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DIFFERENTIAL STABILITY OF SOLUTIONS
TO AIR QUALITY CONTROL PROBLEMS IN URBAN AREA

P10TR HOLNICKI, JAN SOKOLOWSKI, ANTONI ZOCHOWSKI

(Received November 19, 1985)

Summary. The convex optimal control problem for a system described by the parabolic equa-
tion is considered. The form of the right derivative of an optimal solution with respect to the
parameter is derived. The applications to an air quality control problem are discussed. Numerical
result are provided.
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I. INTRODUCTION

The paper concerns an optimal control problem for the atmospheric pollutant
dispersion in the urban scale.

The computer forecasting model of the system [2] is used for the control purposes.
The model is based on the two-dimensional advection — diffusion equation, which
is numerically solved by a combined FE — characteristics method [3]. The convex,
state and control constrained, optimal control problem is formulated.

The method of the sensitivity analysis of constrained optimization problems
[8—12] is applied to the problem under consideration. We refer also to [5] for the
results in the general convex case for the constraints depending on the parameter.

The Lipschitz continuity of an optimal control with respect to the coefficients
of the state equation is obtained. The directional derivative of an optimal control
with respect to the parameter is derived in the form of an optimal solution to an
auxiliary optimal control problem. Numerical results for an example are presented.
The results have been announced in [13].

2. FORECASTING MODEL
We consider the urban-scale forecasting model [2] intended for short-term pre-
diction of air pollution in a large city. The horizontal scale of the simulated dispersion

process is 20—40 km, while the time horizon of model’s prediction is 1 + 3 days.
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The input data can be divided, in general, into the following three groups: i) the
structural data independent of time, ii) the meteorological forecast, iii) characteristics
of the emission sources.

<1f5\\\/
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Fig. 1. Domain of simulation

The physical process of pollutant dispersion in the atmosphere is considered
in a square domain Q = (L x L) (see Fig. 1). The process is described by two-
dimensional, averaged over the mixing height H, advection—diffusion equation
of the form [1, 6]

(2.1) gf+w.Vc-—KHAc+yc=Q+(E—-vdc)/H in Qx(0,7)
t

together with the boundary conditions

(2.2) %_0 on s* ,
on
¢c=0 on S,
and the initial condition
(2.3) c0)=)° in @,
where
S* ={(x,1)€0Q x (0, T)|w.n =0},
{

S™ ={(x,1)€02 x (0, T)|w.n < 0} .

Here we use the following notation:
c — pollutant concentration in [pg/m?],
w = col (u, v) — wind velocity vector in [m/s],
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Ky — horizontal diffusion coefficient in [m?/s],

0 ~— averaged over height H pointwise emission field in [pg/m3 5],
E — area emission field in [pg/m?s],

v, — dry deposition coefficient in [m/s],

Y — wet deposition factor depending on the precipitation intensity.

The values of the wind field vector w(x, y, t) in the domain Q x [0, T] are predicted
by a special procedure which calculates successively:

i) the averaged over Q x [0, T] value w, based on the meteorological forecast,

ii) topographical correction w, depending on the ground topography and aero-
dynamical roughness,

iii) thermal correction w, depending on a city “heat island™ effect.

Finally, we set
(2.4) W=w,+ W, +w,.

The model generates a sequence of forecasts of pollutant concentration within
a period T, which is discretized with a time interval 6T. Its length is determined by
the frequency of the introducing meteorological data (in our case 6T = 6 hrs).
Each time interval is segmented with a discretization step t of a numerical procedure
solving the advection — diffusion equation (see Fig. 2).

[

data

Fig. 2. Time discretization

All time-dependent data at the inner points of the interval 6T are linearly inter-
polated. The initial-boundary value problem (2.1)—(2.3) is numerically solved by
an effective combination of the method of characteristics with the finite element
procedure [3].

The forecasting model was tested on real data for Warsaw and Krakow areas [2].
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3. CONTROL PROBLEM

Basing on the forecasting model, the real-time emission control problem for the
system of sources covering the area was formulated. The general idea of controlling
consists in minimizing the environmental impacts by redistributing the production
(emission) among the set of selected sources, according to the meteorological situation.

