
Aplikace matematiky

Eduard Feireisl
Time-periodic solutions of a quasilinear beam equation via accelerated
convergence methods

Aplikace matematiky, Vol. 33 (1988), No. 5, 362–373

Persistent URL: http://dml.cz/dmlcz/104317

Terms of use:
© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104317
http://dml.cz


33 (1988) APLIKACE MATEMAT IKY No. 5, 362—373 

TIME-PERIODIC SOLUTIONS OF A QUASILINEAR BEAM EQUATION 
VIA ACCELERATED CONVERGENCE METHODS 

EDUARD FEIREISL 

(Received January 27, 1987) 

Summary. The author investigates time-periodic solutions of the quasilinear beam equation 
with the help of accelerated convergence methods. Using the Newton iteration scheme, the 
problem is approximated by a sequence of linear equations solved via the Galerkin method. The 
derivative loss inherent to this kind of problems is compensated by taking advantage of smoothing 
operators. 

Provided that the right-hand side of the equation is small and smooth, the existence of at 
least one solution is established. 

Keywords: quasilinear beam equation, periodic solutions, accelerated convergence method. 

AMS Classification: 35L70, 35B10. 

In his Thesis [8], M. Stedry succeeded in proving the existence of at least one 
periodic solution to beam equations involving both damping terms and a small 
nonlinear right-hand side. Being achieved with the help of the abstract Moser theorem, 
his results cover many important cases except the situation when all "space" de
rivatives of the unknown function occur in the nonlinearity mentioned above. 
Consequently, no information is gained concerning e.g. quasilinear equations in 
spite of their frequent appearance in the so called physically nonlinear elasticity. 

The forced transversal vibrations of a damped beam with simply supported ends 
can be modelled by the equation 

(E) utt + a(ut) + <T(UXX)XX = g 

u = u(x, t), x e ( 0 , I ) , t e R 

with the boundary conditions 

(B) u(0, t) = u(l t) = uxx(0, t) = uxx(l, t) = 0 , t e R 

and with the periodicity condition 

(P) u(x, t + co) = u(x, t) 

x e (0, I), teR . 
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In this paper, existence of at least one solution to the problem just outlined will 
be established if, roughly speaking, the function g is small and smooth. For a more 
precise formulation we refer to Section 2, Theorem 2A . 

The generalized Newton iteration scheme our proof leans on requires to solve but 
the linearized equations related to (E). To this end, we have to restrict ourselves to 
functions a, o which are smooth on an open neighbourhood of 0 e R and satisfy 

(0.1) a(0) = cr(0) = 0 , a'(0) = d > 0 , G'(0) = a > 0. 

If quasilinear equations are involved, there are other methods to solve them, see 
e.g. [4]. Our approach seems to have the benefit of allowing to add another nonlinear 
term to (E) containing e.g. all derivatives of u up to the order 2. Speaking about 
a beam equation, we should mention the work [6] of H. Petzeltova for completeness. 

To agree upon notation, let the symbol R stand for the set of all reals, while Z 
is the set of all integers, and Z + denotes its positive part including 0. Throughout 
the paper, the symbols c(v) are used to denote strictly positive constants depending 
on the quantity v only. 

1. Function spaces. Following [7], we determine the spaces in which the solution 
is to be looked for. Seeing that the concrete values of /, a> do not matter, we may put 
co = 2TC, / = 7c, and Q = (0, n) X (0, 2n). 

To begin with, the symbols Lp = Lp(Q) are reserved for the spaces of integrable 
functions with the norm || ||L defined in the standard way. 

Next, we consider anisotropic Sobolev spaces of periodic functions Hkj\ {Hk,J} deter
mined as the completion of all smooth (real-valued) functions satisfying (P), {(P), (B)} 
with respect to the norm 

\\v\\Hk,j = max({ | |a>| |L 211 = o, 1,..., k}, {||a;v||L211 = o, 1 , . . . , j}) 

(see [9]). 

Finally, the most important spaces are U„, ne Z + , 

Un = {v\dJ,veH4-2,j = 0,l,...,n}, 

Un = U„n H42 

with norms 

\\v\\Vn = max{||5^||H4,2 | j = 0, 1 , . . . , n} . 

