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33(1988) APLIKACE MATEMAT IKY No. 6,470-486 

NEW REGIONS OF STABILITY IN INPUT OPTIMIZATION1) 

SHENG HUANG, SANJO ZLOBEC 

(Received April 29, 1987) 

Summary. Using point-to-set mappings we identify two new regions of stability in input 
optimization. Then we extend various results from the literature on optimality conditions, 
continuity of Lagrange multipliers, and the marginal value formula over the new and some old 
regions of stability. 

Keywords: Region of stability, point-to-set mapping, optimal input, input constraint quali
fication, Lagrange multipliers, marginal value. 

1. INTRODUCTION 

Consider the mathematical programming model 

Minf°(x, 9) 
(*) 

(p, e) s.t. 

f(x,9) = 0, i e ^ A { l , . . . , m } , 9el 

where all functions fi:RnxRp-*R are continuous and f\',9) : Rn -> R are 
convex, i e {0} u 0. The set I c Rp is assumed convex. Such model is termed 
convex. For a fixed parameter (input) 9 e I, (P, 9) is a usual convex program. 

With each 9 e I we associate the triple (output) 

F(9) = {xe Rn:f(x, 9)<>09 ie0>} 
the feasible set, 

m = ÍW) 
the set of all optimal solutions x(9), and 

/(0)=/°(5č(0),0) 

the optimal value. 

A) This research was supported in part by the Natural Sciences and Engineering Council 
of Canada. 
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We will study perturbations of the output {F(0), F(9),J(9)} in a neighbourhood 
N(0*) of an arbitrary but fixed 0* e /. It is assumed that F(0*) =1= 0 and bounded. 
Objective functions with this property are termed realistic. In many models describing 
real-life situations (e.g., in multi-objective models), "continuity" of the output is 
not guaranteed for arbitrary perturbations in a neighbourhood of 0*. (See, e.g., 
[2, 21].) However, continuity is preserved on "regions of stability". We recall 

1.1 Definition [16, 24, 25]. Consider a convex model (P, 0) at some 9 = 9*el 
with a realistic objective function f°. We say that the model is stable in a region 
S c / cz Rp at 0* e S if, for some neighbourhood N(0*) of 0*, both 

(i) F(0) 4= 0 for every 0 e N(6*) n S, and 
(ii) 0 e N(0*) nS and 0 -> 0* imply that j(9) -» f(9*). • 

In particular, we say that the model is stable at 0*, if one can specify S = N(9*). 
In this paper we consider only those regions of stability for which the point-to-set 

mapping F: 0 -» F(0) is lower semicontinuous at 0*, relative to S. (See [1, 3, 6, 7, 8, 
9].) On such regions not only the optimal value function, but also the set of optimal 
solutions, is "continuous" for every realistic objective function. (See [22, 25].) 

The regions of stability can be expressed in terms of constructive objects of convex 
analysis such as (defined for each 0 e /) 

0>=(9) = {ie0>:xE F(0) =>f(x, 0) = 0} , 

the minimal index set of active constraints (see [2, 17, 22]), and the corresponding 
set in Rn: 

F=(0) = {x e Rn: f\x, 0) = 0, i e 0>=(6)} . 

Also we use the notation 0>K(9) = 0> \ 0>=s(9). 

Among the "oldest" regions of stability are 

M(0*) = {0: F(0*) c F(0)} n / , 

V(0*) = {0: F=s(0*) c F=(0), and f\x, 0) ^ 0 , 

Vx e F(0*) , i e 0>=(9*) \ 0>=(9)} n / . 

(See [22, 24, 25].) To simplify notation we denote 

Rt(9*) = {0: ̂ =(0*) = 0>=(9)} n / , 

R2(9*) = {0:/'*(x, 0) ^ 0, Vx G F=(0), i e 0>=(9*) \ ^=(0)} n / , 

R3(9*) = {0:fl*(x, 0) S 0, Vx e F=(0*), i e 0>=(9*) \ 0>=(9)} n / , 

#4(0*) = {9:f\x, 9) £ 0, Vx e F(0*), i e ^=(0*) \ @~(9)} n / . 

