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O N A POTENTIAL PROBLEM WITH INCIDENT WAVE 
AS A FIELD SOURCE 

VLADIMIR DRAPALIK, VLADIMIR JANOVSKY" 

(Received March 13, 1986) 

Summary. A field source which is given by an incident wave in a neighborhood of an inhomo-
geneous body (in R 2) yields an integral equation on the boundary of Q. This integral equation 
may serve as a boundary condition for the field equation on Q. If Q is a circle then the existence 
and uniqueness of the new boundary value problem is proved and an algorithm for the approxi
mate solution is proposed. 

Keywords: diffraction, nonlocal boundary condition, finite elements. 

AMS Subject classification: 31A30, 65N30, 35J15, 35J67, 78A20, 78A45. 

1. INTRODUCTION 

We investigate a classical problem of the wave scattering: Let f = f(x) be the 
density of an electric charge in ÍR2 (the support off, supp f is assumed to be compact 
in IR2). Let w = w(x) on IR2 be the potential of the electric field in vacuum. Provided 
an inhomogeneous body Q (Q is a bounded domain in IR2, Q n suppf = 0) is present, 
the field is changed. If u = u(x) is the potential of the resulting field in IR2, find u 
on Q. 

The classical mathematical formulation reads as follows: We say that u is a smooth 
solution if u = u(x) is continuous and bounded in IR2, all the first derivatives of u 
are piecewise continuous in IR2, and 

(1.1) 4 M S - A ( a , W ^ ) = / ( x ) 

on IR2 in the sense of distributions. Here and in the sequel, the summation convention 
of repeated indices i and j is used. 

We assume 

(i) strong ellipticity of A, i.e. au e L00(lR2), there exists a positive constant c such that 

a.Mj^cUi for each ^ ( ^ ^ e ť ; 
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(ii) atj(x) = Sij outside Q, where Q is a bouded domain in LR2, dQ is "smooth 
enough"; 

(iii) feL2(lR
2)? suppfis compact in LR2, suppfn .0 = 0. 

The function w = w(x) is called the incident wave. We assume w to be continuous 
and bounded in LR2, and to satisfy 

(1.2) -Aw=f 

in LR2 (in the sense of distributions). 
Thus, in order to find u on Q, one has to solve (1.1) in LR2. Traditional numerical 

procedures were based on an approximate reduction of LR2 to a "sufficiently large" 
bounded domain containing Q (of course, the larger domain, the better). 

The aim of this paper is to formulate a properly posed boundary value problem 
for u on Q. It means that u should satisfy Au = 0 on Q with a boundary condition 
on dQ. Moreover, the trace of w on dQ are the only data of the new boundary value 
problem. 

If Q is a circle then the boundary condition on dQ is considerably simplified. 
We give some proposals concerning numerical solution of the relevant boundary 
value problem. 

We suggest a practical strategy in the case of a "general" Q: Replace the given Q 
by any circle Q' which a) contains Q and b) does not intersect suppf; define atj = <5l7 

on Q' — Q, of course. Then Au = 0 on Q' with a comparatively simple boundary 
condition on dQ'. Naturally, the trace of w on dQ' is equal to the data. 

2. BOUNDARY CONDITION ON dQ 

According to our assumptions, the functions u and w are harmonic and bounded 
in a neighborhood of oo. It is well known that both u and w are continuous at oo, 
i.e. 

(2.1) lim u(x) = uoo , 
| x | - + oo 

(2.2) lim w(x) = ww . 
|JC|-+ + OO 

Moreover, the first derivatives vanish at oo, namely 

(2.3) — (x)= 0(\x\"2) as |x|-> +oo, 
dxt 

(2.4) ^ ( x ) = o ( | x | - 2 ) as H - + C O 
OX i 

for i = 1, 2. 
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Lemma 2.1. The equality 

(2.5) — f(y) log \x - y\ dy = w^ - w(x) 
2кJR2 

holds for each x e I D2 

Proof. The above formula is one of the classical Green's formulae. Thus, the 

proof is omitted. 

N o t a t i o n . Let Qc be the complement of Q in U2. We denote by \i = \i(y) the 

outward normal vector at y e dQc with respect to Qc. If y e dQc then the symbol 

du\dpi(y) means the derivative of u at the point y along the direction fi(y) "with 

respect to Qc", i.e. 

du d e f , v... du , x 

~r\= w)lim 7~ (z) 
where/x = (^i,/^)-

Lemma 2.2- The equality 

I f 1 
(2.6) — f(y) log |x - y\ Ay = W o o - - u(x) -

2n J QC 2 

2^J^l^(y) My) J 
holds for each x e dQc. 

