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TIME-PERIODIC SOLUTIONS OF A QUASILINEAR BEAM EQUATION
VIA ACCELERATED CONVERGENCE METHODS

EDUARD FEIREISL

(Received January 27, 1987)

Summary. The author investigates time-periodic solutions of the quasilinear beam equation
with the help of accelerated convergence methods. Using the Newton iteration scheme, the
problem is approximated by a sequence of linear equations solved via the Galerkin method. The
derivative loss inherent to this kind of problems is compensated by taking advantage of smoothing
operators.

Provided that the right-hand side of the equation is small and smooth, the existence of at
least one solution is established.
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AMS Classification: 35L70, 35B10.

In his Thesis [8], M. St&dry succeeded in proving the existence of at least one
periodic solution to beam equations involving both damping terms and a small
nonlinear right-hand side. Being achieved with the help of the abstract Moser theorem,
his results cover many important cases except the situation when all “space” de-
rivatives of the unknown function occur in the nonlinearity mentioned above.
Consequently, no information is gained concerning e.g. quasilinear equations in
spite of their frequent appearance in the so called physically nonlinear elasticity.

The forced transversal vibrations of a damped beam with simply supported ends
can be modelled by the equation

(E) g + o) + 0(Ue)sx = g
u=u(x,t), xe(0,1), teR

with the boundary conditions

(B) u(0,1) = u(l, t) = u (0,1) = u,(I,t) =0, teR
and with the periodicity condition ’
) u(x, 1+ 0) = u(x, 1

xe(0,1), teR.
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In this paper, existence of at least one solution to the problem just outlined will
be established if, roughly speaking, the function g is small and smooth. For a more
precise formulation we refer to Section 2, Theorem 2.1.

The generalized Newton iteration scheme our proof leans on requires to solve but
the linearized equations related to (E) To this end, we have to restrict ourselves to
functions «, ¢ which are smooth on an open neighbourhood of 0 € R and satisfy

(0.1) #0) =6(0) =0, «(0)=d >0, 6 (0)=a>0.

If quasilinear equations are involved, there are other methods to solve them, see
e.g. [4]. Our approach seems to have the benefit of allowing to add another nonlinear
term to (E) containing e.g. all derivatives of u up to the order 2. Speaking about
a beam equation, we should mention the work [6] of H. Petzeltova for completeness.

To agree upon notation, let the symbol R stand for the set of all reals, while Z
is the set of all integers, and Z* denotes its positive part including 0. Throughout
the paper, the symbols c(v) are used to denote strictly positive constants depending
on the quantity v only.

1. Function spaces. Following [7], we determine the spaces in which the solution
is to be looked for. Seeing that the concrete values of I, @ do not matter, we may put
w=2n1=m,and Q = (0,n) x (0,2n).

To begin with, the symbols L, = L,(Q) are reserved for the spaces of integrable
functions with the norm H HLp defined in the standard way.

Next, we consider anisotropic Sobolev spaces of periodic functions H*/, { H*/} deter-
mined as the completion of all smooth (real-valued) functions satisfying (P), {(P), (B)}
with respect to the norm

ol s = max ({00 | 1= 0, 1, ooy k). {00 | i = 0,1, ... 7))

(see [9]).

Finally, the most important spaces are U,, ne Z*,
U,={v|djveH*? j=0,1,....n},
U, =U,nH*?
with norms
o, = max {[ololes | = 0.1,..m}
In a similar way, we set
I, = {v|plve H*?, j =01, .., n},
Jol, = max {ofo]sal. j = 0.1, ocom}
G, ={v|dveL, j=0,1,...n},
lo]l6, = max {[|@iv]L,], j = 0. 1, -, nj .
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Being linearized, the inverse operator related to (E) loses derivatives, which is an
inherent difficulty with hyperbolic problems. To overcome it, smoothing operators
are needed.

Every v e H%° can be expressed in the form

Mg

v =

vi(x) z(t), v = (3% v(x, 1) z,(t) dt

i

@0

where
z; = 1[J(n)sin(it), i>0
1/J(2m), i=0
1/J(n)cos(it), i<0, ieZ.

