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33(1988) APLIKACE MATEMATIKY No. 6,456—469 

NUMERICAL TREATMENT OF 3-DIMENSIONAL 
POTENTIAL PROBLEM 

VLADIMIR DRAPALIK, VLADIMIR JANOVSK* 

(Received March 13, 1986) 

Summary. Assuming an incident wave to be a field source, we calculate the field potential 
in a neighborhood of an inhomogeneous body. This problem which has been formulated in IR3 

can be reduced to a bounded domain. Namely, a boundary condition for the potential is formulat
ed on a sphere. Then the potential satisfies a well posed boundary value problem in a ball contain
ing the body. 

A numerical approximation is suggested and its convergence is analysed. 

Keywords: diffraction, nonlocal boundary condition, finite elements. 

AMS Subject classification: 31B10, 65N30, 35J15, 35J67, 78A20, 78A45. 

1. INTRODUCTION 

The present paper is an extension of [1] to the 3-dimensional case. Let / = f(x) 
be the density of an electric charge in IR3. Let w = w(x) be the potential of the relevant 
electric field in vacuum. Suppose that an inhomogeneous body Q is placed in the 
field. If u = u(x) is the potential of the resulting field on IR3 (due to scattering, u =f= w) 
then our aim is to find u on Q. 

We say that u is a smooth solution if u = u(x) is continuous in IR3, lim u(x) = 0, 
and 1*1-*°° 

en) Au^-i ±Lij{x)m~m 
i,j=l dXt \ OXj J 

in IR3 in the sense of distributions. We assume 

(i) ay e L^IR3), a^x) = Sij outside Q, where Q is a bounded domain in IR3; 
(ii) there exists a positive constant c such that 

3 3 

Zaijitijl%c^if for each c;eCR3 a.e. on Q • 

(iii) /eL2(!R3), supp/ is compact in IR3, Q n supp/ = 0 
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The function w (the so called incident wave) is assumed to be continuous in IR3, 
such that lim w(x) = 0 and 

| * | » 0 0 

(1.2) -Aw = / in IR3 

in the sense of distributions. 
We note that both u and w are harmonic in a neighborhood of oo. Due to the 

assumptions 

lim u(x) = lim w(x) = 0 , 
|JC|-*OO |x|->oo 

they behave asymptotically as follows: 

u(x) = 0(|x| - 1 ) , w(x) = 0(|x| - 1 ) , 

grad u = 0(|x| ~2), grad w = 0(|x |~2) 

as |x | -» oo. 
Using some standard arguments of potential theory, we can prove 

Theorem 1.1. Let the boundary dQ of Q be sufficiently smooth. If u is a smooth 
solution of (1.1) then 

(i3) i-w+il^Mv^)+;^hw•w(x) 

for each x e dQ with the following notation: 

(a) \i = ju(y) is the outward normal vector at y e dQ with respect to the comple
ment Qc of Q in IR3; 

(b) djdn(y) is the derivative at y e dQ along the direction fi(y) with respect 
to Qc, i.e. 

du d e f 3
 ( v r du , . 
Z W)lim T^ (z) ; 

dfi(y) i=l z->y &,• 
zeQc 

(c) djdv(y) is the derivative at y e dQ along the co-normal v(y) with respect 
to Q, i.e. 

rs def 3 * 

= E a.-.X->') ( - l t . W ) l i m — («) • 
^ V ( y ) ř » 1 = 1 ' -̂̂ У ^Xу 

z є ß 

Proof. We omit the proof which would follow almost word-by-word the proof 
of Theorem 2.1 in [1]. We note only that the fundamental solution — 1/(2TC) log |x | 
of the Laplace operator in IR2 should be replaced by 1/(4TC|X|) whichis the fundamental 
solution of the same operator in IR3. Moreover, the asymptotic behavior of u and w 
is different in IR3 (see above). 
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2. BOUNDARY CONDITION ON A SPHERE 

We assume Q to be a ball {x e IR3: |x| < R} with radius R. Let us rewrite (1.3) 
making use of the spherical coordinates (r, a, $): xx = r sin a cos 3, x2 = 
= r sin a sin S, x3 = r cos a. 

