conditions (2.2) and the initial conditions (2.3). Here u = 
= CO1(M1? . . . , uN) denotes the control. 

Cost functional: n rr N 
r max2 (0, c{u) - cd) dx dt + ±a12 £ &(w, - u-)2 d t , 

Q J o i = l 

where a11? a12, ph i = 1, . . . ,N are given constants such that aljL = 0, a12 = 0. 
Pi > 0; r G U°(Q x (0, T)) is a given function, r(x, t) ^ 0, (x, t) e Q x (0, T), and cd 

is a given function. 

Constraints: 

state constraint: 

(3.3) a22 r max2 (0, c{u) - cd) dx dt ^ Kx ; 
J oj Q 

control constraints: 

(3.4) ,«,(;) ^ «/f) rg *«/*) , 

(3.5) - D , ^ — ' £ D , , i = l,...,N, 
at 

(3.6) X - u "i{0 = b; > ' = L • • - M . ^ y c {L • • •> ^ } 
ieNj 

almost everywhere on (0, T). 
The functions Xi{x) in (3.1) describe the location of the controlled sources; Fi(Wf) 

relate the emission to the production level. The factor r(x, t) in (3.2), (3.3) is a region 
weight function, cdx) denotes the admissible level of pollution. The second term 
in (3.2) constitutes the cost of deviation of production levels ut from the desired 
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economic values uV The inequalities (3.4), (3.5) represent technological constraints, 
while (3.6) reflects demand requirements bj imposed on homogeneous groups of 
plants Nj. 

The parameters atj in (3.2), (3.3) make it possible to formulate a variety of optimiza­
tion problems, ranging from the minimization of global costs (both environmental 
and control) for a n , a12 > 0, a22 = 0 to the minimization of outlays with environ­
mental constraint, when a u = 0, a12, a22 > 0. 

4. SENSITIVITY ANALYSIS 

We denote by K c H*(0, T; RN) the set of admissible controls of the form 

(4.1) K = [u e Hl(0, T; RN) | the element u satisfies (3.4), (3.5) and (3.6), 
the element c(u) satisfies (3.3)} . 

The state equation (3.1) has a unique solution c = c(u) determined for a given 
control u e L2(0, T; RN) and for fixed constants KH,y;KH > 0. 

Let fi e [0, <5) be a parameter; we denote 

(4.2) <f = (K°H, f), 

where 

(4.3) KH = KH+ sK'H + 0(e) , 

(4.4) ye = y + sy' + o(s) ; 

here 

|O(e)|/e -• 0 with e i 0 . 

Let us denote by cs = ce(u) a unique solution of the state equation: 

dc N 

(3.1) - - + w.VcE~KHAcE + fcE= Q + Y.XiFi{u>) in Q x (0, T) 
at i=i 

with boundary conditions (2.2) and initial condition (2.3). Let us consider the follow­
ing optimal control problem: 

Problem (Pe). Find an element uE = u(dB) e K which minimizes the cost functional 

(4.5) J/u) = - ^ J f r max2 (0,'ce(u) - cd) dx dt + 

$ N rT /A.. \ - . « N (*T 

+ 
2 

w-ïíJ; 
over the set (4.1). 
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In order to ensure the uniqueness of an optimal control we assume that there 
exists a constant a > 0 such that for e e [0, d) we have 

(4.6) <D JB(u) - D Je(v), u - v> > a\\u - v\\2
Hl(0tT;RN) Vu, v e K . 

Here D J£(
u) denotes the gradient of the functional (4.5). 

The condition (4.6) is satisfied e.g. for F/u;) = uh a u > 0, O* > 0, a i 2 > 0, 
& > 0 , i= 1,...,N. 

It can be verified that there exists an optimal control uF e K which is determined 
as the first component of the solution of the following, uniquely solvable [9], opti­
mally system. 

Optimality System for Problem (P£) 

Find (u£, c£, pE) such that 

f)re N 

(4.7) _ + w . Vc£ - K% Ac6 + yV = Q + £ / , F/u«) in O x (0, T ) , 
dt i = i 

(4.8) 
ñre 

— = 0 on S + , 
дn 

(4.9) ď = 0 on S ~ , 

(4Ю) ď(0) = y° on Q ; 

(4.11) - Õ J І . 
õt 

- div (wjr5) — Kд Ap£ + yEpe = a n r max {0, ď -

Q x (0, T), 

- cd} in 

(4.12) p£ = 0 on S~ , 

(4.13) кн — + w . np£ = 0 on S + , 
дn 

(4.14) p*(x, T) = 0 on ß , 

ď = (u\,...,u'н)єK 

ft dř \ dt dt 
(4.15) | , L x f f Z( F;(«;) /(«* - «D dx d. + 5 

+ «i2 f &(«1 - fl«) (u, - «fl d r l ^ 0 Vu - («,, ..., uN) e K. 