Note that now 
V(0*) = {9: F=(0*) a Fs(0)} n R4(0*) . 
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If F: 0 -* F=(0) is lower semicontinuous at 0*, then Rx(9*) and R2(0*) are regions 
of stability at 0*. (See [13, 22].) For a complete list of presently used regions of 
stability, and for some of their applications, see [22]. (Also the last section of this 
paper.) 

Regions of stability are important in input optimization (see [18, 22]), but they 
are also of an independent interest (see, e.g. [4,15]). Unlike the "usual" optimization, 
input optimization uses regions of stability to determine an optimal input 0* starting 
from an initial 0°. The path <r(0), connecting the "present" input 0° to the "future" 
input 0*, passes only through regions of stability; this guarantees continuity of the 
economic process. The optimal input 0* (and hence the "optimal realization" 
(P, 0*) of the mathematical model (P, 0)) depends on the initial state of the system 
determined by 0°. (Different 0°'s generally lead to different optimal inputs 0*.) 

In this paper, first we identify two new regions of stability in Section 2. In Section 3 
we show that the optimality condition for an optimal input from [17, 20] extends 
to one of the new regions. Continuity of the restricted Lagrangian multiplier functions 
is established on any region of stability where F(0*) = F=(0*), in Section 4. In 
Sections 5 and 6 we show that the necessary condition for optimality and the marginal 
value formula, for differentiable bi-convex models, hold on more regions of stability 
than known from the literature [16,19, 22], Finally, in Section 7, we give a schematic 
comparison of all presently known regions of stability. The two regions introduced 
in this paper turn out to be among the largest ones. 

2. TWO NEW REGIONS OF STABILITY 

Take a 0* e I and denote 

|Z(0*) = {0: F(9*) e Fs=(0)} n P4(0*) . 

We claim that this set is a region of stability. 

2.1. Theorem. Consider the convex model (P, 0) at some 6 = 0*, where F(6*) 4= 0. 
Then Z(0*) is a region of stability at 6* for every realistic objective function. 

Proof. It is enough to show that the point-to-set mapping F: 0 -> F(0) is lower 
semicontinuous at 0*, relative to the set Z(0*). If this were not true, then there would 
exist an open set sf a Rn such that 

si n F(0*) 4= 0 

but 

(2.1) s/ n F(9k) = 0 

for a sequence 0k e Z(0*), 9k -+ 0*. Now, choose an arbitrary 

* G rel int {st n F(9*)} . 

All 



Clearly 
f'(x, 6*)<0, ie 0><(9*) 

and hence 

(2.2) f\x, 6k) < 0 , ie 0K(Q*) 

for all sufficiently large fc's. In particular, since 6k e Z(6*), 

(2.3) f'(x, 9k)<0, ie 0>=(Q*) \ 0>={f). 

Also x e F(9*) <= F=(0k) implies that 

(2.4) / ' (* , 0*) = 0 , ie0>=(6k). 

The relations (2.2), (2.3) and (2.4) imply 

x e F(6k) 

contradicting (2.1). --

Since 
F(0*) <= F=(6*) <= F=(0) 

for 0 e V(6*) and 
F(0*) <= F(0) <= F=(0) 

for 0 e M(0*), we note that Z(0*) is a bigger region of stability than M(0*) and V(9*), 
i.e. 

(M(0*) u v(e*)} <= Z(0*) . 

The following example shows that the inclusion may be strict. 

2.2. Example. Consider a convex model with the two constraints 

fl = -x + 9 + l<0, 

f2 = max (0, x - 0} - x + 0 g 0 

around 0* = 0. 

Since F(0) = [0 + 1, co), we have 

M(0*) = {0: [1, oo) <= [0 + 1, oo)} 

= ( - c o , 0 ] . 

Further, 
0>-(9) = {2} 

for every 0, while 
F=(0) = [0, oo) . 

Hence 
7(0*) = (0: [0, oo) <= [0, oo)} n R = ( - oo, 0] . 
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However* the new region of stability is bigger: 

Z(0*) = {0: [1, oo) c [0, oo)} - (-co, 1] . 

Using Z(0*) we conclude that the model is, in fact, stable at 0* for every realistic 
objective function. • 

Many results in input optimization require lower semicontinuity of the point-
to-set mapping F=: 0 -> F=(0). In particular, the mapping F= is necessarily lower 
semicontinuous at 0* over the region of stability V(0*). However, the mapping F= 

may not be lower semicontinuous neither over M(0*) nor over Z(0*). H 

We will now identify another region of stability. The construction of V(0*) sug
gests that, under some reasonable assumptions, such as lower semicontinuity of F=, 
the set &4(0*) itself may be a region of stability. As the following example (com
municated to the authors by Semple) shows, this is not enough. 