In order to define an optimal control problem, we introduce the state equation,
the cost functional and the constraints in the following form:

State equation: find concentration ¢ = cu; x; t), for a given vector function
ue X0, T; RY), (x, t) e Q x (0, T), which satisfies the parabolic equation

(3.1) %+w.Vc—K,,Ac+vc=Q+inFifui), in Qx(0,T)

i=1

with the boundary conditions (2.2) and the initial conditions (2.3). Here u =
= col(uy, ..., uy) denotes the control.

Cost functional:
T T N
(3.2) J(u) = %a,lj j r max? (0, c{u) — ¢,) dx dt + 5“12’[ Y Biu; — @)% dt,
o) e 0 i=1

where oy, %34, f;, i = 1,..., N are given constants such that o;; =2 0, o, = 0,
B; > 0; re L*(Q x (0, T)) is a given function, r{x, 1) = 0, (x, t) e @ x (0, T),and ¢,
is a given function.

Constraints:

state constraint:

T
. 0yo rmax” (0, cu) — ¢;)dxdt £ K, ;
33 2(0 0 dxd K
oJe
control constraints:
(3.4) u(f) < ufh) < *uft),
(35) _D,'éd—uiéD|y l=]9 9N’
dt
(3.6) aju{tyzb;, j=1,..,M, N;,c{l,..,N}
ieN;

almost everywhere on (0, T).

The functions y;/x) in (3.1) describe the location of the controlled sources; Fy{u;
relate the emission to the production level. The factor r{x, ) in (3.2), (3.3) is a region
weight function, ¢,/x) denotes the admissible level of pollution. The second term
in (3.2) constitutes the cost of deviation of production levels u; from the desired
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economic values #;. The inequalities (3.4), (3.5) represent technological constraints,
while (3.6) reflects demand requirements b; imposed on homogeneous groups of
plants N .

The parameters a;; in (3.2), (3.3) make it possible to formulate a variety of optimiza-
tion problems, rangmg from the minimization of global costs (both environmental
and control) for &, &;, > 0, @,, = 0 to the minimization of outlays with environ-
mental constraint, when oy, = 0, ay,, 5, > 0.

4. SENSITIVITY ANALYSIS

We denote by K = H'(0, T; R") the set of admissible controls of the form

(4.1) K = {ue H'(0, T; R") | the element u satisfies (3.4), (3.5) and (3.6),
the element c(u) satisfies (3.3)} .

The state equation (3.1) has a unique solution ¢ = c(u) determined for a given
control u € L*(0, T; R") and for fixed constants K, y; Ky > 0.
Let ¢ € [0, 8) be a parameter; we denote

(4.2) d&* = (Ki, v%)
where

(4.3) 4 =Ky + eKy + ole),
(4.4) P =9+ + 0k,
here

lo(e)|/e > 0 with &1 0.

Let us denote by ¢, = ¢,(u) a unique solution of the state equation:
de
(3.1) 6—+w Ve, — Ky Ac, + yc, = Q+ZX,F,\ u) in Q x (0, T)

with boundary conditions (2.2) and initial condition (2.3). Let us consider the follow-
ing optimal control problem:

Problem (P,). Find an element u® = u{d®) € K which minimizes the cost functional
o T
(4.5) J(u) = _;-l J' r max? (0,’c(u) — ¢;) dx dt +
0JQ

LELEPeg fewe

over the set (4.1).
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In order to ensure the uniqueness of an optimal control we assume that there
exists a constant ¢ > 0 such that for ¢ € [0, §) we have

(4.6) (D J(u) — DJ(v),u—=v>>olu—v|}iorry YuvekK.

Here D J,(u) denotes the gradient of the functional (4.5).

The condition (4.6) is satisfied e.g. for F/u;,) = u;,a;; >0, § > 0,0, > 0,
pi>0,i=1,...,N.

It can be verified that there exists an optimal control u® € K which is determined
as the first component of the solution of the following, uniquely solvable [9], opti-
mality system.