If x G dQ, y e dQ, x =}= y then, if (R, a, 3) and (R, a', 9') are the spherical coordina
tes of x and y, respectively, we have 

= 4TT Jf (a, 9; a', 3') , 
x y\ 

= — Ж(<t, 9; a\ 9') 
fy(y) |x - y| R 

where 

(2.1) /̂ f (a, S; a', #') = (1 - sin a sin a' cos (9 - 3') - cos a cos a ' )" 1 / 2 . 
4nRJ2 

Substituting into (1.3), we obtain the boundary conditions in the form 

(2.2) - u(R, a, S) + - f * f W(JR, a', S') X(a, S; a', 5') sin a' da' dS' + 
2 2 Jojo 

n2 K d i i I 
— — Jf (a, 3; a', S') sin a' da' dS' = w(R, a, £) . 

0 ^V(y)U(R,a',d') 
In order to simplify notation, we define an operator K, 

đef 
(2.3) Kv = (Kv) (a, 3) = ft $2

0
n Jf (a, 3; a', 3') »(a', S') R2 sin a' da' dS', 

which acts on sufficiently smooth functions on dQ. 
Thus, the traces u and dujdv of a smooth solution u should satisfy 

(2.4) i M + _ L Ku + K — = W on 5 0 . 
2 2R dv 

In the next step, we find the spectrum of K. To this end we make an observation: 
If v is a harmonic function on Q then the classical Green's formula yields 

•M = f f {£ 00 r-1-! - <y) j r ^ i l <K>) 
2nJdnlds \x - y\ ds \x ~ y|J 

at each x e dQ. The vector s = (yJjR, y2/R, y3/#)T is the outward normal vector 
at y e 8Q with respect to Q. In terms of the operator K, the above identity can be 
written as follows: 

(2.5) v = 2K— + ~Kv = 2 K ( - + — v\ on 30. 
J ds R \ds 2R J 
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It is well known that there exist homogeneous polynomials in 1R3 which are harmo
nic. In spherical coordinates they equal rn Yn(a, S), where n is an integer and Yn is 
a spherical function of degree n. Setting v — rn Yn(a, 3), we observe that 

^=_^ = nRn-iYn(a,9) = ~v on dQ. 
ds dr V J R 

Thus, substituting into (2.5), v = (2n + i)jR Kv on dQ. Since K acts on the trace 
of v, we conclude that 

(2.6) Yn = ^-±^KYn on dQ. 
R 

We recall the definition and basic properties of spherical functions: If n _t 0 is 
an integer then 

Pa(t) = — i l [(t2 -1)»] 
' 2"n\df L ' 

is the Legendre polynomial of the n-th degree. For each integer k, 0 _ k _ n, we 
define the conjugate Legendre functions 

p«(0 = ( i - t T 2 ^ l 

The space of spherical functions Yn = Yn(cc, 5) of degree n is spanned by the basis 
{Y<*>K__„, where 

Y<>, 3) = P„(cos a) , 

Y<*>(a, S) = P<*>(cos a) sin U , k = 1,..., n , 

Y<*>(a, 9) = Pj-^cos a) cos fcS , fc = - 1 , . . . , - n . 

The above basis is orthogonal in L2(dQ). The functions Y]*> can be normalized in 
L2(dQ). Namely, setting 

"• " U + i k (»-iw " 
for fc = - n , . . . , n, where c0 = 2, cfc == 1 for fc 4= 0, we obtain the relevant ortho-
normal basis {Nn

k)}l^^.n of spherical functions Y„. Taking into account (2.6), we can 
write 

(2.7) KN(

n

k) = — ^ — Nn

k) on dQ 
2n + 1 

for integers n = 0,1, . . . and fc = — n,..., n. 
The spherical functions are eigenfunctions of the Laplace-Beltrami operator 

A, Л ЄQ> 
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& Y = I (sin & — ] 
sinSSaV 3 3 / sin2 3 5a2 

for each sufficiently smooth Y defined on dQ. Namely 

(2.8) - Aâ N<fc) = XnNn
k) on dQ 

for integers n = 0 , 1 , . . . and k = — n,..., n, where 

(2.9) Xn = n(n + 1) . 