Theorem 1. Assume that the condition (4.6) is satisfied. Then there exists a constant 
C such that for e > 0, e small enough, 

(4-16) flu0 - u%H0>TlRK) ^ Ce . 
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Proof. We denote 

(4.17) J,(u) = I(L.B(u)) + ft>(ii), 

where 

(4.18) I(y) t f «n/2 f f r max2 (0, y - cd} dx dt, \/y e L2(Q x [0, 7]) , 
Jo J-Q 

(4.19) B(u) £ £ z< F;(")i, Vu = («., ..., Hjv) e L2(0, T; R"), 
1 = 1 

(4.20) 0)(u) = J £ f t e Y d* + ^ i f ^ , - u;)2 dt, Mue H\0, T; RN) 
2 i = i j 0 \ d r / 2 t = i J 0 

and for any (j> e L?(Q x (0, T)) the element y = L£</5 is given by the unique solution 
of the parabolic equation 

(4.21) Q- + w .Vy - Ke
H Ay + y'y = 4> in Q x (0, T) 

with the boundary conditions 

(4.22) y = 0 on S~ , 

(4.23) -^ = 0 on S+ , 
dn 

and the initial condition 

(4.24) y(x, 0) = y°(x) on O . 

It can be verified that 

(4.25) d JE(u; v) df lim (JB(u -f fiv) - JB(u))lfi = 
M l O 

= (D/(Lg B(u)), Lfi £'(u) v)L2(ftx(0,r)) + (D co(u), v)H1(0>r.RN) ; 
here 

(4.26) B'(u) v « £ Z i F;(U J) P , , Vv 6 L2(0, T; R") ; 
i = l 

(4.27) (£»/(>>), </>)i2(e) = a u I I r</> max {0, j ; - c,} dx df, 
J o J n 

Vy, <f> e L2(£2 x (0, T)) . 

It can be shown that for e > 0, 8 small enough, 

(4.28) ||(L, - L0) </>|U„x(0,r)) ^ C<#|k«x (o,T)), V</> € L2(f2 x (0, T)) 

(4.29) |0/(4</>) - DI(L0<t>)\\L2(Six(0>T)) ^ Cs||</>||L2(flx(0>r)), 

V<£ e L2(<2 x (0, T)) . 

246 



An optimal control ue, e e [0, 8), is given by the unique solution of the variational 
inequality 

(4.30) u e e K : < D J e ( u e ) , u-~ ue> = 0 , V u e K . 

From (4.30), taking into account (4.6), (4.28), (4.29), by a standard argument we 
obtain 

4U* ~ U0||H1(0,T;R») - <D UUE) ~ D J6(U°), Ue - U°> = 

= <D Jg(u°) - D J(u°), u° - ue> = 

= (DI (L f i B(u 0 ) ,L e BV)(«° ~ "£))L-(nx(o,T)) -

- {DI(L0B(u°))9L0B'(uQ)(u<> "" *)W*<o.r>) -

= (DI(LfiB(u°)),(Le - L0)B'(u°)(«° - « 8)Wx ( 0 ,T)) + 

+ (DI(L£B(u0)) - DI(L0B(u°)),L0BV)(u° - « E )Ux ( o , r ) ) = 

= Ce||u° - U1|fl-(0,T;RN) , 

which completes the proof. 

5. DIFFERENTIAL STABILITY OF OPTIMAL CONTROLS 

In this section we derive the form of the right-derivative of an optimal control ue 

with respect to the parameter e at e = 0. To this end we will define the control 
constrained optimal control problem (lle), e e [0, <5). 

We assume that the set of admissible controls Uad is given by 

(5.1) Uad = {ueL2(0, T;RN) \ u(t) satisfies (3.4), (3.6) for a.e. te(0, T)} . 

Furthermore, we assume that 

(5.2) F ^ ^ r , V r e K , i = l , . . . , N 

and that the cost functional Je(u) is defined by (4.5) for 8 = 0, ue L2(0, T; RN), 
*i2 > 0 , j 8 , > 0 , a 1 1 = 0, i = 1,...,N. 

Let us consider the following optimal control problem: 

Problem (EQ. Find an element ue e Uad which minimizes the cost functional 
(4.5) over the set (5.1) of admissible controls. 