Proof. Let x e 5.QC be given. We define the following sets depending on positive 

parameters R and 8, R > 8: 

BR,s = {y e U2: 8 < \x - y\ < R} , UR>d = BR>d n Qc, 

SR = { j ; G ^ 2 : | x - y | = K}, Ss ={yeU2:\x- y\ = 8}, 

K8 =SdndUR>5, Dd =dQcn8UR>3. 

We assume K's large and <5's small enough so that supp f c UR>d. Clearly, dURd = 

= SR u K§ u D5. 

Let us extend the definition of ^( j) to SR and K^: If y e SR u K5 then \i = ^(y) 

is the outward normal vector at y with respect to URt&, see Fig. 1. Moreover, we set 

= fi((y) lim Jt (x) , // = (//1? /^2) . 
ôџ(u) x-+y дxt 

xeUR,ô 

We define 

(2-7) Iw = f í / ( . v ) l o g | x - y | d y . 
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Fig. 1. 

Since f = Au = —Aw on U^, the classical Green's formula yields IR5 = y1 + y2, 
where 

ľi = 
t ÔU 

2nJwR,Jn(y) 
log \x - y\ da(y) , 

h\ u{y) 

2nJevR,6 

d log |x - y\ 
d<т(y) . 

2nUvR,d

 v " Sn(y) 

Clearly, yx = y 1 4 + y1>2 + y1>3 where y 1 ; 1 and y,,2 and y1>3 are equal to 

үn\' -гhlo*\x- y\d<Ţ(У) 
du 

lrSfi(y) 

where F is to be replaced by Kd and D8 and SR, respectively. Similarly, y2 = 72,i + 

+ y2,2 + ?2,3 where y 2 ) 1 and y2t2 and y 2 j 3 are equal to 

l(u(y)д-^Һ^Ada(y) 
2тtJ г ðju(ҳ) 

where r := K5 and D5 and S^, respectively. All y's are functions of R and <5. 

Passing R -> +00 and <5 -> 0 + . we obtain y l f l -*• 0, y2>1 ~> - i w ( x ) (using the 
smoothness of dQ), 

ľ l , 2 " 

ľ2,2 

1 

2тг 

дu log |x - y| d o(y), 

- »(>>) 

esìc дџ(y) 

д log \x - y 

õfi(y) 
da(y) 
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Moreover, by virtue of (2.3) and (2.1) we can prove y1>2 -» 0 and 72,3 ~* u^. Finally, 
(2,7) implies that 

IR,S -* — f(y) log I* - y\ dy . 
2KJQC 

The formula (2.6) immediately follows from the above facts. Q.E.D. 

Corollary. We have 

= w(x) + u^-w., 

for each x e dQc. 

Proof. Since supp fn Q = 0, we have 

$ncf(y) log \x - y\ dy = JR2f(y) log |x - y\ dy . 

Then (2.8) follows directly from (2.5) and (2.6). Q.E.D. 

N o t a t i o n . Let y e dQ. We denote by du\dv(y) the derivarive of u along the co-
normal at y with respect to O, i.e. 

= ^ f y ( y ) - ( - M y ) ) - l i m 

dv(y) z-*y dxj 
v ' zeQ 

Due to (1.1) and the Gauss theorem, 

du du 
(2.9) 

dv(y) dfi(y) 

at any y e dQ. The equation (2.9) expresses the continuity of "fluxes" through dQ. 

Theorem 2.1. If u is a smooth solution then 

(2.10) Ï -M-Ѓ Í U>)Щ^ 
2 2^JðSìl w ) 

+ 

^ - log |x - y| V dcľ(j;) = w(x) + c 
) 

du 

My) 
for each x e 8Q, where c -- ^ - w a . 

Proof. The assertion follows from (2.8) and (2.9). Q.E.D. 

3. BOUNDARY CONDITION ON A CIRCLE 

Let us assume Q to be a circle; without loss of generality, Q = {x e U2: \x\ < R}. 
One easily calculates that 
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for each x e dQ, y e dQ, x 4= y. 
Introducing polar coordinates (r, a): xx = rcos a ? *2 = r s ina , we can write 

(2.10) as 

i i c2n r2n du, 
(3.2) - u(R, a) + — u(R, P) dp + \ jf(a - J8) — («, j8) d/J = w(R, a) + c , 

2 4rcJ0 J 0 ^v 

where c = ux — wx and 

(3.3) jf(a) = - — [log R .7(2) + - log (1 - cos a ) ] ; 
2TC L 2 

the symbol (du\dv) (R, 0) means the value of du\dv(y) at the point }> with polar 
coordinates (R, /?). 