For a fixed number r > 1, the sequence of linear operators S, = S,(r), ne Z* is
defined as

(1.1) S,v =Y vi(x)z(t).

ism

It is a matter of routine (cf. [7]) to prove

(12) 1.0 = vlx, = 7ol
(1.3) [Su0llxess < 7o)l x» LkeZz?

where U, I, or G can be inserted instead of X.

Pursuing Hormander’s work [1], we draw from (1.2), (1.3) the interpolation
inequality

(1.4) lollx, = e, 1, m) o], of3c "
n=2ik+(1-=2A1, nklezZ*, 2e[0,1].

Combining (1.4) with the well known relations ab < a?[p + b%[q, 1[p + 1[q = 1,
we conclude (cf. [3])

(t5) o Yoz S g+ my) ([orllx,, [o2llv, + 01l [020,0) 5

nomeZt, n+m=n,+my=n;+my, i=1273,

Xn2 vl\

nyg £ ny, = ng

where the symbols X, Y stand for U, I, or G.

2. MAIN RESULT

Theorem 2.1. Let an integer M = 10 be given.
If (0.1) holds, we are able to find & = &(M) > 0 such that the problem (E), (B), (P)
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possesses at least one solution u € U[M/Z] (in the sense of generalized derivatives)
whenever g € Gy, and

(2.1) 19]l6n < &

If, moreover, g is continuous, then the solution u is a classical one.

Remark. [M/2] denotes the greatest integer less or equal to M|2.

The main tool to prove the above theorem is the generalized Newton iteration
scheme which will be introduced in Section 3. In connection with differential equa-
tions, this method is often called Nash’s or Moser’s method, see e.g. [5].

To solve linear equations, some auxiliary results formulated in Section 4 and
proved in Sections 6, 7 are of interest. The proof of Theorem 2.1 will be carried out
in Section 5.

3. ITERATION SCHEME

We proceed analogously as in [2], [3].
Let us put
F(u) = Uy + a(ul) + a(uxx)xx )
F,(u) Yy =Y+ 0‘,(ut) Ve + (O'I(uxx) yxx)xx .

The following sequence of linear equations (for y,) is to be solved:
(3.1), F'(Su,) y,=h,, nez*
where the function u, is determined by the equation
(3.1)-4 F(0)ug=g.

Our aim is to obtain the solution u as a limit of functions u,, u, - u where u, are
given successively as

n—1

u, = Up +Lyk'
k=0

The only terms we are to pick out are the functions h,. Following the Taylor
expansion formula, we can express

(32) Flupsr) = Fu,) + F'(u,) yy + €yir -
Setting

(3.3) ensr = (F/(w,) = F/(S,u,)) y,

we get by induction

(3.4) Fuy) = Flus) + 50 + e,

1 2
e = e, + e .
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To accomplish F(u,) — g, we put

n

(3.5) S(g — F(ug)) =Y hy + S,,é:lek

Accepting the convention e, = F(uo) — g, we easily derive

n—1

(36) hn = —Snen - (Sn - Sn—l)z € -
k=0
Combining (3.4) with (3.5), we conclude that

(37) F(u"+1) =gt e+ (ld - SH)Z €k -
k=0

4. AUXILIARY RESULTS

To succeed in solving (3.1),, the following assertion is of interest.

Proposition 4.1. Given a fixed number N e Z*, then 6,(N) > 0 can be found in
such a way that there is a unique solution y € Uy to the equation

F(u)y =h
provided that
(4.1) lullv, <6,, uenU,.
n=0

Moreover, we have the estimates

(4.2) Iyle, = e (Ihl6.es + fulo. lhle) T =0.1,..N

Remark. According to embedding theorems (see [9]) U, G C*(Q). Consequently,
8, being chosen close to 0, F'(u) y is defined and the equation is satisfied in the sense
of generalized derivatives.

We postpone the proof to Section 6.

The next proposition enables us to estimate the norm of the nonlinear terms
appearing in Section 3.

Proposition 4.2. Let us consider a smooth function g, o: (—,u, u) — R.The embed-

ding H** 3 C(Q) being taken into account, the composition o(v(x, t)) makes sense
provided that

(43) ol < 02,

0, > 0 being sufficiently small. .
Under these circumstances, we have the estimate

(4.4) le@)lr, = et o) (le(®)]c. + [vlls)

forany vel,, leZ".

366



Remark. If I, were ordinary Sobolev spaces, the theorem above would coincide
with that presented by Moser in [5].