It can be shown that the optimal control is uniquely determined by the following 
optimality system: 

Find (ue, c\ f) such that 

dc* N 

(5.3) — + w.Vc-KHAc' + fc<= Q + Y,XiU] in O x ( 0 j ) , 
dt i=i 
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ce satisfies conditions (4.8) —(4A0); 

(5.4) - ^ - - div (wpE) - KS
H ApE + yEpE -= a n r max {0, ce - cd} in Q x (0, T) 

dt 

pE satisfies conditions (4.12) —(4.14); 

"€ e Uad , 

(5.5) £ Ja n f f Xi P£(ut - lit) dx dt + 

+ «i2 f P{»\ ~ Ai) ("i - «i) dA ^ 0 , Vu e Uad. 

Theorem 2. For e > 0, e small enough, 

(5.6) u£ = u° + eq + o(e) in L2(0, T; K^ , 

where 

H£)IIL2(0,T;R*)/fi "* 0 With 8 I 0 . 

The element q e L2(0, T; KN) is given by the unique solution of the following 
optimal control problem: 

Problem (Q). Find an element q e L2(0, T; RN) which minimizes the cost functional 

I(u) = i a n J j r(0o max2 {0, z} + ^z 2 ) dx d* -
Jo J Q 

Js+ dn Jo 

over the set of admissible controls (5A8), subject to the state equation (5.11) —(5.13) 
with q — u. 

The elements 0O, 9t are given by (5.22), (5.23), respectively. 

Proof. It can be shown, by using the same argument as in the proof of Theorem 1, 
that 

(5.7) \\ue-u0lL2(0tT;RN)SCe; 

therefore (5.3), (5.5) imply [10, 11] for e > 0, e small enough: 

(5.8) u
e = u° + eq + rt(e), 

(5.9) ce = c° + ez + r2(e), 

(5A0) pe = p° + eet) + r3(e) , 
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where the elements q, z, <x> are given by the unique solution of the following optimality 
system [10, 11]: 

(5.H) ^ + w . V z - K H A z - K ^ A c ° + 7°z + / c ° = f x i g i in G x (0, T) , 
õt 1 = 1 

(5.12) — = 0 on S+ , z = 0 on S" , 
3n 

(5.13) z(x, 0) = 0 on .Q ; 

(5.14) - ^ - div (w . V?]) - K° Aw - a KH Ap° + y°n + y'p° = 

= ai ir0o
 m a x (A z} + ocilr01z on .Q x (0, T ) , 

(5.15) #| = 0 on S~ , K;/^ + wn̂ y = - K H — on S+ , 

dn On 

(5.16) w(x, T) = 0 on Q ; 

(5.17) 
N r r r rr 

q e C: I {«u X/,"i " «i) dx d( + a12 p,q/Ul - qt) dt} £ 0 , Vu e C . 
i = 1 Jo J Q Jo 

The set C c L2(0, T; KA) is given by 
(5.18) C = {ue L2(0, T; RN) | u,(t) = 0 a.e. on S[, ut(t) = 0 a.e. on E\ , 

Z aij wt(0 = ° a-e- o n S3> j = 1 , . . . , M , 
ieJVj 

N r (*r (*T 

I («u ^,P°"i dx d( + a12 /?/u0 - u;) u, dt) = 0} . 
i = i J n j o Jo 

Here 

(5.19) Si = {t e (0, T) | u°(() = *u;(f)} , i = 1, .... N , 

(5.20) S2 = {t e (0, T) | u?(r) = *u/t)} , i -= 1,..., N , 

(5.21) Si = {* e (0, T) | Y ai3 u?(() = bj} , j = 1,..., M , 
ieN, 

(5.22) 0o(x,t) = { i ' C oS X ' 1 = C"!X'^ 
V ; 0V ' ! \ 0 , c°(x, r) + cd{x, t) ; 

(5 23) 0 ( x t)_^c°(x,t)>c/x,t), 
[ ' ^ X ' ^ - \ 0 , c°(x,t)^cd(x,t). 

From (5.14)— (5.18) it follows that the element q e C is given by the unique solution 
of the control problem (Q). 
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6. NUMERICAL RESULTS 

In order to illustrate the results of the previous sections, a somewhat simplified 
control problem was studied. The most important simplification concerned the 
horizon of control, which was taken as equal to 5T9 see Fig. 2. In each of the intervals 

wind 

controlled 
source 

protěcted 
area 

Fig. 3. The control for KH = 300, a 1 2 = 2. 

of the length ST the controls were approximated by linear functions, analogously 
to the meteorological data. Thus the (discrete) decision variables were reduced 
to the increments of ui9 i = 1, ..., N, over the period 5T, denoted by 5ut. 
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The emission field and the topographical data correspond to the real neighbour­

hood of Warsaw. Four artificial controlled sources with emmission 35 each (1 unit 

« 57-6 kg/sec) were added. The numerical values of other parameters were a n = 1, 

«i2 = 2> a22 = 0, T= 3T= 6h; *ut = 20, *u f = 50, Dt = 2 for i = 1, . . . ,4 . 