2.3. Example (Semple). Consider the contraints 

r = \Xl-e\so, 

f2 = xt - 9x2 = 0, 

j 3 = x2 - 2 = 0, 

j 4 = -x2 = 0 

around 6* = 0. Suppose that 6 is taken from 9 el = [0,1]. 

Here 

for 9 > 0, while 

m={[* J : i -x2 ѓ 4 
m = {[У: 0 = *2 ѓ 2} • 

So the mapping F is not lower semicontinuous at 0*. But 

j-W-fJJ =*,.«} 
for every 0 ^ 0 , clearly lower semicontinuous, and 

R4(0*) - [0,1] . • 

However, the conjecture is valid with the additional assumption that the feasible 
set F(0*) has interior points. The latter is typically satisfied in the so-called "lexico
graphic optimization", without Slater's condition being satisfied. (See [2, 21, 22].) 
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2.4. Theorem. Consider the convex model (P, 0) at some 0 = 0*. If F(9*) has 
non-empty interior and if the point-to-set mapping F= is lower semicontinuous 
at 9*, then JR4(0*) is a region of stability at 9* for every realistic objective function. 

Proof. The result is proved by contradiction. Suppose that the mapping F is not 
lower semicontinuous at 0*. Then there exists an open set si, such that 

s4 n F(0*) # 0 

but 

(2.5) s4 n F(0/() = 0 

for a sequence 0k e R±(9*), 6k -> 0*. Now choose an arbitrary 

St e int {s4 n F(0*)} . 
Clearly 

f\St,9*) < 0 , ie^<(6*) 

and further, by continuity 

(2.6) f(St,9k) < 0 , ie0><(9*) 

for all sufficiently large fc's. Since St e F(0*) and 9k e #4(0*), it follows that 

f(St, 9k) ^ 0 , i e 0>=(9*) \ ^=(0k) 

which, together with (2.6), yields 

(2.7) f\St,9k)^0, ie^<(9k). 

This means that St <£ F=(0k). (Otherwise, St e F=(0k) and (2.7) would imply St e F(9k), 
contradicting (2.5).) Since F(0*) has an interior, we can place a small open ball 
B(x), centered at St, inside s4 n F(0*), such that 

(2.8) B(St) n F=(9k) = 0 . 

But 
St e F(9*) cz F=(0*) 

and hence 

(2.9) J3(£)nF = (0*)*0. 

So, now we have an open set B(&) such that (2.9) holds but, for a sequence 0k -» 0*, 
also (2.8). This violates the assumption on lower semicontinuity of the mapping F=. 

m 

3. A NECESSARY CONDITION FOR OPTIMALITY 

Optimality conditions for a convex model are stated in the literature only for the 
regions of stability M(0*) and V(0*), e.g. [17,20,22]. We now extend these conditions 
to the larger region of stability Z(0*). 
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First we recall the notions of an "optimal input" and an "input constraint quali
fication" (abbreviation: ICQ). 

3.1. Definition [17]. Consider the convex model (P, 0) at some 0* e I with 
a realistic objective function. We say that 0* is a locally optimal input for the 
model, with respect to a region of stability S(0*), if 

J(e*)^?(9) 
for every 0eN(0*)n S(0*), where N(0*) is some neighbourhood of 0*. The cor
responding program (P5 0*) is a locally optimal realization and J(0*) is a locally 
optimal value of the model (P5 0). • 

Recall that the optimal input 0* depends on the choice of the initial input 0°. In 
order to formulate a necessary condition for optimally, we generally need an ICQ. 