Lemma 3.1. We have 

/»2n 
I tfict - /ft cos fcr? d/? = 

2fc 

2fc 

(3.4) í j f (a - j?) cos fcjS d£ = — cos fca , 

2rc n 

sin kpdfi = — sin fca 
/*2n 

(3.5) Jf (a - fi) si 

far fc = 1, 2 , . . . and any 0 ^ a < 2TT. Moreover, 

(3.6) J J" Jf (a - jB) djS = - K log # 

for any 0 = a < 2n. 

Proof. It can be done by a straightforward verification. 

The above lemma describes the spectrum of an operator K which is (formally) 
defined as follows: 

(Kv)(a)đ=ГjГ(a-ß)v(ß)dß. 

Later, we will make clear on which spaces K acts. 

N o t a t i o n . We introduce 

sk = s/c(a) = s 1 n ^ a ? ck — cfc(a) = cos fca 

(functions of a) and parameters 

A* = — for fc= 1,2,... 
2fc 
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Let Hr(dQ), r real, be the usual Sobolev space with the norm |• [|rafi. The 1-I) 
manifold dQ is isomorphic to the interval [0, 2n), and it is well known that the norm 
II * ||r,0fl c a n be equivalently defined by means of the Fourier series: 

Identifying L2(dQ) with its dual, let <•, •> be the pairing of Hr(dQ) and H~r(dQ). 
Ifve Hr(0Q) then 

w \ <M> 
v = v0 + £ (¥k + *-*<*) > w h e r e *>o = ——-, 

fc«=i 2%R 

„ _ <"> 5/c> „ _ <», Cfc> 
vk — s y - f e — 

7ГR 71K 

We set 
def oo 

H2,*> = «*[>$ + ~ (- + fc)2r (»* + »-*)] • 
fc=i 

We want the operator K to positive. Thus according to (3.6) the operator K should 
act on functions satisfying the condition JQ" v(a) da = 0. This motivates the following 

Remark 3.1. Any solution u to (1.1) is determined up to a constant shift. Thus, 
we may assume the smooth solution u to satisfy 

(3.7) fi'u(R,p)dp = 0. 

The same can be assumed about the incident wave w, i.e. 

(3.8) 5l*w{R,P)dfi = 0. 

We define Hr(dQ) = {v e Hr(dQ): <t>, 1> = 0} for each real r, with the natural 
oo 

norm | • |r. If v e Hr(dQ) and v = £ (vksk + V-kck) is the relevant Fourier series then 
fc=i 

def oo 

H2 = ̂ Zfe>*2 + ^ ) -
fc = i 

By virtue of Lemma 3.1, we can specify our definition of the operator K on Hr(dQ): 
00 

Let ve Hr and let v = J] (vusk + V-kck) be its Fourier series. Then 
fc=i 

def oo 

(3.9) Kv - X Xh(vksk + v_kck) 
/ c= i 

and 

(3.10) K'^^t^iWk + v-A). 

Lemma 3.2. The operators 

K. Hr(dQ)-^ Hr+1(dQ), 

K-1:8r(dQ)->Hr-1(dQ) 

449 



are bounded for each real r. Moreover, KK l = K *K = identity (on Hr(dQ)). 

Proof. The proof follows easily from the asymptotic properties of the eigenvalues 

K-
Suppose u is a smooth solution. We easily observe that Au = 0 on Q. Thus, 

integrating by parts (Green's theorem), 
•2xi 

0 = f Au dx = - K f " — (R, ß) dß 
Ja Jo дv 

The same is true in the weak sense, see Lemma 3.3. 

( \" f 8w dv A Notation. a[w,v)= atj dx 
JQ dxjdXi 

for each w and v from H 1(.Q). 

Remark 3.2. If ueHx(Q) then the assumption Au = 0 on Q in the sense of 
distributions is equivalent to the condition 

(3.11) a(u, v) = 0 for each v e H^(Q). 

It is well known (see e.g. [5]) that the operator djdv maps HX(Q) onto B~1/2(dQ) 
continuously. Assuming ueHx(Q) and (3.11), we can equivalently define dujdv 
as follows: 

(3.12) / — , v\ = a(u, v) for each v e H1^) . 

Lemma 3.3. Let u e HX(Q) satisfy Au = 0 on Q in the sense of distributions. 
Then dujdv e R-1/2(dQ). 

Proof. It suffices to take v = 1 in (3.12). Q.E.D. 

We shall proceed with the formulation of a weak solution to the problem (1.1). 