Optimality System for Problem (P,)
Find (¢’ ¢, p°) such that

det N
(4.7) 60—0+W.Vc‘—K§,Ac5+y‘c‘=Q+2x,-F‘-{u§) in Qx(0,7),
t i=1

(4.8) % _0 on s*,
on
(4.9) ¢¢=0 on S°,
(4.10) ¢(0) =»° on Q;
(4.11) - % — div(wp®) — K Ap® + y°p* = oy r max {0, ¢ — ¢,} in
t
ax(0,T),

(4.12) p’P=0 on S°,
(4.13) Kﬁlf;—p+w.np‘=0 on S,

n
(4.14) p(x,T)=0 on Q,

u = (ul,..,uy)eK;

N T T du® (du, duS

4.15 o Fiud) p(u; — uf)dx dt + 6 H— — —)dr +
419 ‘;‘{llfojnx ) ) jo dt<dt dt)

T
+ cxuf Bi(u§ — 1) (u; — uf) dt} >0 Vu=(uy..,uyek.
0

Theorem 1. Assume that the condition (4.6) is satisfied. Then there exists a constant
C such that for ¢ > 0, ¢ small encugh,

(4.16) [u® = ¢ go,mimy < Ce.
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Proof. We denote
(4.17) J{u) = I(L, B{u)) + a)(u) ,

where

T
(4.18) I(y)"___“a“/ZJ. J’ rmax” {0,y — ¢;} dxdt, VyeLXQ x [0, T]),
oJe
N
(4.19) Blu) €'Yy, F{u);, Yu=(uy,...,uy)e 0, T;RY),
i=1

5 N T du. 2 o N T
420) o(w) =2y j (_> dr+ %2y j Bilu; — w)2dt, VueHY0, T: RY)
2i=1 ), \ dt 2 =1,

and for any ¢ € I(Q x (0, T)) the element y = L,¢ is given by the unique solution
of the parabolic equation

(4.21) %—“:+w.Vy—K§,Ay+y‘y=¢ in Qx(0,7T)

with the boundary conditions

(4.22) y=0 on S,
(4.23) W_0 on s*,
on
and the initial condition
(4.24) »(x,0) = y%(x) on Q.
It can be verified that
(4.25) d J(u;v) * lim (J(u + pv) — J(u))/p =
nlo
= (DI(L, B(w)), L, B'(4) V)22 0,1y + (D @(u), ¥)gr10,7;8) 5
here ) )
N
(4.20) B(u)v e Yy, Fu)v,, VvelI*0, T;R");
i=1
T
(4.27) (DI(y), )20y = %11 J j r¢ max {0, y — ¢} dx dt,
o0J N

Vy, ¢ e H(Q x (0, T)).
It can be shown that for ¢ > 0, ¢ small enough,
(4.28)  |(Le = Lo) $|racaxco.ryy < Ce|b|rz@nco,ryy» Vo€ LH(Q x (0, T))
(4.29) [PI(L.$) — DI(Lod)| r2axco,m = Cel|b]2axco,ry »
Vo e LZ(Q x (0, T)) .
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An optimal control u*, ¢ € [0, &), is given by the unique solution of the variational
inequality

(4.30) WeK:(DJ(u), u—u)=20, Vuek.

From (4.30), taking into account (4.6), (4.28), (4.29), by a standard argument we
obtain

of|ut = u®|iio.mrmy S <D Jfu) — D J(u%), uf — u®) <
(D J,(u®) = DJ(u),u’ — u*) =
= (DI(L, B(u°), L, B'(u®) (u° — u))racax 0,1y —
= (DI(Lo B(u°)), Lo B'(u°) (u° — ¢*))paax o,y =
= (DI(L, B(u°)), (L, — Lo) B'(u°) (4° = t*)raaxco,y) +
+ (DI(L, B(u®)) — DI(L, B(u®)), Lo B'(4°) (u® — u"))2ax(0,1y) =
< Cef|u® = wlgio,rmmy »

which completes the proof.

5. DIFFERENTIAL STABILITY OF OPTIMAL CONTROLS

In this section we derive the form of the right-derivative of an optimal control u*
with respect to the parameter ¢ at ¢ = 0. To this end we will define the control
constrained optimal control problem (IL,), ¢ € [0, ).

We assume that the set of admissible controls U,q4 is given by

(5.1) U, = {ueI*0, T;R") | u(t) satisfies (3.4), (3.6) for a.e. t (0, T)} .
Furthermore, we assume that
(5.2) F(r)y=r, VreR, i=1,..,N

and that the cost functional J(u) is defined by (4.5) for 6 = 0, ue I*(0, T; R"),
0 >0,8,>0,0, 20,i=1,...,N.
Let us consider the following optimal control problem:

Problem (I1,). Find an element u®e U,y which minimizes the cost functional
(4.5) over the set (5.1) of admissible controls.