3.2. Definition [20]. An input constraint qualification for the convex model 
(P, 0) at 9* el, with respect to a region of stability S(0*), is a condition on the 
constraints of the model with the property that for every 0 eN(0*) n S(0*)5 where 
N(0*) is a neighbourhood of 0*5 the system 

f°(x,e)<?(e*) 

(c,e) f(x,e) <o, .6^(0*) 
x e F=(9*) 

is inconsistent. • 

An ICQ guarantees the existence of a "saddle point" for the "restricted Lagrangian" 

L%(x,u;6)=f0(x,e)+ Yj utf\x, 6). 
ie#><(d*) 

A particular ICQ for the region of stability S(0*) = M(0*) u F(0*), at an optimal 
input 0*, is the following condition: 

"For every 0 e N(0*) n S(0*), where N(0*) is a neighbourhood of 0*5 and for 
every x e Fss(6*) such that 

/ '*(x,0)<O, ie&^O*) 
it follows that 

/ f ( x , 0 * ) ^ O , i €^ < (0* ) . " 

This condition is referred to as ICQ1 in [20,22]. We will now show that ICQ1 
is ICQ also for the region of stability Z(0*). 

3.3. Lemma. Consider the convex model (P, 0) at an optimal input 6* el with 
respect to the region of stability Z(0*). Then ICQ1 is ICQ. 
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Proof. Suppose that the condition ICQ1 holds, but not ICQ. Then there exist 
sequences 9k e Z(9*), 9k -> 9* and xk = xk(9k) e F=(0*) such that 

(3.1) f°(xk,9k)<f(9*), 

(3.2) f(xk,9k) <0, ie^(9*). 

Since ICQ1 holds, (3.2) implies 

f(xk,9*) ^ 0 , ie0>K(9*) 

and hence xk e F(9*). On the other hand, 9k e Z(9*) implies 

f(xk, 9k) S 0 , i e 0>=(9*) \ 0>=(9k) 

which together with (3.2) gives 

(3.3) f(xk,9k) S 0 , ie0><(9k) 

and also 

(3.4) xk e F=(9k). 

The two relations (3.3) and (3.4) imply xk e F(9k). Since 9* is locally optimal, we 
have a contradiction to (3.1). • 

3.4. Theorem. Consider the convex model (P, 9) with a realistic objective function 
at some 9* el. Suppose that 9* is a locally optimal input with respect to the region 
of stability Z(9*) and that the condition ICQI is satisfied at 9* with respect to 
Z(9*). Let x(9*) be a corresponding optimal solution. Then there exists a neigh
bourhood N(9*) and a non-negative vector function 

W: N(9*) n Z(9*) - R<f *> 

such that, whenever 9 e N(9*) n Z(9*), 

L%(x(9*), u; 9*) ^ L%(x(9*), #(0*); 0*) S L%(x, %(9); 9) 

for every u e R^9^ (the non-negative orthant in Rq(0*\ where q(9*) is cardinality of 
^<(0*)) and every x e F=(0*). 

Proof. Since ICQI is indeed ICQ for Z(9*), the result is an immediate consequence 
of, say, [22, Theorem 7.4]. • 

The importance of Theorem 3.4 is that a necessary condition for an optimal input 
is now stated over a larger region of stability than M(0*) u V(0*). Of course, the result 
also holds under some more restrictive ICQ's such as ICQ2 or Slater's condition. 
(See [20].) 
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4. CONTINUITY OF A LAGRANGE MULTIPLIER FUNCTION 

Consider the convex model (P, 0) at some 0 e I. It is well known that an x* e F(0) 
is optimal if, and only if, there exists u* e R%e\ such that 

LK(x*9 u; 0) S LK(x*9 u*; 0) g L<(x, w*; 0) 

for every x e F=(0) and every u e P*+
(0); see [17, 22]. Here 

L < (x ,u ;0)= f°(x ,0)+ £ utf\x96). 

(This claim also follows from Theorem 3.4 for a fixed 0.) The corresponding Lagrange 
multipliers 

U<(O) = {u*(9):ie0><(6)} 

are generally discontinuous on regions of stability; see [12, 14, 19]. However, on 
the regions of stability we have 0><(6*) cz 0><(Q) for every 0 in a neighbourhood 
N(0*) of 0*; see [13]. Hence it follows that the Lagrangian L* and the subset 

U<(0) = {u i(0):ie^<(0*)} 

of U<(0) are well defined. Unfortunately, U*(0) can still be discontinuous on some 
regions of stability; see [12]. If F= is lower semicontinuous at 0*, then a region of 
stability, where U* (0) is continuous, is R2(Q*). (See [14].) Continuity is also proved on 

Vx(0*) = {0: F=(0*) c F=(0)} n P3(0*) . 