In a similar way, we set 

/„ = {v\dJ
tveH2-2, j = 0 , 1 , . . . , n), 

\v\ln = max (|J3ft>||Hz,2|, j = 0, ! , . . . , « } , 

G„ = {v\d{veL2, j = 0 , 1 , . . . . n } , 

|H|G„ = m a x { | ^ | y , j = 0 , l , . . . , n } . 
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Being linearized, the inverse operator related to (E) loses derivatives, which is an 
inherent difficulty with hyperbolic problems. To overcome it, smoothing operators 
are needed. 

Every v e H0,0 can be expressed in the form 

00 

0 = X Vi(X) Zi(0 > Vi = Jo" V(X> 0 z i (0 d t 
i = oo 

where 
zi = i/VOO s m 0 0 > i > o 

1/V(2TC) , i = 0 

1/VW c o s 0 0 J i < 0 , i e Z . 

For a fixed number r > 1, the sequence of linear operators S„ = Sn(r), ft e Z + is 
defined as 

(1.1) Snv = X vt(x) z{t). 

It is a matter of routine (cf. [7]) to prove 

(1-2) \\Snv-v\\Xk = r-'\\v\\Xk+1, 

(1-3) « M k + , = r*l\\v\\Xk! l,kel+ 

where U, I, or G can be inserted instead of X. 
Pursuing Hormander's work [ l ] , we draw from (1.2), (1.3) the interpolation 

inequality 

(1-4) \\v\\XnSc(k,l,n)\\v\\Xk\\v\\x;\ 

n = Xk + (1 - X) I, n,k,lel+ , X e [0 ,1 ] . 

Combining (1.4) with the well known relations ab ?~L apJp + bqJq, ijp + Ijq = 1, 
we conclude (cf. [3]) 

(1-5) I K I k . N k 2 = c(n, + m O d k l k M r - . + I K I k , I K I k , ) . 

ni? mte I+
 y nx + mx = n2 + m2 = rc3 + m3 , i = 1, 2, 3 , 

Hi = rc2 = n3 

where the symbols K, Y stand for U, I, or G. 

2. MAIN RESULT 

Theorem 2.1. Let an integer M = 10 be given. 

If (0.1) /to/ds, we are able tofmd e = e(M) > 0 such that the problem (E), (B), (P) 
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possesses at least one solution u e U[M/2] (in the sense of generalized derivatives) 
whenever g e GM and 

(2-1) W o « < « -

If, moreover, g is continuous, then the solution u is a classical one. 
Remark . [M/2] denotes the greatest integer less or equal to M/2 . 
The main tool to prove the above theorem is the generalized Newton iteration 

scheme which will be introduced in Section 3. In connection with differential equa
tions, this method is often called Nash's or Moser's method, see e.g. [5]. 

To solve linear equations, some auxiliary results formulated in Section 4 and 
proved in Sections 6, 7 are of interest. The proof of Theorem 2A will be carried out 
in Section 5. 

3. ITERATION SCHEME 

We proceed analogously as in [2], [3]. 
Let us put 

F(u) = utt + oc(ut) + <J(UXX)XX , 

F'(u) y = ytt + oc'(ut) yt + (o'(uxx) yxx)xx . 

The following sequence of linear equations (for yn) is to be solved: 

(3.1),, F'(S„u„) y„ = hn , neZ+ 

where the function u0 is determined by the equation 

(3A ) - ! F'(0)uo = g. 

Our aim is to obtain the solution u as a limit of functions un, un -> u where un are 
given successively as 

n- 1 

M« = WO + Z y/c ' 
fc = 0 

The only terms we are to pick out are the functions hn. Following the Taylor 
expansion formula, we can express 

(3.2) F(uM+1) = F(un) + F'(un) yn + el
n+1 . 

Setting 

(3.3) el+1 = (F'(un) - F'(Snun)) yn 

we get by induction 

(3.4) F(un + 1) = F(uQ) + Y,K+niek, 
k=0 k-í 

ek = 4 + e\ 
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To accomplish F(w„) -> g, we put 

(3.5) Sn(g-F(u0)) = ^hk + Sn^ek. 
k=0 k=l 

Accepting the convention e0 = F(u0) — a, we easily derive 

(3.6) hn= -Snen-(Sn-Sn„SlL 

Combining (3.4) with (3.5), we conclude that 

(3.7) F(un+1) = g + en + 1 + (id - Sn) £ et 

e, k • 

k 
íc = 0 

4. AUXILIARY RESULTS 

To succeed in solving (3.1).,, the following assertion is of interest. 