It can be shown that the optimal control is uniquely determined by the following
optimality system:

Find (", ¢, p°) such that .

Oct N
(5.3) —éc7+w.Vc—K§Ac‘+y‘c"=Q+Zx,.u‘,- in Qx (0,T),
i=1
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¢’ satisfies conditions (4.8)—(4.10);
—0

ot
p° satisfies conditions (4.12)—(4.14);

(5.4) =& _ div(wp’) — K% Ap* + 3 = ay,r max {0, ¢* — ¢} in @ x (0, T)

t4
u eUad,

N T
(5.5) Y {allj J. % P(u; — uf)dx de +
i=1 oJa
T
+ “12J. Bi(u; — ;) (u; — uf) dt} =0, YueU,.
0

Theorem 2. For ¢ > 0, ¢ small enough,
(5.6) u* = u® + eq + ole) in I*0, T;RY),
where
lo(e)|| 2o, rsrm)[e = O with €l0.
The element q e I*0, T; RY) is given by the unique solution of the following

optimal control problem:

Problem (Q). Find an element q € I*(0, T; R") which minimizes the cost functional
T
I(u) = %ozuj j (0, max? {6, z} + 60,z%) dxdt —
oJe

, op° . r 2
—-J K —zdE + %cxuf pu; dt
s+ oOn 0
over the set of admissible controls (5.18), subject to the state equation (5.11)—(5.13)
with q = u.
The elements 6, 8, are given by (5.22), (5.23), respectively.

Proof. It can be shown, by using the same argument as in the proof of Theorem 1,
that :

(57) lu* = u°llzo,rimmy < Ce5

therefore (5.3), (5.5) imply [10, 11] for & > 0, &'small enough:

(5.8) ut = u® +eq + ry(e),
(5.9) ¢ =c® + ez + 1y(e),
(5.10) Pt =1+ ew + r5(e),
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where the elements q, z, @ are given by the unique solution of the following optimality
system [10, 11]:

F] N
(5.11) a—j +w.Vz —KyAz — Ky Ac® + 7%z + y'c® =Y xq; in Qx(0,T),
i=1
0z
(5.12) —~ =0 on S*, z=0 on S,
on
(5.13) z(x,0) =0 on Q;
-0 .
(5.14) % —div(w.Vn) — K§GAn — a Ky Ap® + % + y'p° =
= ay,r0, max {0, z} + ay,r0,z on Q x (0,T),
bl (4
(5.15) n=0 on S, K,,%% + wnny = —K},% on S*,
(5.16) nx,T)=0 on Q;
(5.17)

N T T
qu:Z{anJ J. xiu; — q;) dxdt + “12J Bigfu; —q;)dt} 20, VueC.
i=1 0J0 0
The set C = L0, T; Ry) is given by
(5.18) C={ueI¥0, T;R")|uft)=0 ae.on Zjuf(f)<0 aeon =

Y a;uft)y20 ae.on E, j=1,..,M,

ieNj

N T
Z(‘XHJ. J X ;p%u; dx dt + 0‘12.[ Biui — uy)u;dr) = 0} .
= 0

Here

(5.19) Bl ={te(0, T)| ud(t) = wu(t)}, i=1.,N,
(5.20) By = {te(0, T) | ud(t) = *uf1)}, i=1,..,N,
(5.21) gl ={te(0, T)L; aud(y=>5b}, j=1..,M,
(5.22) 0o(x, 1) = {(1, O(i g N i‘iz g

(5.23) 0u(x, 1) {(1) Zg g > Z X g

From (5.14)—(5.18) it follows that the element q € C is given by the unique solution
of the control problem (Q).
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6. NUMERICAL RESULTS

In order to illustrate the results of the previous sections, a somewhat simplified
control problem was studied. The most important simplification concerned the
horizon of control, which was taken as equal to 67T, see Fig. 2. In each of the intervals