(See [12].) 
In this section we will establish continuity of U* (0) on every subset of an arbitrary 

region of stability, provided that 

(4.1) F(0*) = F=(0*) . 

The condition (4.1) looks somewhat restrictive. In particular, if Slater's condition 
holds at 0*, then F=(0*) = Rn and the condition holds only for unconstrained models. 
However, another extreme case is when the feasible set is determined only by linear 
equations, in which case the condition is trivially satisfied. A general situation, 
where (4.1) holds, is described by the example below. 

4.1. Example. Consider a convex model with only one constraint 

f1 = |x| - (1 + 02) x ^ 0 

around 0 = 0* = 0. 

Here F(0) = [0, oo) for every 0, but 

=(ø) = í i 1 } if 
w |0 if 

0 = 0 
0 Ф 0 
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and hence 
oo) if 0 = 0 

if 0 =t= 0 . •«H0' 
The point-to-set mapping F is lower semicontinuous at 0* and 

R2(6*) = {0*} . 

Hence the result from the literature on continuity of the Lagrange multiplier function 
U#(0) is not useful here. However, since the requirement (4.1) is satisfied, and 
int F(0*) =1= 0, we will be able to establish continuity (using the result given below) 
on the region of stability, say, JR4(0*) = R. 

4.2. Theorem. Consider the convex model (P, 0) at some 6* el with F(6*) 4= 0 
and bounded and let F(0*) = F=(0*). If 5(0*) is an arbitrary region of stability 
at 0* then, for an arbitrary sequence 0k e 5(0*), 6k -> 0*: 

(i) The sequence U%(6k) is bounded for all sufficiently large k's and 
(ii) the set of all limit points of U*(6k), as 9k -> 0*, is nonempty, and it is con

tained in U*(0*). 

Proof, (i) This statement holds for any region of stability, as one can see from the 
proofs of [12, Theorem 3.1] or [13, Theorem 2.1]. 

(ii) The existence of limit points of U*(0fc), as 6k -> 0*, follows from the bounded-
ness of each component ut(B

k), 6k -> 0*, i e 0><(d^). It is left to prove the "inclusion 
statement". The proof follows exactly the arguments of the proof given in [13, 
Theorem 2.1], up to the inequality 

(4.2) f(ek)^f°(x,ff)+ £ u{ff)f\x,ff) 
ie& < (ek) 

for every x e F==(0/c). Since for every x e F(6k) we have 

f(x, 0*) ^ 0, ie ^<(0&) \ ^ ( 0 * ) 

it follows that the right-hand side in (4.2) can be modified and we have 

(4.3) ?(ff)£Ll(x,u(ff);ff) 

for every x e F(6k). Now we pick an arbitrary x e F(0*). Since 6k is chosen from 
a region of stability 5(0*), the mapping F is lower semicontinuous at 0* with respect 
to 5(0*). Therefore there exists a sequence xk = xk(6k) e F(9k) such that xk -> x 
as 0fe -> 0*. The inequality (4.3) gives in the limit 

(4.4) J(6*) ^ L%(x, u(Q*); 0*) 

for every xeF(0*). (Here w(0*) is an arbitrary limit point of the sequence UJ(0fc) 
that generates the above 6k e 5(0*), 0k -> 0*.) Since F(0*) = F=(0*), the inequality 
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(4.4) also holds for every x e F=(0*). This is the right-hand side of the saddle-point 
inequality at 9*. The left-hand side was proved [13, Theorem 2.1]. So we conclude 
that the limit point u(9*) of u(9k), as 9k e S(6*), 0k -> 9*, is indeed in U* (0*). • 

It is easy to construct examples showing that Theorem 4.2 is applicable to different 
regions of stability from Vlv0*) and R2(9*). (See Example 4.1.) 

5. A NECESSARY CONDITION FOR Bl-CONVEX MODELS 

The necessary condition for an optimal input for general convex models can be 
strengthened for bi-convex models, i.e., for the models (P, 9) where both/ ' (• ,#): 
Rn -> R and fl(x, •): Rp -> R, i e {0} u 0* are convex functions. The result, given 
below, is proved for a subset of the region of stability Z(9*), namely for 

Zx(9*) = {9: F(9*) c F=(0)} n R2(9*) . 