The set {{Nn*
)}£=_M)n

xL0 *s known to be an orthonormal basis of L2(dQ). 
Let Hr(dQ), r real, be the usual Sobolev space with the norm || • ||r dQ. Identifying 

L2(dQ) with its dual, let <•, •> be pairing of Hr(dQ) and H~r(3Q). The norm || • ||r>WJ 

can be defined equivalently by means of the Fourier series with respect to the eigen-
functions of the Laplace-Beltrami operator (see [2], Remark 7.5). In fact, if v e Hr(dQ) 
then 

def oo n 

(2Ao) HU^za + ^'i^^)2)1'2-
n = 0 fc=-n 

We proceed with an extension of the operator K onto Hr(dQ) by means of the 
spectral representation of K, see (2.7): If v e Hr(dQ) then 

def oo o n 

(2.11) Kv = Z - * - ~ <t>,JV«>iV<*> 
n = 0 2n + 1 fc=-n 

and, similarly, 

(2.12) K~hd=t 2jLi1 t <v,N<»>N«>. 
n = 0 R fc=-n 

Definition (2.11) is a natural generalization of the original formula (2.3). 

Lemma 2.1. The operators 

K: Hr(dQ)-*Hr+1(dQ), 

K-1:Hr(dQ)-^W-1(dQ) 

are bounded for each real r. Moreover, KK'1 = K"1K = identity (in Hr(dQ)). 

Proof. Let v e Hr(dQ). Then, by virtue of (2.11) and (2.4), 

\MUen - z a + w+i z (T^-TV <*• ̂  • 
n = 0 fc=-n\2n + 1 / 

With help of (2.9), the right hand side can be simply estimated as follows 

D 2 n2 + n + 
o sup # 2 — — 
n=o.i,... (2n + l)2 
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Similarly, \\K 1v\\2-.lf8Q S 4# 2\v\\ldQ- The last statement immediately follows from 
the definition of K and K""1. Q.E.D. 

By virtue of Lemma 2.1, the boundary condition (2.4) is meaningful in the cases 
when w e Hr(dQ), u e Hr(8Q), dujdv e Hr~1(dQ) for each real r. In the next step we 
formulate problem (1.1), (2.4) variationally on Q« 

We define the bilinear form 
def ?, f dw dv A 

o(w,v)= "" aij——dx 
U = i j f l dxjdXi 

for each w and v from HX(Q). If u e HX(Q) then the condition (l.l) on ;Q is equivalent 
to 

(2.13) a(u, v) = 0 for each t? 6 HJ(fl) . 

The conormal derivative dujdv can be defined variationally as follows: 
dujdv eH~1/2(dQ), 

(2.14) / — , v\ = o(w, t>) for each o e H1^) • 

Due to (2.4) 

- ^ - - i ^ i r i M - r ^ in H~i/2(dQ). 

dv 2R 

Substituting into (2A4), we obtain a variational condition on u e HX(Q): 

(2.15) a(«, v) + K K _ 1 M , t?> + — <w, v> = <K_1w, v> for each o e H\Q) . 
2K 

It motivates the following definition: We call u e H*(Q) a weak solution to (1.1) 
in Q if the variational condition (2.15) holds. Clearly, each smooth solution being 
restricted to Q is a weak solution. The trace w e H1/2(dQ) of the incident wave is the 
only data of the problem (2.15). 

Theorem 2.1. For each w e H1/2(dQ) there exists a unique weak solution u e HX(Q). 

Proof. We verify the assumption of the Lax-Milgram theorem: 
The bilinear form <*(•,-) + KK~X '> *> + 1/2.R<#, •> is continuous in H1^) x 

x Hl(Q). We should note perhaps that the continuity of the term <K_1 •, •> follows 
from Lemma 2.1 and from the well known continuous embedding H1(Q) a H1/2(dQ). 