\Xz wind

controlled
source

protected
4 T area

P

Xy
ou

8.
44 3.4
2|

1 t

0 6T
|
44 |
]
I
8l !
|
§

-121

Fig. 3. The control for Ky = 300, a;, = 2.
of the length 6T the controls were approximated by linear functions, analogously
to the meteorological data. Thus the (discrete) decision variables were reduced

to the increments of u;, i = 1, ..., N, over the period 67, denoted by u,.
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The emission field and the topographical data correspond to the real neighbour-
hood of Warsaw. Four artificial controlled sources with emmission 35 each (1 unit
~ 57-6 kg|sec) were added. The numerical values of other parameters were oy, = 1,
Oy =2, 0 =0, T= 0T = 6h; 4u; =20, *u; =50, D;=2 for i =1,...,4.
Only the city center was considered as a protected area, which means that r(x, 1) was
zero outside the shaded region in Fig. 3. The value of K; was 300. Only one demand

constraint was imposed, namely,
4

Y u; = 140.
i=1
It means that only a transfer of power from one source to another was permissible.
The results of computation for Fy(u;) = u; and f; =1i=1,...,4, are shown
in Fig. 3.

In the next step the directional derivatives of u;, denoted by g; (5.8), corresponding
to the change of Ky, in the direction K} were calculated.

Two cases were considered: one, when the dual variable corresponding to the active
constraint (3.4) imposed on éu; was positive (strictly complementary situation) and

Table 1.

Source number 1 2 3 4

complementary case Ky = 300

Ky = 100, sensitivity 0 —0-27 0-12 015
ou(Ky = 200) approx. —12-:00 279 4-61 461
exact —12:00 2:76 4-60 4-64

Sou(Ky = 100) approx. —12:00 3-06 4-49 4-46
exact —12-00 3-:08 4-44 4-48

noncomplementary case Ky = 300

Ky = 200, sensitivity 1-70 —0-82 —0:46 —0-42
ou(Ky = 500) approx. —10:30 195 4-14 421
exact —10-13 2:10 4-01 4-02

Ky = —200, sensitivity 0-0 0:66 —0-30 —0-36
ou(Ky = 100) approx. —12:00 3:43 4-30 4-27
exact —12-00 3:25 436 4-39
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the other, when the strict complementarity condition was not satisfied. In order
to achieve the approximately noncomplementary situation the value of a;, was
changed to o, = 2-55.

The difference between both cases consists in the fact, that in the noncomplementary
case the sensitivity had to be calculated twice, separately for Kj, > 0 and Ky < 0.

The results are summarized in Table 1. The approximated values of controls du;
are obtained by using formula (5.8), while exact numbers correspond to the solution
of the original problem with new K.

All optimization problems involved in this work have been solved by the quickly
convergent version [3] of the linearisation algorithm [7].

7. CONCLUDING REMARKS

In the paper some theoretical and numerical results for the sensitivity analysis
of an optimal control problem arising in air pollution control are presented.

We have proved that the optimal control is locally stable (Lipschitz continuous)
with respect to perturbations of the coefficients of the state equation.

Our numerical results confirm that the formulae for the right-derivatives of the
optimal control can be used in order to approximate the increments of the optimal
control with respect to the perturbations of data.
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Souhrn

DIFERENCIALNI STABILITA RESENI PROBLEMU REGULACE KVALITY
ovzDUSI V MESTSKE OBLASTI

P10TR HOLNICKI, JAN SOKOLOWSKI, ANTONI ZOCHOWSKI
Autori studuji konvexni problém optimalni regulace popsany parabolickou rcovnici. Odvozuji

tvar derivace zprava optimainiho feSeni podle parametru, a vySetfuji aplikace na problém regu-
lace kvality ovzdusi. V ¢lanku jsou uvedeny také numerické vysledky. '

Pesome

OUPOEPEHUAJIBHAS YCTOMUYMBOCTL PEIIEHUS TTPOBJIEMBI
PET'VJISIUN KAYECTBA ATMOC®EPEI B I'OPOJICKO! OBJIACTH

P10TR HOLNICKI, JAN SOKOLOWSKI, ANTONI ZOCHOWSKI

ABTOPBI H3y4alOT BBINYKJIYIO NPOOJEMY ONTHMAJILHOTO YIPABJIEHHs, ONMCAHHYIO Napaboiin-
YeCKHM ypaBHEHHeM. BbIBOAAT (GOpPMY NpPOM3BOAHON CIpaBa ONTHMMAJIBHOTO PEUIEHMs IO napa-
METPY ¥ HCCIIEAYIOT NPUIIOKEHHS K MPO6JIeMe pEry/saiuny KayecTsa aTMochepsl. ITpuBoaaT Takxke
YHCJIEHHBIE PE3Y/IbTATHL.
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