Notation. / = {«e HX(Q): the trace of w on dQ belongs to H1/2(dQ)}. 

Problem. Let w e H1/2(dQ) be given. Find ueffl such that 

(3.13) Au = 0 on Q in the sense of distribution , 

and 

(3.14) lu+K— = w on dQ. 
' 2 dv 

Theorem 3.1. Let u be the smooth solution to (1.1) satisfying (3.7). Let w be the 
incident wave satisfying (3.8). Then u is a weak solution, i.e., u satisfies (3.13), (3.14). 

Proof. It is obvious that u e H1^). By virtue of the assumption (3.7), the trace 
of u belongs to H1/2(dQ). 
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The restriction of (1.1) to Q implies (3.11). As the boundary condition on dQ is 
concerned, we have already shown that a smooth solution u satisfies (3.2) 
on dQ. Thus, taking into account (3.7), we have 

(3.15) -u + K— = w + c 
2 dv 

on dQ, c — u^ — w^. It suffices to show that c — 0 since then (3.13) implies (3.12). 
Taking into account Lemma 3.3, we observe that (dujdv) (R, •) e H~1/2(dQ). 

Then Lemma 3.2 implies that K dujdv e H1/2(dQ). According to the assumption 
(3.8), the trace of w belongs to H1/2(dQ). Since u e H1/2(dQ) ass well, (3.15) implies 
c e H1/2(dQ), i.e. c - 0. Q.E.D. 

Assuming u to be a weak solution, then, by virtue of Lemmas 3.3 and 3.2, we can 
write the boundary condition (3.14) as follows: 

(3.16) - — = -K-1u-K~1w. 
dv 2 

Since (3.13) implies (3.12), we observe that u satisfies 

(3.17) a(u, v) + KK~"V vy - (K^^, t?> 

for each v e 34f. 
On the other hand, if u e 2tf and (3.17) holds for each ve 2tf then (3.11) is clearly 

satisfied, i.e. (3.13) is true. Then (3.17) and (3.12) imply that 

_^, A = _ 1 <K-y vy + iK'xw, vy 
dv J 2 

for each t i e / . This statement means that (3.16) holds, i.e. (by virtue of Lemma 3.2 
again), u satisfies (3.14). 

We have proved the following 

Remark 3.3. (Variational formulation.) u is a weak solution if and only if 
ue2tf and (3.17) holds for each vetf. 

def 

Notation. \v\Q — y/(a(v, v)) for each ve Jf. Clearly, \*\Q is an equivalent norm 
on Jf. 

Theorem 3.2. The weak solution u uniquely exists for every choice of data. 

Proof. We verify the assumption of Lax-Milgram's theorem which is to be applied 
to (3.17). 

a) The right hand side <fC_1w, •> is a linear bounded functional on Jf, since 
K~xw e H~1/2(dQ) (see Lemma 3.2) and Jf is continuously embedded into H1/2(dQ). 

b) The bilinear form on the left hand side is elliptic in the sense that 
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a(v> v) + K K ~ % vy = \v\l for each vetf . 

In fact, a(v, v) = |t?|o and (see (3.10)) 
oo 

(K~% vy = £ 4 - 1 <^ f c + y-kcfc, t?msm + v_mcm> = 
fc,m=l 

= TCR £ At-
JK2 + t d t ) = I |t>|2/2>afl ^ 0 . 

fc=i K 

This completes the verification. Lax-Milgram's theorem implies the existence 
and uniqueness of u. Q.E.D. 

Remark 3.4. Taking v = u in (3.17), we easily obtain the following a priori 
bound of the weak solution u: 

1 2 
\u\l + - Mt/2,ao = ^ lw|i/2,ao |w|i/2,ao > 

iv 1v 

which implies 

and 
| M | l / 2 , 5 0 = 2 | w | 1 / 2 > a f i 

\ 

\u\Q^2R~^2\w\1/2>dQ. 

4. HINTS AT NUMERICAL SOLUTION 

In this section we assume Q = {x e (R2: |x| < R] again. Remark 3.3 offers the 
Ritz-Galerkin approximation to the solution u. Let Sh be a finite dimensional sub-
space of HX(Q); let Sh be spanned by a basis {cpu ...,<pN}. Define Sh = {veSh: 
<v, 1> = ()}. The space Sh is a natural approximation to ffl. 

We define uh e Sh to be the Ritz approximation to u at Sh, i.e. 

a(u\ vh) + i<K"1u \ v*> = <fC~1w, vh} for each vh e Sh. 