Proposition 4.1. Given a fixed number N e I+, then O\(N) > 0 can be found in 
such a way that there is a unique solution y e UN to the equation 

F'(u) y = h 
provided that 

(4.1) M k < * l » UE^Un-
n = 0 

Moreover, we have the estimates 

(4.2) \\y\\v, ^ c(l) (\\h\\Gl+1 + \\u\\Vl+t \\h\\Gl) l = 0,l,...,N. 

Remark . According to embedding theorems (see [9]) U4 Q C2(Q). Consequently, 
dl being chosen close to 0, F'(u) y is defined and the equation is satisfied in the sense 
of generalized derivatives. 

We postpone the proof to Section 6. 
The next proposition enables us to estimate the norm of the nonlinear terms 

appearing in Section 3. 

Proposition 4.2. Let us consider a smooth function Q, Q: ( — p, p) -> R.The embed
ding H2,2 Q C(Q) being taken into account, the composition Q(V(X, t)) makes sense 
provided that 

(4-3) HU<<5 2 , 

S2 > 0 being sufficiently small. 
Under these circumstances, we have the estimate 

(4-4) Mh,*<t.Q)M')\i« + MA 
for any v e I,, I e Z + . 
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Remark . If It were ordinary Sobolev spaces, the theorem above would coincide 
with that presented by Moser in [5]. 

For the proof we refer to Section 7. 
Taking advantage of Proposition 4.2, we will estimate the quantities en. To begin 

with, we assume 

(4-5) II Un || U2 + \\yn\\u2 < <̂ 3 , 

S3 > 0 small enough, for we want all terms involved to be well defined. Observe 
that the space H2,2 is a Banach algebra, which seems to be crucial in what follows. 

Let us, for instance, treat the most difficult termf appearing in e\+x, 

f = 82
x | 0 (1 - s) a"(d2

x(u„ + sy„)) (d2
xy„)2 ds . 

For 0 = j = / we get 

Pif\L S c(l) l \\d2
xy„\\Ijt \\d2

xy„\Ij2 ft \\a"(d2
x(u„ + sy„))\\Ij3 ds . 

jl+J2+j3=j 

Using (4.4), we conclude 

\\f\\Gl = c(i) £ (1 + \\un\\Ull+2 + \\yn\\Un+2) \\yn\\Ul2+2 \\yn\\ul3+2 • 
11 + 12 + 13 = 1 

Repeating this procedure, we obtain the estimates 

(4.6) |e 0 | | G l ^ c(l) ^ (1. + | | a 0 | D l l J |«o«Ull + 2 | « o | | P u + . -
11 + 12 + 13 = 1 

(4.7) \e'„+l\Gl í c(l) Z (1 + | |u„ |k+ 2 + ll^lt,,, J \\yn\Ut2 + 2 \\yn\\Ul3 + 2 
11 + 12 + 13 = 1 

(4.8) | e „ 2
+ 1 | 0 l ú c(í) I (1 + | |u.| |D|I+a) | y „ | k + 2 ||u„ - S„u„\\Un+2 

11 + 12 + 13 = 1 

where I e Z + , un9 y n e Ul + 2. 

5. PROOF OF THEOREM 2.1. 

First of all, we put N = M — 1 where M appears in Theorem 2.L Further, 
a number f$ is chosen such that 2pe(N + 1, N + 2). Consequently, j5 > [M/2] = 

_ 5. Finally, let the relation (2.1) hold for some 8 > 0. 
In view of Proposition 4A , there exists a (unique) solution u0 of (3.1)_ x satisfying 

(5.1) \\u0\\Vl^c(l)\\g\\Gl+li / = N, leZ+ . 

In order to solve (3.1)n, ne Z+ ,WQ require both the relation (4A) for Snun and (4.5) 
for m = 0 , 1 , . . . , n — 1 where we have set u_l = w0, y_x = 0 . To fulfil that, we 
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have to keep um, ym-i small, more precisely, 

(5.2)„ \um\VA + | |yw-i | |c/4-g^4 forall m = 0 , l , . . . , n 

is required where SA > 0 is sufficiently small. 
Observe that (5.2)0 holds provided the number e > 0 has been chosen small 

enough. According to Proposition 4.1, (3T)0 is solvable and the solution y0 satisfies 

I W k ^ c(l) (\\h0\\Gl + 1 + \\S0u0\\Vl + A \\h0\\Gl), l£N. 