Moreover, the bilinear form is H 1(0)-elliptic. Indeed, we estimate 

(216) a(v, v) + K*C~" V v> + — <», r ) g c " f (—Y dx + - <t>, t>> 
2K f - i J i A 3 * * / * 

for each t; G HX(Q), where we have used the ellipticity assumption (ii) in order to 
estimate a(v, v) and employed the definition formula (2A2) in order to estimate 
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(K~1v, v} 2> lJR(v, t?>. The right hand side of (2.16) is the square of an equivalent 
norm in H1(Q). 

As we have shown above, <K -1 •, •> is a continuous bilinear form on ^(Q). 
Thus the right hand side of (2.15) is a bounded linear functional (of v) in H*(Q) 
for each fixed w e Hi/2(8Q). 

This completes the verification of the assumptions, which means that the Lax-
Milgram theorem implies the assertion of Theorem 2.1. Q.E.D. 

3. APPROXIMATION 

The variational definition (2.14) of the weak solution u suggests the Ritz-Galerkin 
approximation of u. Let Sh be a finite dimensional subspace of H1(,Q); let Sh be 
spanned by a basis {<pl9 ...,<pN}. Then we define uh e Sh to be the Ritz-Galerkin 
approximation of u in Sh if 

(3.1) a(uh, v) + i<K~ V , »y + — <u\ vy = <K~V vy 
2R 

N 

for each veSh. Naturally, uh solves (3A) if and only if uh = ]T a^,-, w-1ere a = 
i=l 

= (a l 5 . . . , aN)T e UN satisfies a set of linear algebraic equations 

(3.2) Boc + Ma= f, 
def ^ 

B = {bij}ij=i,...,N , fty = < ^ 9i) + — <9y, <Pi> , 
IK 

def 

f = ( f i , - - - , f v ) T , L = < K " 1 w , <?>,>, 
def 

M = {muJi,j = l,...,N ' m u = KK"Vy, ^f> • 
The operator K"1 is defined via (2A1) which means that the evaluation of fj and 

m£j- requires the Fourier expansions of w and each <pj into spherical functions 
{{N(

n
k)}"=_n)n

xL0 on L2(3.Q). In the actual implementation, we are able to evaluate 
a few first terms of these expansions only. In fact, we replace the operator K'1 

by an operator K"1 which is defined as follows: p is a positive integer, 

(3-3) K ^ i ^ J - t <,,iVf>JV« 
n = 0 R k=-n 

for each v e Hr(dQ); r is arbitrary. 
Our aim is to estimate the error in calculation of uh when replacing K""1 by K~x 

in the formulas for f and B in (3.2). The impact of other factors (numerical integra
tion, approximation of the domain Q by isoparametric elements, etc.) on the 
total error can be studied by standard techniques and thus it is ommited here. 
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Notation (convergence norms). If u e ff1^) then 

, , d e f / ' f /8u\2 . \ i / 2 

W i o = "--W.(sW 
(i.e., | • |iffl is the Dirichlet integral) and 

def 

We start with two simple embedding statements: 

Lemma 3.1. There exists a linear mapping #:H1/2(dQ) -> H1^) such that 

a) if ve H1/2(dQ) then fv = v a.e. on dQ, 

b)\/v\ltQ£ M1/2tdP. 

Proof. For a given v e H1/2(dQ) let z e HX(Q) be the solution of the problem 

Az = 0 in Q, z = v on dQ . 
def 

We set ,/t) = z . 
Since — Jfl Az z dx = \z\ltQ — Jefi (dzjdv)z da , v being the outward normal, 

we have 

»dcr. 
f ðz 

Jвfl->v 

A harmonic function z can be expanded by making use of the harmonic polynomials. 
Namely, 

£ 

z f e Y É<". -v?)>-v?>. 
= 0 \ K / fc=-n 

t>dcr = £ „ f : <r,N«>2 

Then we calculate 

5z 

; a D ĈV n = 0 fc=-n 

and estimate 

f J « da <L | (1 + „(„ + 1))-/- £ <-,, N^y = H?/2,aa . 
JdQ^v «=o fe=-» 

Thus, |z|ijfi -̂  MI/2,5JQ> which implies the last statement of the lemma. Q.E.D. 