For the proof we refer to Section 7.

Taking advantage of Proposition 4.2, we will estimate the quantities e,. To begin
with, we assume

(4.5) lualv, + [yallv, < 05,

03 > 0 small enough, for we want all terms involved to be well defined. Observe
that the space H*'? is a Banach algebra, which seems to be crucial in what follows.
Let us, for instance, treat the most difficult term f appearing in e}, ;,

[=0 o (1 =) a"(x(un + 5,)) (92y,)7 ds .

For 0 £j £ | we get
(ol < o) % Nl [l § 0" + sv)l 0.

Using (4.4), we conclude

Plovs ) 5 (14 o + ) Dl s
Repeating this procedure, we obtain the estimates |

@6 oo ) T (0 fuolu) ool Bioluns

@D o5 o) T 1+ fuones + Do) il Dl
@9 o= o) (0 o) Dl b = Sl

where le Z%, u,, y,e U, ,.

5. PROOF OF THEOREM 2.1.

First of all, we put N = M — 1 where M appears in Theorem 2.1. Further,
a number f is chosen such that 28 e (N + 1, N + 2). Consequently, > [M/2] =
> 5. Finally, let the relation (2.1) hold for some & > 0.

In view of Proposition 4.1, there exists a (unique) solution u, of (3.1)_, satisfying

(5.1) Juolo, < () [glr.rs 12N, 1€ 2°.

In order to solve (3.1),, n € Z*, we require both the relation (4.1) for S,u, and (4.5)
for m =0,1,...,n — 1 where we have set u_, = uy, y_, = 0. To fulfil that, we
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have to keep u,,, y,,—, small, more precisely,

(5:2), ltmloy + [|ym-1llvs < 64 forall m=0,1,....n

is required where 3, > 0 is sufficiently small.
Observe that (5.2), holds provided the number ¢ > 0 has been chosen small
enough. According to Proposition 4.1, (3.1), is solvable and the solution y, satisfies

Ivollu, = e(D) (IhollGrv, + [Sottollurrs [Bolle,)s 1SN

For an arbitrarily chosen 6 > 0, we are able to find ¢ > 0, ¢ < ¢ such that

(5-3)o [vollo, £ 6 forall 1=0,1,..,N

and ¢ appearing in (2.1). To see that, we combine (4.6), (5.1) with the above estimate.
Following [3], our goal is to choose § > 0 so small that all equations (3.1), may
be solvable and

(5-3) lyallo, = ort=0

may hold foralll =0,1,...,N.
At this stage, we proceed by induction. We intend to prove (5.3),,Jr 1 having already
shown (5.3),, for all m = 0,1,...,n.
To this end, we estimate u,,,, as follows:
lttm+ sl = Juollo, +kZOHYkHUx

(according to (5.1), (5.3))
Soe(l)(1 + Y Py,
k=0
Summing up the series on the right-hand side, we deduce

(5.4) s sllu, £ Sc(l) (1 + r7PCFD) forall 1SN, mgy,
Consequently, (5.2),+ is satisfied and we are able to solve (3.1), ;.
The unique solution y,, fulfils
Hyn+1“Ux é C(l)(th-FlllGx+1 + IISH+1un+1HUI+4 llh"+1HG,) .

To accomplish (5.3),+1, We are to treat but the term |/,.4]q,»
to prove

(5.5) [hysi]G, < 8% c(l) r-2p¥®0D 1 e 7+

namely, we are going

Indeed, we can pick out 6 > 0 such that & ¢(l) < 1 for all I £ N. Sipc,

l

(I+5-2B)(n+1)

i I(n+1
Sn+1un+1HU1+4 = rt )54,

we get HYn-HHU, s or
Since B > 5, (5.3)u+, follows.
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We focus our attention upon (5.5). To estimate em+1, We derive

lGd - Sm+1) Ups ]|y, S PN

um+1”UN-

In accordance with (5.4), we have

(5:6)  [(id = Sps1) tmsillu, S 5 ¢(l) r-Pm+D forall <N, m<n
Combining (4.6)—(4.8) with (5,4)_(5_6) we obtain
(5-7) Hem+1nc, <4 c(l) r=284 0D forall TSN — 2, m<n

Reasoning as in (5.4) we get
(58) | elo, < 6% c(l) (1 + rO-28+06me0) < N 5
k=0

Due to N + 2 > 2, we obtain similarly as in (5.6)

(5.9) l(d = S) Y er < 62 eft) r 72000
k=0

forall ISN-2, j=n, n+1.