For an arbitrarily chosen d > 0, we are able to find e > 0, a ^ S such that 

(5.3)0 \\yo\\ui£S forall J = 0 , 1 , . . . , N 

and e appearing in (21). To see that, we combine (4.6), (5.1) with the above estimate. 
Following [3], our goal is to choose <5 > 0 so small that all equations (3.i)n may 

be solvable and 

(5.3). | |y„|k S Sr^^ 

may hold for all Z = 0, 1 , . . . , N. 
At this stage, we proceed by induction. We intend to prove (5.3)n + 1 having already 

shown (5.3)m for all m = 0 , 1 , . . . , n. 
To this end, we estimate um + i as follows: 

m 

IK+i||U. -S IKIk + IIWU, 
Jc = 0 

(according to (5.1), (5.3)) 
m 

^dc(l)(] -f £ r ( ' -" ) f c) . 

Summing up the series on the right-hand side, we deduce 

(5.4) I t W i l k - S M ' K 1 + r (*' /mm + 1)) forall l£N9 m § n . 

Consequently, (5.2)w+1 is satisfied and we are able to solve (3.1)w+1. 
The unique solution yn+1 fulfils 

|bn+l||ll, = c(/)( | |hn + 1 | |G l + 1 + \\Sn+lUn+1\\Ul + A | |h , J + i | |G l) . 

To accomplish (5.3)rt+1, we are to treat but the term ||/iM+1 | |G?, namely5 w e a r e going 
to prove 

(5.5) K + I||G, = S2 c(l) r ( ^ 2 ^ 4 ) ( „ + i ) 9 l e z + m 

Indeed, we can pick out 3 > 0 such that 5 c(l) <: 1 for all / = N. SinCe 

\ \ S n + 1 u n + l \ \ U l + 4^rl^i%, 

w e g r t | | y . + i | | a I s S * ' i ( , + 5 " a / l ) ( " + 1 ) . 
Since p > 5, (5.3),, +1 follows. 
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We focus our attention upon (5.5). To estimate em+u we derive 

II(id - S m + 1 ) H x . l L < r<'~'*><'"+1)llt« II 
| ] \ m-nj "m+lHl/, = r \\um+l\\UN • 

In accordance with (5.4), we have 

(5.6) \\(id- Sm+i)"m+i||t/, g <5c(/)r(i-«C"+1) for all l£N, m^n. 

Combining (4.6)-(4.8) with (5.4)-(5.6) we obtain 

(5.7) \\em+l\\Gl_52c(l)r«~^^v fotaU l^N-2, m^n. 

Reasoning as in (5.4) we get 
m 

(5-8) 1 I « * 1 G , -$2C(1)(1 + r('-2/. + 4)(-.+ D)> l^N-2. 
k = 0 

Due to N + 2 > 2p, we obtain similarly as in (5.6) 

(5-9) ||(id - Sj)£ek\\Gl <; S2c(l)r^2p + ̂  + ̂  I) 

for all / g N - 2 , j = n , n + 1. 

The hardest term to estimate appearing inhn + 1 is 

(5.10) ||(Sn+1 - Sn)£ek\\Gl _ ^ c ( / ) r«-2 / ,+4„„+i ) 
fc = 0 

where / is supposed to satisfy / ^ N — 2. 
On the other hand, if / > N - 2, we have 

(Sn+i - Sn)J_ek\\Gl _i \\Sn+1^ek\\Gl + \\SnY,et fc||G, 
fc=0 fc = 0 

According to (V3), (5.8), one has (5.10) even for / > N — 2. Consequently, (5.5) 
has been proved. 

Solving the equations (3.1)„, n e Z+ , we obtain the sequence {un}^=0. Moreover, 
according to (5.3), this sequence admits a limit u e U[M/2] and, a fortiori, un -> u 
in U5. Using (3.7), we get the estimate 

n 

||r("»+i) - fli||c. ^ k + i | k + l(id - S»)Iek | |Go ^ 
fe = 0 

(according to (5.8), (5.9)) 
< ^ 2 c r ( - 2 / i + 4)(n+l) _ 

Consequently, F(un+1) -> g in G0. 
On the other hand, U5 Q H4'7. In view of embedding theorems (see [9]), all 

derivatives of un up to the order 3 are continuous and converge to the corresponding 
derivatives of u in C(Q). Thus F(un+1) -> F(u) in G0, and we get 

(5.11) F(u) = g . 
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If g e C(Q), then uxxxx e C(Q) due to (5.11). Theorem 2.1 has been proved. 