Lemma 3.2. Each v e HX(Q) satisfies 

(3-4) H1/2,an^(H2,Q+Ho.af l)
1/2=flfi». 

Proof. Since £v is harmonic, it minimizes the Dirichlet integral over the set 
of HX(Q) — functions having the same trace, i.e. 

\Mlo = Wun 
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for each v e H1^), u = t)on dQ. In particular, 

(3.5) \fv\ltQS\v\ltQ. 

In the same way as in the previous lemma, we find 

I/-I2.0-f --^--•dtT = fiii<p,jv?)>a 

JdQ <?V n==0 *=-n 

by using the expansion of fv into harmonic polynomials. Clearly, 
(1 + n(n + 1))1/2 S n + 1 for each integer n *§: 0, i.e. 

HUaa ^ » Z <«,^>2 + H U = |/t>|2,« + H ^ -
« = 0 fc=-n 

Taking into account (3.5), we immediately obtain the estimate (3.4). Q.E.D. 

Notation. We introduce variants of problems (2A5) and (3 A) where the operators 
K'1 are replaced by the "truncated" versions K"1, see (3.3). 

Let up e H1^) satisfy 

(3.6) a(up9 v) + KK~ %, vy + — <up9 vy = <K; 1w, «> for each v e HX(Q) . 
2K 

Let uh
p e Sh solve 

(3.7) a(uh
p9v) + K^~1uh

p9vy + ^{uh
p9vy^iKp:

1w9vy for each veSh. 
2Iv 

Let uh
p>m e Sft solve 

(3.8) a « m , p) + K ' C X . - . P> + ~ <«*,„, P> = < K ; V P> for each veSh. 
2JR 

We note that the above problems (3.6) —(3.8) are uniquely solvable for each 
choice of w e H1/2(8Q); the proof of this statement would follow the argument 
of the proof of Theorem 2.1. 

Subtracting (3.8) and (3.7) yields 

a « m - uh
p9v) + KK>\<m - uP)9vy + ((K-1 - K - » > + 

we set v = uh
pm — uh

p. Due to the assumption (ii), the first term can be estimated by 

<R» - «5|i.o-
The second term is nonnegative since K ,̂1 is clearly positive definite, i.e. 

< K ^ 1 P , P > ^ 0 . 

Thus, we easily deduce the estimate 

C t | < m - u% S \\iK-1 - K-l)u*\.tla„ fl<ra - u%,2JBO, 
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def 

where C1 = 2 min (c, 1/(2K)). By virtue of (3.4) we find 

(3.9) c-K.- , - ii5Ifl £ IRK:-1 - K-1)uh
p\\_i/2tdQ . 

We note that 

( K - 1 - * - 1 ) ^ | ^L±i t <r,iV?>>JV?> 
n = m + l Iv fc=—n 

for each 0 e H1/2(dQ). One can simply derive an estimate 

P ; 1 - K-MP-i/a,*.-^ Z (l + «(n+l))1/2E<t,,iVr>2. 
Iv n = m+ 1 fc= — n 

In order to interpret its right hand side, we introduce 
oo n 

Notation. If v e Hr(dQ), r arbitrary, let v == £ £ <i>, N^fe)> 1V<*> be the relevant 
« = 0 fc= - n 

Fourier expansion. For each positive integer m we define the projection I7W: 
Hr(dQ) -> Hr(dO) as follows: 

def m « 

(3.10) ff„i> = Z Z <v,N™yNP, 
n = 0k= -n 

i.e., I7W truncates the Fourier expansion of v. 
Making use of the projection I7W, we can estimate 

(3.ii) H O C - K - 1 ) 4_1I2<0Q = I g0 - i7m-i|1/2>ao 
IV 

for each vGH1/2(a_7). 
Applying (3.H) to (3.9) for v = up, we conclude 

IKic'-ic-'Ki _.,_.«,£ 

= | k - nmu,\ll2M + IKK-1 - K-')(up - u*)||_1/2>.fl js 
K 

2 4 
-̂  ~ IK ~ ff»«Ji/2,M_ + - !K - «**|| 1/2fW ; 

the last inequality follows from the fact that 

K ' ^ l - l / l , . = 1K-1»||-1/2.M = £ l»Il/2.M 
1v 

for each v e H1/2(dQ), see the proof of Lemma 2.1. Thus, using (3.9) and the embed
ding (3.4), we obtain 