The hardest term to estimate appearing in A, ; is

(5.10) 1(Suss = S) Y el < 82 (1) r 24+ D
k=0

where [ is supposed to satisfy | £ N — 2.
On the other hand, if ] > N — 2, we have

[Sver = S) % el = I5ues el + 15,3 el

According to (1.3), (5.8), one has (5.10) even for I > N — 2. Consequently, (5.5)
has been proved.

Solving the equations (3.1),, ne Z*, we obtain the sequence {u,};-,. Moreover,
according to (5.3), this sequence admits a limit u € U[M,2] and, a fortiori, u, — u
in Us. Using (3.7), we get the estimate

[FCuns1) = 0l = leweloo + id = 50) Y e, <

(according to (5.8), (5.9))
é 52cr(‘2ﬂ+4)(n+1) .

Consequently, F(u,.,) = g in G,.

On the other hand, U; G H*”. In view of embedding theorems (see [9]), all
derivatives of u, up to the order 3 are continuous and converge to the corresponding
derivatives of u in C(Q). Thus F(u,,) = F(u) in G,, and we get

(5.11) Flu)=g.
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If g € C(Q), then tyxxx € C(Q) due to (5.11). Theorem 2.1 has been proved.

6. Linear equations. In this section, our aim is to prove Proposition 4.1. The
problem consists in solving the linear equation

(L) Ly + (b(x, 1) yxx)ux + W(x,8) y, = h

where a solution y is to satisfy the conditions (B),(P). We have denoted Ly =
= Yu + Ay, + Vx> b = 0'(u,,) — a, w = a'(u,) — d. According to (4.1), we
have

[
b,weNI,.
n=0

To begin with, we claim that there is an equivalent norm on H*'? given by
(6.1) lolae.2 = max {||0%0]| .., |0Fv]]..}

(see [9]).
Seeing that the standard Galerkin method is applicable to our situation, we are

going to derive a priori estimates only. For this purpose, we are allowed to assume y
to be smooth. ’

We put (cf. [6])

da
@(y) =dy + 2y, — dyy — 2y + ?yxxxx .

For le Z* we set 5(y, I) = ©((—1)' 9}'y).
Let us multiply the equation (L) successively by E(y, l) and integrate over Q.
Using integration by parts, the following relations are obtained:

62  JeLyE(y,0) = d|o;"ylz, + |0 *y|z, + dafox alz, +

d da’
+ ooyl + = letal,,

(63) [fo 7 &(y. D] £ <(d; a) [ B, [7]e, -
Next, we are going to show that
1
64 o250 0] = ) 3 Il D9l Il

The most difficult term is A4,

20+3 T+ 1N vimk 1 a2
A=Jwy,6, y=(-1)"*y < K )6, woitly a/t?y .
Q k=0J0Q

With the help of the H6lder inequality, we get
1
4] = €)% [ Wl Il Iho, + vl 1213
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Owing to H*? Q) C(Q), (6.4) follows.
Finally, we estimate

(6‘5) UQ (byxx)xx H(y’ I)‘ = C(l)z “bnmz K ”y“Uk ny“U:

The hardest terms seem to be

B = IQ (byxX)xx 6?'+3y , D= ,‘.Q (byxx)xx at“yxxxx .
To cope with B, we use the embedding relation (see [9])

(66) loeciles = efollnea-

We have
1+2 .
B=(-1)"2} j. <l J,Z 2) 01" 27%b 0y x 01V xxt
k=0J0Q

and, consequently,
8] = ()Y |24 bl I¥hon Do, + 1ol ol
As to the term D, we use the estimates (see [9])
(6.7) louselzs = clofnea,
(6.8) lole = efolaea-

We can decompose

2
D= _\'Q bxxyxx atnyxxxx + 2bxyxxx atuyxxxx + b«Vxxxx al lyxxxx .

In view of (6.8), we deduce

Dl =J\ bxxYxx 6flyxxxx = (_1)12 j. ( >a’ kbxx a't‘yxx tyxxx;» s
Q

1941 = ) 10 b [l rsmlis = <) bl Wl ol

The second term is treated in the following way:
D, - beym e = (-1)'Y, j Q(,i) 070, 057 s e
1921 5 ) 210 1yl [ = )3 0l Dol Dol
Summarizing the results just achieved, we get by (6.1)