6. Linear equations. In this section, our aim is to prove Proposition 4.L The 
problem consists in solving the linear equation 

(L) Ly + (b(x, t) yxx)xx + w(x, t) yt = h 

where a solution y is to satisfy the conditions (B), (P). We have denoted Ly = 
= ytt + dyt + ayxxxx, b = v'(uxx) — a, w = a'(ut) — d. According to (4.1), we 
have 

00 

b,wef)In. 
n = 0 

To begin with, we claim that there is an equivalent norm on H4,2 given by 

(6-1) H f l , . 2 = max{ | |3> |M3r j ; |U 

(see [9]). 
Seeing that the standard Galerkin method is applicable to our situation, we are 

going to derive a priori estimates only. For this purpose, we are allowed to assume y 
to be smooth. 

We put (cf. [6]) 

0(y) = dy + 2yt - dytt - 2yttt + — yxxxx . 

For / e I+ we set S(y, I) = G((-1)1 d]ly). 
Let us multiply the equation (L) successively by S(y, I) and integrate over Qfc 

Using integration by parts, the following relations are obtained: 

(6.2) SQLy3(y,l) = d\\d\+1y\\l2 + d\\8l,+2y\\l2 + dapl d\yfLl + 

+ d^¥lVíy\l + d4nd*yl Л^УÌІ + ^" 

(6-3) \lQh3{y,l)\^c{d,a)\\h\\G^\\y\\v,-

Next, we are going to show that 

(6.4) |Jflwy.S(y,0|S-c<0£M',t.-J3'k|3'k-
k = 0 

The most difficult term is A, 

A = ^wytdV+3y = ( - l y ^ ^ C 11)a!+1"»waj+l>a!+ay. 

With the help of the Holder inequality, we get 

\A\ ^ c(l)i ||d.+1-*wlc(2) \\y\\vk \\y\\v, + Wc ( 2 ) \\y\\l,. 
t = 0 
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Owing to H2'2 Q C(Q), (6.4) follows. 
Finally, we estimate 

(6-5) \k(byxx)xxS(y, 0| __ c ( 0 I |- | J l + 2_k \\y\\Vk \\y\\v, • 
fc = 0 

The hardest terms seem to be 

B = fQ {byxx)xx a2l+3y, D = $Q (̂ yxx)xx tflyxxxx: 

To cope with B, we use the embedding relation (see [9]) 

(6-6) h„,||L2 < c H „ 4 , . 

We have 

B = (-i) , + 2[l £ ( ' "J"2)9!+2"^at^^_„, 
and, consequently, 

|*| < c(i)i\\8r-kb\\C(Q) \\y\\Uk ||,||., + \djb\cm bWi, • 
fc = 0 

As to the term D, we use the estimates (see [9]) 

(6.7) ||v_||L4 S c\\v\\H4t2, 

(6«8) \\Vxx\\c(Q) ^ C|H.H4.- ' 

We can decompose 
D = \Q x̂xyxx tflyxxxx + 2bxyxxx d2lyxxxx + byxxxx d2lyxxxx . 

In view of (6.8), we deduce 

->i = f *__)__ ^'y„„„„ = ( - i y £ f ( H aJ-*.» ajjr« 0.J____ , 

N _. c(0I13{-**,_1__ ||5?y„„||c(2)||3^„„„||_2 __ c(01„-!_,_„ \\y\\Vk \\y\\v, • 
fc=0 fc=0 

The second term is treated in the following way: 

D2 = f bxyxxxdVyxxxx = ( - l ) ' i f (!)d\-kbxd
k

yxxxd\yxxxx, 
JQ fc=oJOA'v 

\D2\ < c(l)i \\8\-kbx\\u \Hiy„\u \\d\yxxxx\L2 < c(l)i \b\lt.u \\y\\Vk \\y\\v, • 
fc=0 fc=0 

Summarizing the results just achieved, we get by (6.1) 
i 

I 
fc = 0 

(6.9) \y\2
Ví < c(0(Z(«w|| J l+1 .k + ||_||Jl + 2_k) \\y\\Vk \y\tt, + ||h«Gl + 1 \\y\\v), 

1 = 0 , 1 , . . . . 

371 



According to (1.5), we obtain 

Ml. = c(0((lkll/,+, + IHI/.J IMk \\y\\v, + Hk+1 IMk) + 
+ *(0(HI/.HN/,)IMk> ' = O,L.... 