Following the ideas from [18], we use a part of the unit ball B = B(9*) in Rp 

defined by 
9-9* 

£ = : 0 є N( *) n Z^Ø*), 0 Ф 0*1 
||0-

for some fixed neighbourhood N(9*) of 9*. We denote by B° the derived set of B, i.e., 
the set of all limit points as 9 e Zx(9*), 9 -> 9*. Also 

(B°)+ = {u: uTb = 0 for every b e B0} 

is the polar of B°. 

We also need a condition on indices of the constraints, known as the "index 
condition" (see [22, 23]). First we denote by 

0>(x(9*), 9*) = {i e ^:f\x(9*), 9*) = 0} 

the set of active constraints for 9* at the optimal solution x(9*). We recall that, 
for differentiate functions, the index condition is said to hold at 9*, with respect to 
a region of stability S(9*), if 

(IND) {0>K(9k) n 0>(x(9*), 9*)} c 0>K(9*) 

for all but possibly finitely many fc's, for every sequence 9k e S(9*), 9k -> 9*. 

To simplify the notation, we introduce the abbreviation 

g(9) = L%(x(9*), 0(9*); 9) 

where (x(9*), u(9*)) is a restricted saddle point. Note that g(9) is a convex function. 

5.1. Theorem. Consider the bi-convex model (P, 9) at 9 = 9* e I with a realistic 
objective function. Suppose that the corresponding saddle point {x(9*), f/f(0*): i e 
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e^<(0*)} of the restricted Lagrangian is unique and that the index condition 
(IND) holds relative to Z±(9*), We also assume that the point-to-set mapping F* 
is lower semicontinuous at 0* and that all functions fl(x(9*), 9), i e {0} u 0><(O*) 
are differentiable at 0*. If 9* is a locally optimal input with respect to Zx(9*), 
then 

Veg(9*)e(B°)+. 

Proof. In theproof we use the fact that Zx(9*) c JR2(0*)andtheresult on continuity 
of the restricted Lagrange multipliers with respect to the set R2(6*). (See [18].) So, 
take an arbitrary I e B°. This point is generated by some 0fe e Zx(0*), 0fe -> 0*. 
By the continuity of Lagrange multipliers, there exist ut(9

k) -> ut(9*), ie0><(9*). 
For this sequence 0fe define 

(51) 40fe) = L<(x(9*), u(9*); 0fe) - L<(x(9*), U(dk); 9k) 

and, using the gradient inequality for g(d), we find that 

(Vg(0fe), 0fe - 0*) = L<(x(9*), u(0fe); 0fe) - g(9*) + <f (0fe) . 

(Here (u, v) = uTv denotes tke Euclidean inner product.) Now we invoke the estimate 

(5.2) J(0) - ?(9*) = L<(z, u(9); 0) - L%(x(0*), v; 0*) 

holding for every z e F==(0) and v e JR^*}, as it is known from [16]. Using the fact 
that 0fe e Z1(0*), we note that 

x(9*) e F(0*) c F=(0fe) . 

So we can specify z = x(9*) and v = w(0*) in (5.2), and (5.1) now gives 

(5.3) (Vg(0fe), 0fe - 0*) = f(0fe) - f(0*) + 40 f e) 

= <f(0fe) 

for all sufficiently large k's, because 0* is a locally optimal input. Hence 

9* \ J?(0k) 
(5.4) K''iH ^ 

*!/ Ҝ-HI 
The index condition guarantees non-negativity of the limit when k -> co of the right-
hand side term in (5.4). (See [23] for details.) This, together with continuous dif
ferentiability property of the differentiable convex function g(0), gives the desired 
result. • 

A result of the above kind was proved in the literature (see [18, 23]) but only for 
the region of stability Vi(0*). 
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6. THE MARGINAL VALUE FORMULA 

The marginal value formula (i.e., the path derivative of the optimal value function) 
was proved in the literature on the region of stability 

V3(6*) = {0: F=(0*) = F=(0)} n R3(6*) . 