One easily observes that a(uh, 1) = <K~" V , 1> = <K_1w, 1> = 0 and Sh = 
= R1 © Sh. It means that uh can be defined equivalently as follows: 

Find uh e Sh such that 

Uuh, 1> = 0 and 
(4.1) \a(uh, vh) + KK~ V , tf*> = </C"1w, vh} 

(for each vh e Sh. 

We extend K~x to S/l: If v e Sh, let 

00 

V = t>fj + Z Ksfc + ^ - A ) o n 5*2 • 
fe=l 
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We define 
def r\ oo 

Kxv = K~\v - o0) = - Z Kvkh + v-kck). 
R fc=i 

Then uh solves (4A) if and only if 
N 

H* = Z a ^ / ' 
i = l 

where a = (a l 5 . . . , a^)1 6 RN satisfies 

(4.2) I <-,<«>., 1> = 0 
i = l 

and 

(4.3) Ba + Ma = f ; 

def 
B = {btj} »J=1,...,N > fci/ = «(<?/, ? l ) > 

def 

f = ( / i , . . . , / w ) T , / , =<K-1w)<P i>, 
def 

M = {mij}ij=i,...,N , rntj = i(K~ 1<pj, <pty . 

The matrix M is symmetric. Its entries are calculated from the definition of K"1" 
00 

Let <pj\da = vl + Z Hh + v-kck) 
j t=i 

be the Fourier expansion of <pj on dQ. Then 

<K" Vj , <?,•> = 2TT £ *0>& + vikvLk) . 
fc=l 

In the actual computation, the infinite sum should be replaced by a finite approxi
mation. The same problem arises in the computation of the entries of f. 

5. EXTENSIONS 

The operator A inside Q can be nonlinear, e.g. 

. d , „ x d w „ _ 
Au = «ij{^, w, VM) — for xGii 

dxt dxj 
[Au = —Au outside Q, of course). Then the boundary condition (2.10) will not be 
affected. Ine case of a circular Q, Theorem 3.1 remains true. Moreover, assuming 
a suitable concept of monotonicity (e.g. the strong monotonicity of A: H1^) -> 
-> (H1^))'), one can prove Theorem 3.2. as well. 
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The analogous problem in three dimensions can be treated similarly. For example, 
if Q is a ball {xeIR3: |x| < R] the boundary condition on dQ reads as follows: 

1 „,du 1 „ 
w = -w + K — + — Ku , 

2 dv 2R 
where w is the trace of the incident wave on dQ and K is an integral operator. In the 
spherical coordinates (r, a, #): 

def o m r2* v^9 a/? 5/^ s i n a/ d a / d 3 / def n (*n p2n 

(Kv)(R,*,&) = ±\ 
4TCJOJO л/(2(l — sin a sin a' cos ($ — $') — cos a cos a')) 

Both the analysis and the numerical treatment rely on the spectral properties of the 
operator K. Namely 

Kv = — v 
2k + 1 

where v = Yfc(a, 9) is any spherical function of order k, k = 0, 1,.... Details are 
to appear in a forthcoming paper. 

% 
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S o u h r n 

O JEDNÉ ÚLOZE TEORIE POTENCIÁLU SE ZADANOU 
DOPADAJÍCÍ VLNOU 

VLADIMÍR DRÁPALÍK, VLADIMÍR JANOVSKÝ 

Vyšetřuje se dvoudimenzionální model difrakce elektrostatického pole na omezeném nehomo
genním tělese. Je formulována nelokální okrajová podmínka, umožňující řešení problému na 
omezené fiktivní oblasti (např. kruhu), která obsahuje zadanou nehomogenitu. Takto reduko
vaná úloha j e aproximována metodou konečných prvků v kombinaci s Fourierovou metodou 
na hranici fiktivní oblasti. 
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Резюме 

ОБ ОДНОЙ ПРОБЛЕМЕ ТЕОРИИ ПОТЕНЦИАЛА С ЗАДАННОЙ 
ПАДАЮЩЕЙ ВОЛНОЙ 

V^А^Iмщ ^кАРА^^к, УьАШмйк. ^АNОV$к* 

Рассматривается двумерная задача дифракции электростатического поля в заданной 
(ограниченной) неоднородной среде. Формулируется интегральное граничное условие, при 
помощи которого задача корректно определяется внутри ограниченной фиктивной области 
(круга). Задача аппроксимируется методом конечных элеменков внутри и методом разложе
ния Фурье на границе фиктивной области. 

Ашкогз' аййгеив: 1ШОг. VЫ^т^^ ВгараНк, (1ос. БШОг. VЫ^т^^ ^апоVзк^ С8с, МЕР ШС, 
Маюзггашкё пат. 25, 118 00 Ргапа 1. 
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