For N = 0 there exists <55 > 0 such that 

(6A0) HI-,, = c(l)((H\r, + l + Mr, J \\h\\Gl + \\h\\GlJ 

holds for all Z = 0, 1,. . . . .N whenever 

(6.11) H , . + \\b\\l2<S5. 

To conclude this section, we claim that the a priori estimates (6.10) imply (4.2), 
while (6.H) corresponds to (4.1). Indeed, we can use Proposition 4.2 together with 
the relations 

K*||i , = < 0 \\v\\ul+2 > H I / , = < 0 IM|irI+a • 

7. PROOF OF PROPOSITION 4.2 

We are to estimate ||3^(t;)||H2f2, j = Z. 
First of all, suppose 1 = j = /. The term G^(v) can be expressed as the sum of 

quantities 
(d°°Q)(v)(dtv)«>...(divyj 

j 

where £ a/J = J a n d a t l e a s t o n e at + 0« 
i = 1 

Since the space H2'2 is a Banach algebra, we get 

pJ
tQ(v)\\Hi,2 = c ( 0 I ||3"0c(»)|H2., ||<3,tfH',,,... \\div\\y2,2 ^ 

fin 

^-<OZII^c(°)lir--dHI"!-IHI?J--
fin 

(according to (1.5)) 

= c(/,^)i;||a>(«)||H,,,||t;||ri. 
fin 

If j = 0, we estimate 

IkWIU,., ^ IkOOlk + IkeOOIk + ||aiJc(»)|k + 

+ I M » ) l k + II d2e(v)\\Ll. 
Let us treat ||<9*e(i>)||t2, for example: 

p2
xQ(v)\\L2S\\Q"(v)vl\\L2 + \\Q'(v)vxx\\Ll^ 

= lk"(y)i|c(2) |»»|k K l k + ||c'(p)!|c(D) IMk-2 • 
To complete the proof, we have but to realize that H2-2 QC(Q). 
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Ѕ o u h r n 

ČАЅOV PERЮDICKÁ ŘEŠENÍ KVАЅILINEÁRNÍ ROVNICE TYČE -
POUŽITf METOD URYCHLENÉ KONVERGENCE 

EDUАRD FEIREIЅL 

Аutor vyѕеtřujе čaѕovе pеriodiсká řеšеní kvaѕilinеární rovniсе tyсе mеtodami uryсhlеné 
konvеrgеnсе. Na základё Nеwtonova itеračního ѕсhеmatu jе úloha aproximována poѕloupnoѕtí 
linеárníсh rovniс řеѕеnýсh ѕtandardní Galеrkinovou mеtodou. Ztráta dеrivaсí, typiсká pro rovni-
се hypеrboliсkého typu, jе kompеnzována užitím zhlazujíсíсh opеrátorů. 

Је dokázána еxiѕtеnсе alеѕpoň jеdnoho (klaѕiсkého) řеѕеní úlohy za přеdpokladu, žе pravá 
ѕtrana rovniсе jе doѕtatеčnе malá a hladká. 

Pезюме 

ИЗУЧEHИE ПEPИOДИЧEGКИX BO BPEMEHИ PEШEHИЙ BАЗИЛИHEЙHOГO 
УPАBHEHИЯ CTEPЖHЯ ПPИ ПOMOЩИ METOДOB УCKOPEHHOЙ CXOДИMOCTИ 

EDUАRD FEIREIЅL 

Автop изyчaет пеpиoдические вo вpемени pешения квaзилинеìшoгo ypaвнения стеpжня, 
пoльзyясь мегoдoм yскopеннoй сxoдимoсти. Ha oснoве итеpaциoннoгoметoдa Hютoнa зaдaчa 
aнпpoксимиpyется пoследoвaтельнoстью линейныx ypaвнений, кoтopые pешaются метoдoм 
Гaлеpкинa. Tипичнaя пpи pешении гипеpбoлическиx зaдaч тpyднoсть — пoтеpя пpoизвoдныx — 
pешaется пpи пoмoщи pегyляpизyющиx oпеpaтopoв. Пoкaзaнo, чтo зaдaчa oблaдaет пo кpaй-
ней меpе oдним pешением, если пpaвaя чaсть ypaвнеңия является мaлoй глaдкoй фyнкцией. 

Authoґs address: RNDr. Eduard Feireisì, CЅс, Mаtеmаtiсký úѕtаv ČЅАV, Žitná 25, 115 67 
Pгаhа 1. 
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