(See [16, 19, 23].) Here we extend its validity to four different regions 

z2(ø*) = {0 

Z3(0*) = {0 

R5( *) = {0 

F( ) <= Ғ=(0*)} n Z,(0*) , 

F( ) <= F=(0*) <= Ғ=(0)} n R3( *) , 

F( ) <= F( *)} n R3( *) 

and 
R6( *) = {0: F( ) <= F=( *)} n R^ *) 

Note that V3(0*) c {Z2(0*) n Z3(0*)} but, generally, V>(0*) is different from 
JR5(0*) and JR6(0*)- However, some extra assumptions are needed for the extension: 
The point-to-set mapping F= will always be assumed lower semicontinuous at 0*; 
also, for JR5(0*), we have to assume that intF(0*) 4= 0 (in which case jR3(0*)c 
c JR4(0*) is indeed a region of stability) and also that F(0*) = F=(0*)) in order 
to apply Theorem 4.2.). 

Two crucial arguments used, in deriving the marginal value formula, are: 

(i) continuity of the restricted Lagrange multiplier function U*(0), and 
(ii) showing that x = x(6k) e F(0k) implies x e F=(0*). The latter argument is 

obviously valid for the above four regions, so we verify validity only of the con
tinuity argument: The argument is valid for Z2(0*) because 

Z2(0*) c Zt(e*) c JR2(0*) 

and Ui(8) is continuous on JR2(0*), under the lower semicontinuity assumption 
on F=. (See [13, Theorem 2.1].) Since JR5(0*) C R3(0*), and the latter is a region 
of stability, if F= is lower semicontinuous and if F(0*) has interior points, it follows 
that JR5(0*) itself is a region of stability. The additional assumption F(0*) = F=(0*) 
guarantees continuity of l/£(0), by our Theorem 4.2. The region Z3(0*) enjoys 
continuity because Z3(0*) c Vx(0*) and continuity is established on Vx(0*) in 
[12, Theorem 3.1]. Note that F= is lower semicontinuous on Z3(0*), because of the 
requirement F=(0*) c F=(0). Finally, R6(6*) c Rt(6*) c JR2(0*) and continuity, 
being established on i^2(0*), guarantees continuity of R6(8*), provided, of course, 
that F= is lower semicontinuous. • 

To simplify notation, we use again the abbreviation g(9) for the Lagrangian L* 
at x = x(6*) and u = u(6*). 
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6.L Theorem. Consider the bi-convex model (P, 0) at 0 = 0* e I with a realistic 
objective function. Suppose that the corresponding saddle point (x(0*), ^(0*): 
ie^<(0*)} is unique and that the index condition (IND) holds at 0* with respect 
to a region of stability 5(0*) = Zt(9*), i = 2, 3 or S(6*) = RL(9*), i = 5, 6, and 
it is assumed that the mapping F= is lower semicontinuous at 0*, and, in the case 
of R5(9*), that F(9*) =S F=(0*) and that F(0*) has interior points. Also, suppose 
that f'(x, •), i e {0} u 0><(9*) are differentiate functions in S(6*) n N(0*), where 
N(0*) is some neighbourhood of 0*, and that the derivatives V^f^x, 0)|0==d#, ze 
e {0} u 0><(9*) are continuous functions in x at x(9*). Then for every fixed path 
0fc e 5(0*), 0fc -> 0* suc/i that the limit 

V ' 0*eS(0*) 0fc - 0 * 
0fc->0* l l " 

exists, we have 

0*eS(0*) 0* — 0 * 
aft->a, " " 

Proof. Take a sequence 0fce5(0*), 0fc -> 0* such that the limit I in (6.1) exists. 
Without loss of generality we can assume that for this sequence 

Ui(0k)-> ut(9*)9 ie^<(6*) 

by the continuity argument given prior to the theorem. We now follow the proof 
of Theorem 5.1 and arrive at the inequality 

(5.3) (Vg(0fc)5 0fc - 0*) = f(9k) - f(0*) + <0fc) 

for all sufficiently large fc's. This gives an upper bound for /(0fc) — f(0*). A lower 
bound is obtained from the estimate 

(6.3) /(0fc) - J(9*) = L<(x(0fc), u; 0fc) - L<(x, 0(9*); 9*) 

valid for every x e F=(0*) and every u e Rq±d\ where q(9) = card ̂ <(0). (See [16].) 
Here we can specify x = x(0fc) e F(9k) c F=(0*), by the second argument given prior 
to the theorem, and 

10, 

.7,(0*), if i є ž ^ Ø * ) 

if ie0»<(dk)\0><(Q*). 