©9)  [vlz, 'i (Il 00l Il 90, + Bhllore 1l

I=0,1,....
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According to (1.5), we obtain
5 < e ((wlhies + 10]022) 1Y]oo 1[0 + (Bl [¥]0) +
+ () (Wl + o) 912, T=0.1,....
For N = 0 there exists 65 > 0 such that
(6.10) I¥lo, < e ((Awlris, + [Blres) [Pl + 2]e...)
holds for all | = 0, 1, ..., N whenever
(6.11) [l + [b]lr, < 65

To conclude this section, we claim that the a priori estimates (6.10) imply (4.2),
while (6.11) corresponds to (4.1). Indeed, we can use Proposition 4.2 together with

the relations
”va”Il = C(l) ”UHUI+2 ’ HU,““ = C(l) anuwz .

7. PROOF OF PROPOSITION 4.2

LY

We are to estimate ||0]0(v)] 2.2, j < 1.
First of all, suppose 1 < j < I. The term djo(v) can be expressed as the sum of

quantities
. (070) (v) (Bw) ... (35v)™
J
where ) o;i < j and at least one a; # 0.
i=1

Since the space H?'? is a Banach algebra, we get

O PR UDY U O PR UL R U R

< d) 2 [%0() s Nl - ol =
(according to (1.5))
SRR L

If j = 0, we estimate
le@lzz = fle(@)lz. + 0.0, + |0%e(®)]., +
+ [0e(@)]lz, + [070(v)]x, -
Let us treat ||030(v)] ., for example:
|0%e(@)z. = o"(®) 2], + [l0'(0) vaallr, =
< le'@le o<l [va e + le@le 0] 2.2 -

To complete the proof, we have but to realize that H*> Q C(Q).
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Souhrn

CASOVE PERIODICKA RESEN{ KVASILINEARNI ROVNICE TYCE —
POUZITI METOD URYCHLENE KONVERGENCE

EDUARD FEIREISL

Autor vySetfuje Casové periodickd FeSeni kvasilinedrni rovnice ty¢e metodami urychlené
konvergence. Na zakladé Newtonova itera¢niho schematu je uloha aproximovana posloupnosti
linearnich rovnic feSenych standardni Galerkinovou metodou. Ztrata derivaci, typickd pro rovni-
ce hyperbolického typu, je kompenzovana uZitim zhlazujicich operatoru.

Je dokazana existence alespoii jednoho (klasického) feSeni dlohy za predpokladu, Ze prava
strana rovnice je dostate¢né mala a hladka.

Pesome

W3YYEHUE IMEPUOIUYECKMX BO BPEMEHU PENIEHUN KBA3WJIMHENHOI'O
VPABHEHUA CTEPXHS ITPU ITOMOL METOJOB VCKOPEHHOM CXOOUMOCTU

EDUARD FEIREISL

ABTOp HM3y4aeT HNEPHOJMYECKHEe BO BPEMEHH DpelNeHHs KBa3HIMHEHHOTO YpPaBHEHHS CTEPXKHS,
TIOJIB3YSICh METOIOM YCKOPEHHOM cxomuMocTi. Ha ocHOBe mTepaumoHHOro Metoa HroTona 3agava
ANIPOKCHUMHUPYETCsl TOCIEJOBATENIFHOCTHIO JINHEHHBIX YPaBHEHUM, KOTOPhIE PENIAIOTCH METOAOM
Tanepxuna. TUIMYHAS IPY PELICHUH TATIEPOOTMYECKHUX 32124 TPYXHOCTh — IOTEPST IPOU3BOAHBIX —
peLnIaeTcsi py MOMOIIH Pery IpH3yIOnX onepatopos. IToka3aHo, yTo 3aaya obnagaeT mo Kpai-
Hel Mepe OJHMM DEeIIeHHEM, CCIIM OpaBas YacTh YPaBHEHW SBIACTCSA MAJIOi riaaakoit (GyHKue.

Author’s address: RNDr. Eduard Feireisl, CSc., Matematicky ustav éSAV, Zitna 25, 115 67
Praha 1.
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