Only the city center was considered as a protected area, which means that r(x, t) was 

zero outside the shaded region in Fig. 3. The value of KH was 300. Only one demand 

constraint was imposed, namely, 
4 

Z M i = 1 4°-
i = l 

It means that only a transfer of power from one source to another was permissible. 

The results of computation for Fj(uf) = u f and pt = 1 i = 1, ..., 4, are shown 

in Fig. 3. 

In the next step the directional derivatives of uh denoted by qA (5.8), corresponding 

to the change of KH in the direction KH were calculated. 

Two cases were considered: one, when the dual variable corresponding to the active 

constraint (3.4) imposed on Su1 was positive (strictly complementary situation) and 

Table 1. 

Source number 1 2 3 4 

complementary case Kн = 300 

Kң = 100, sensitivity 0 -0-27 0-12 0-15 

âu(Kн = 200) аppгox. -12-00 2-79 4-61 4-61 
exаct -12-00 2-76 4-60 4-64 

ôu(Kн = 100) аpprox. -12-00 3-06 4-49 4-46 
exаct -12-00 3-08 4-44 4-48 

noncomplementary case KH = 300 

KH = 200, sensitivity 1-70 -0-82 -0-46 -0-42 

ou(KH=500) approx. -10-30 1-95 4-14 4-21 
exact -10-13 2-10 4-01 4-02 

KH= —200, sensitivity 0-0 0-66 -0-30 -0-36 

ou(KH=100) approx. -12-00 3-43 4-30 4-27 
exact -12-00 3-25 4-36 4-39 
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the other, when the strict complementarity condition was not satisfied. In order 
to achieve the approximately noncomplementary situation the value of a 1 2 was 
changed to a 1 2 = 2-55. 

The difference between both cases consists in the fact, that in the noncomplementary 
case the sensitivity had to be calculated twice, separately for KH > 0 and KH < 0. 

The results are summarized in Table 1. The approximated values of controls du{ 

are obtained by using formula (5.8), while exact numbers correspond to the solution 
of the original problem with new KH. 

All optimization problems involved in this work have been solved by the quickly 
convergent version [3] of the linearisation algorithm [7]. 

7. CONCLUDING REMARKS 

In the paper some theoretical and numerical results for the sensitivity analysis 
of an optimal control problem arising in air pollution control are presented. 

We have proved that the optimal control is locally stable (Lipschitz continuous) 
with respect to perturbations of the coefficients of the state equation. 

Our numerical results confirm that the formulae for the right-derivatives of the 
optimal control can be used in order to approximate the increments of the optimal 
control with respect to the perturbations of data. 
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S o u h r n 

DIFERENCIÁLNÍ STABILITA ŘEŠENÍ PROBLÉMU REGULACE KVALITY 
OVZDUŠÍ V MĚSTSKÉ OBLASTI 

PIOTR HOLNICKI, JAN SOKOLOWSKI, ANTONI ŽOCHOWSKI 

Autoři studují konvexní problém optimální regulace popsaný parabolickou rovnicí. Odvozují 
tvar derivace zprava optimálního řešení podle parametru, a vyšetřují aplikace na problém regu­
lace kvality ovzduší. V článku jsou uvedeny také numerické výsledky. 

Р е з ю м е 

ДИФФЕРЕНЦИАЛЬНАЯ УСТОЙЧИВОСТЬ РЕШЕНИЯ ПРОБЛЕМЫ 
РЕГУЛЯЦИИ КАЧЕСТВА АТМОСФЕРЫ В ГОРОДСКОЙ ОБЛАСТИ 

РЮТК Н(М,МСК1, А̂N !$ОКО^О V̂8КI, Аэтош 2осно^8К1 

Авторы изучают выпуклую проблему оптимального управления, описанную параболи­
ческим уравнением. Выводят форму производной справа оптимального решения по пара­
метру и исследуют приложения к проблеме регуляции качества атмосферы. Приводят также 
численные результаты. 

АшНогх* аййгез&ез: РШг НоЬпсЫ, Рп. О., ^ап 8око1отк1, Рп. О., Ап(от 2оско^зк1, Рп. Т).* 
Зузгстз Кезеагсп т з т т е о! т е РоШп Асас1ету о ! Заепсез, и1. №\уеЬкэ 6, 01-447 \Уагз2а\уа, 
Ро1апа\ 
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