(3.12) | < m - u% rg -2- \u, - nmup\\1/2,eQ + - L \\u, - u%. 
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The complete error u — uh
Ptin is then estimated by means of the triangle inequality: 

(313) \u - uh
pJQ = \u - up\Q + \up - uh

p\Q + \uh
Ptm - uh

p\Q ^ 

^iu - up\n + C2\UP - nmuP\i/2tdQ + C3|wp - uh
p\Q , 

where C2 = 2(C1K)~1, C3 == 1 + 2C2. The contribution ||w — up\Q is investigated 
in 

Lemma 3.3. The following inequalities hold: 
or 

(3.14) \u - up\a <| C4|(K-» - K;1) w | |_ l i2>ao ^ ||w - 7TpW||1/2,afl, 
XV 

where C4 = (min (c, l/(2iv)))~1. 

Proof. We set v — u — up. Subtracting (2.15) and (3.6) yields a(v,v) + 
+ l/2R<i>, t>> + KK"1", vy = <(K"X - K;1) W, t>>. We note that a(v, v) ^ 
^ c\v\l09 <fT V vy = 0 and due to (3.4), |<(ir * - K;1) w, v>| g [(IT1 - K"1) . 
• wfl-1/2,0.0 HU* The estimate (3.14) immediately follows. Q.E.D. 

Remark. It can be shown that 

(3.15) <K~1v,t?> =- |H|i /2,0fl for each o e H1/2(5.Q). 
iv 

Using this inequality in the above proof, we can obtain (3.14) with a slightly different 
constant C4 = (2JR min (c, 1/(2K)))~1/2 which is better then the former one if 
R is small. 

We can conclude the question of convergence. According to (3.14), we can make 
the error ||w — up\Q arbitratrily small by taking p large enough. The error 
\up — Hmw

P|| 1/2,aiQcan b e controlled by the choice of m. The contribution \up — uh\Q 

can be estimated by making suitable assumptions on the family of spaces Sh. In 
standard situations, \up — uh

p\Q -> 0 as h -> 0. Thus we resume that the error 
\u — uh

tm\\Q can be made arbitrarily small by taking p -> oo, m -> oo and h -> 0. 
In the end we would like to make some remarks on the estimate of ||u — up\Q. 

The bound which Lemma 3.3 offers might be misleading in the case when ||w||1/2>f5« 
itself is small. In other words, the only reasonable quantity to be estimated is the 
ratio 

\u - UP\\O 

ß 

Lemma 3.4. There exists a constant C5 such that 

(3.16) lK.-1wB-1/-iM.S.Cs|M 

for each w e H1/2(dQ); u is the relevant weak solution. Let Che a constant satisfying 

(iv) \i*MZ<ti$)i,2&.nl)m 

ij=l i=l i=l 
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for each <_, w e _ 3 „.e. on £2 (see the assumption (i)). Then /he constant Cs can be 

taken as 

/ , 1 X1'2 1 
C5 = C2 + — - ) + - . 

Proof. For a given z € H1,2(dQ) we substitute o = / z into (2.15). Then 

flK-1w|_1/2>afl= sup ( r V z ) ^ 
11*11./_,_.-1 

^ sup _(« , /_ ) + 1/(21.) fl-D-1/2>ft0 + i flK- _|_ I / a i ao . 
11*11 i/2,an=i 

By making use of (iv) we estimate \a(u, / z ) | g C|»|1>fl | / 2 | 1 > f l . According to 
Lemma 3.1, | / z | 1 > f l ^ ||z||1/2>afl = 1. Thus, | - ( u , / z ) | ^ C|u| l i f l. 

We have shown (in the proof of Lemma 2.1) that 

l |K-_ | |_ 1 / 2 . 8 f l r 2 2R-1 | |u | |1 / 2 > e f l . 