Now the lower bound 

/(0*) - J(e*) ^ (veL%{x(ek), a(0*); o)\,.e„ ek - 0*) 

follows from (6.3), convexity of g(Q), and the gradient inequality applied to a(0) 
at 0*. The next step is division by |J0* — 0*|| and the limiting process 0* -* 0*. Now 
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the continuity properties of both the Lagrangian multiplier functions and constraints 
yield the marginal value formula (6.2) in the limit. (See [23] for details.) • 

The example that follows shows that the marginal value formula is now indeed 
applicable on larger regions of stability than V3(0*). 

6.2. Example. Consider a bi-convex model with the following two constraints: 

/*(*, 0) = 2 - x = 0 , 

/2(x, 0) = max {0, x - 0} - (x - 0) = 0 

where 0 e l = R. 

Here we find that F(0) = [2, oo) n [0, oo), ^=(0) = {2} and F=(0) = [0, oo) 
for every 0. 

At 0* = 0 we have 

V3(6*) = {0: [0, oo) = [0, oo)} n R = {0*} . 

Since the point-to-set mapping F: 0 -> F=(0) is lower semicontinuous at 0*, we 
conclude that 

Z2(0*) = {0: ([2, oo) n [0, oo)) c [0, oo} n ( - oo, 2] 

= & n ( - o o , 2 ] = ( -oo,2] 
and 

R6(6*) = (0: ([2, oo) n [0, oo)) c [0, oo)} n R = R 

are regions of stability. On the other hand, since ^=(0) does not depend on 0, the 
index condition (IND) is satisfied over every region of stability. Hence we conclude 
that the marginal value formula is applicable at 0* = 0 for any realistic bi-convex 
objective function, provided that the uniqueness and differentiability assumptions 
in the theorem hold. 

7. COMPARISON OF REGIONS OF STABILITY 

All presently used regions of stability are compared by inclusion below. For the 
sake of completeness we also include the regions 

Mt(0*) = M(6*) n {0: F(0) c F=(0*)} 
and 

W(6*) = R±(0*) n {0: F=(0*) c F=(0)} 

from, e.g. [22] and V4 (0*) = {0 : F= (0*) c F= (0)} n R2 (0*). The arrows mean 
inclusion. Thus M± -> M means M± c M, etc. The sets in the "diamond 
shapes" are regions of stability under the additional assumption that the 
point-to-set mapping F : 0 -> F=(0) be lower semicontinuous at 0*. The sets 
with an asterisk are regions of stability if, in addition to lower semicontinuity 
of F=, the feasible set F(0*) has nonempty interior. Some regions are generally 
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incomparable, such as M and V. Among "smallest" regions of stability are R6 

and W, while some of the "largest" ones are R2, -R4 and Z. 
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S o u h r n 

NOVÉ OBLASTI STABILITY OPTIMALIZACE VSTUPNÍCH DAT 

SHENG HUANG, SANJO ZLOBEC 

S použitím zobrazení bod-množina se identifikují dvě nové oblasti stability optimalizace 
vstupních dat. Dále se rozšiřují různé výsledky z literatury týkající se podmínkek optimality, 
jako spojitost Lagrangeových multiplikátorů a formule pro marginální hodnoty, na nové a některé 
staré oblasti stability. 

Pe3K>Me 

HOBME OBJIACTH yCTOHHHBOCTH OnTHMH3ALIHH BXOflHBIX AAHHBIX 

SHENG HUANG, S. ZLOBEC 

Hpn noMonpi MHoro3HaHHbix OTo6pa^eHHH (nepeBo#minix TOHKH B MH03KecTBa) ycTaHasjíH-
BaiOTCfl RBQ HOBMe 06jiaCTH VCTOHHHBQCTH OnTHMH3amiH BXOflHHX /iaHHBIX H paSJIHHHBIe H3BeCTHBIe 

pe3VJIBTaTBI, KacaRDHHeCfl yCJIOBHH OnTHMaJIBHOCTH, KaK H a n p . HenpepBIBHOCTb MHO^CHTeJIeH 

JIarpaH3Ka H cf>opMyna una MaprHHajiBHBix 3Ha*ieHHH, pacnpocTpaHaioTCH na HOBbie H HeKOTopbi* 
craptie o6jiacTH VCTOHHHBOCTH. 
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