By virtue of the embedding (3.4), 

- l l K - 1 _ ] | - 1 / 2 , e _ _S — H"1J__ -
2 K 

Finally, we note that |jt-|_1/2.c>__ = Uu||o.a_.- Combining the above inequalities, we 
easily derive (316). Q.E.D. 

L e m m a s 3.3 and 3.4 yield the estimate 

h n\ 11M ~ UP\\° < c r-1 IK*"1 - ^;1)A-Mi.to [ } "14T"= 4 5 ww^zr~~' 
As an illustration, we estimate the above error in the important case of a point 
charge, i.e., we assume 

>v(x) = - for each X G R 3 , 
\x~y\ 

where Q is a constant and y e U_3 — __ is fixed. Without loss of generality, let y = 
= (0, 0, Q). Then l/|x — y\ = (Q2 + r2 — 2rO cos a ) _ 1 / 2 in the spherical coordinates, 

oo 

x = (r, a, S). Expanding (1 + £2 — 2£ cos a ) _ 1 / 2 = £ Pn(cos a) £w we find 

"(*) = 6 / _ f P„(cosa)(r/^. 
n = 0 

It is easy to project w to N^&): 
O , N(fc)> = 0 for k * 0 , 

<-^_w(___T'-
\2n + 1/ 
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Then a simple manipulation yieds the estimate 

(MO E-S^SV2(T'. 
F wll-i/2^ \Qj 

Let wx be the Taylor expansion of w of the first order at the origin, i.e. 

_ + 
Q Q6 l « j 

wi(x) = - + — X! xj»,; 

the function wt is called a plane wave approximation of w in a neighborhood of the 
origin. 

One can check that in fact 

" i = H 0,N»>N«. 
« = 0 fc = - n 

Then (3.17) and (3.18) yield the estimate 

which gives a qualitatively meaning to the intuitive claim that a plane wave is a good 
approximation of w if the source is "far enough", i.e. if | j ; | = Q is large. 
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Sоuh rn 

NUMERIСKÉ ŘEŠENÍ TŘÍDIMENZЮNÁLNÍ POTENСIÁLNÍ ŰLOНY 

VLADШÍR DRÁPALÍК, VLADШÍR ЈANOVSКÝ 

Řeѕí ѕe trírоzmerný mоdel difrаkсe elektrоѕtаtiсkéhо pоle nа оmezenem nehоmоgenním 
t leѕe. Pоmосí vhоdne nelоkаlní оkrаjоvé pоdmínky Izе úlоhu fоrmulоvаt nа kоuli, оbѕаhujíсí 
zаdаnоu nеhоmоgеnitu. 

Jе ukаzánа exiѕtenсe а jednоznасnоѕt řeѕení redukоvаne úlоhy. Tаtо úlоhа je pоtоm аprоxi-
mоvánа metоdоu kоnečnýсh prvků ѕ tím, že nelоkální hrаniбní pоdmínkа je nаhrаzenа čáѕteс-
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п у т Рои^^е^оVут тотуо}ет йо V1а5̂ п̂ сЬ папке! пгашсш'Ъо т1е§га1тпо орегагоги. 1е апагуг^а-
па ко1ТУег§епсе тегосгу. 

Р е з ю м е 

ЧИСЛЕННОЕ РЕШЕНИЕ ТРЕХМЕРНОЙ ЗАДАЧИ ТЕОРИИ ПОТЕНЦИАЛА 

УЬАОШ1к ^КАРА^^К, V^А^IМт .̂МОУЗК* 

Рассматривается дифракция электростатического поля в заданной ограниченной среде. 
При помощи интегрального граничного условия задача формулируется на шаре, окружаю
щем заданное тело. 

Предлагается численное решение редуцированной задачи методом конечных элементов. 
Граничное условие аппроксимируется частичной суммой разложения фурье по собственным 
функциям интегрального оператора. Показывается сходимость метода. 

Аи1ког^ аййгез: КЛЧОг. V^аа1^т^^ ВгараИк, бос. ЮШг. VШ^т^^ ^апоV$ку, С 8 с , МЕР ^ К , 
Маю81гап8кё п а т . 25, 118 00 РгаЬа 1. 
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