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Summary. The paper is devoted to the solvability of a nonlinear elliptic problem in a plane 
multiply connected domain. On the inner components of its boundary Dirichlet conditions are 
known up to additive constants which have to be determined together with the sought solution so 
that the so-called trailing stagnation conditions are satisfied. The results have applications in the 
stream function solution of subsonic flows past groups of profiles or cascades of profiles. 
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INTRODUCTION 

In the study of plane, nonviscous, subsonic steady flows past profiles it is convenient 
to introduce the stream function which leads to a boundary value problem for 
a second order elliptic equation. However, the stream function is determined on 
each profile up to an unknown additive constant. In order to complete these boundary 
conditions, we can prescribe e.g. the velocity circulations along profiles or the mass 
fluxes per second between the components of the boundary. Nevertheless, it follows 
from physical considerations and experience that only the solutions satisfying the 
so-called trailing stagnation conditions model real flows in an appropriate way. It 
means that in the flow past a profile which is smooth except for a sharp trailing edge 
we demand the velocity to be bounded. (See e.g. [2].) In technology we often meet 
also smooth profiles. On the basis of experiments and numerical calculations, we 
have concluded that for obtaining physically reasonable flows it is sufficient to choose 
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the trailing stagnation point (where the velocity is zero) as a point on the backward 
part of the profile (with respect to the direction of the flow) with the greatest curvature. 

To similar problems we come in the stream function solution of plane flows past 
profiles in a layer of variable thickness, past cascades of profiles or past axially 
symmetric rings inserted into an axially symmetric channel, etc. In the papers [4, 5] 
we studied the solvability of incompressible (irrotational or rotational) flows and of 
subsonic compressible irrotational flows past smooth profiles with given trailing 
points. Here we extend the results to a general nonlinear equation which governs 
compressible rotational flows. We consider more general situation, when the in
complete Dirichlet conditions are combined both with the trailing conditions on 
some profiles and with prescribed velocity circulations on other profiles. 

1. FORMULATION OF THE PROBLEM 

By Rk we denote the fe-diraensional Euclidean space. The distance of x e Rk and 
x' 6 Rk will be denoted by \x — xf\. 

Let Q a Rz be a bounded, (r + l)-multiply connected domain (r = 1) with the 
boundary dQ whose components C0, Cl9 ...,Cr are geometric images of simple 
closed curves. Let C{ a Int C0 (= the bounded component of R2 — C0) for i = 
-= 1,..., r. By Q we denote the closure of Q. The curves Ci9 ..., Cr can be considered 
as profiles inserted into the domain Int C0. 

1.1. Boundary value problem. Let functions \j/t: Ct -* Rl, i = 0, .. . ,r, points 
zte Ch i = 1, ..., m and constants yte R1, i = 1,..., r be given. We seek a function 
u: Q -» R1 (sufficiently smooth) and constants qi,..., qr e R1 satisfying the equation 

2 8 
(1.2) - £ — at(x, u(x), Vu(x)) + a0(x, u(x), Vu(x)) = f(x) in Q 

f=i dx( 

and the boundary conditions 

(1.3) u|C0 = ij/0, 

(1.4) u\Ct = ^ + qf, * = l , . . . , r , 

(1.5) ^ ( . , u , V u ) ^ V z £ ) = y,, i = l , . . . , m ^ r , 

(1.6) b(*9u, Vw) — ds = yi9 i = m + 1,..., r . 
Jct Sn 

Here djdn denotes the derivative in the direction of the outer normal to dQ, Vu = 
= (uXl, uX2), uXi = dujdxi. Similarly, we write ux.Xj = d2uj(dxi dXj). zt e Ct are the 
so-called trailing points, b = b(x, ^0, £l9 £2): Q x R3 -> R1. We assume that the 
functions at = at(x, £), xe Q, % = (<J0, ^1? £2) e R3, are continuous for i = 0, 1, 2 
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and continuously differentiable for i = 1,2. Under this assumption equation (1.2) 
can be written in the form 

2 

(1.7) X aij(X> U(X)> V W ( X ) ) UXiXj(X) + 
i,j=l 

2 

+ X k/(x> M(x)> VM(X)) WX.(X) = b0(x9 u(x), VM(X)) in Q , 
. = i 

where 

(1-8) « y ( * . « ) = " 1 7 (*•«) . U - L 2 , 
a ^ 

&.(x,c;) = - — i ( x , { ) , 1 - 1 , 2 , 
a{0 

b0(x, {) = - a 0 ( x , {) + £ ~ a{x, {) + / ( x ) , 
i = l GXf 

x e f i , 4' = (£0, £i, £ r )eK 3 . 

Because of the nonstandard discrete conditions (1.5) it is impossible to use the 
usual concept of a weak solution from the Sobolev space Hx(Ci) and therefore we will 
consider classical solutions of equation (1.7). With respect to this fact we introduce 
the following 

1.9. Assumptions. The following conditions hold: 

(1.10) <xe(0, l ); 

(1.11) dQeC2*; 

(1.12) ifiteC2"(C9)9 i = 0 , . . . , r ; 

(1.13) the functions au (i9j = 1,2) and bt (i = 0,1,2) are bounded, Holder-
continuous with respect to x with the exponent a and Lipschitz-continuous 
with respect to £•: 

|a l 7(x,£)|, \H*> *)l = c > UJ = U29 |b0(x,£)| = c0 V x e O , { e R3 , 

|al7(x, {) - atj(y9 £)\ = M, |x - j | « , i, j = 1 , 2 , 

|b f(x,£) - f e ^ y , ^ g M ^ x - j f , * - 1,2, 

|b0(x, £) - b0(y, £)| g M0 |x - yf , Vx, j ! e 0 , { e K3 , 

|a0-(x, £) - a0.(x, i;)| ^ L|£ - "| , i, j = 1 , 2 , 

^ ( x , * ) - 6*(x, f|)l S L | £ - f f | , i = 1,2, 

|b0(x,£) -b0(x9n)\ ^ X^|« — tfl, V x e O , ^ e i i 3 , 

with constants c0> c, M0 , M l 5 L0, Lindependent of x, >', {, w, i, j ; 
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(1.14) there exist constants /x, v > 0 such that 
2 

Kni + nl) S t au(x> fynflj -S v(nl + nl) 
ij=l 

V x e D , £eR\ rjun2eRx; 

(1.15) the function b = b(x, £) (x e Q, % e R3) is continuous in Q x R3 and 

0 < ix <J b ^ c2 < + oo in Q x R3 . • 

The spaces and classes C, Cfc, Ca, Ck,a etc., are defined e.g. in [1, 8, 9]. By the 
symbols || • ||o_>0>n, || • ||fe>0,n> ||' ||k,«.S' ||' \\k,*,dQ w e denote the norms in the spaces C ( % 
Ck(Q), Ck>a(Q), Ck>a(dQ), respectively (here k ^ 0 is integer, a e (0, 1)). 

Let us remark that the following assertions hold: 
a) The imbedding C1,a(Q) c Ca(Q) (a e (0, 1)) is continuous. Therefore, there 

exists a constant c* = c*(Q) such that 

(1.16) I« lo .« .n^c* | | u | | M f n V M G C 1 ^ ) . 

b) The imbeddings C2>a(Q) c C ^ S ) and Ca(0) c C'(fi) with 0 < j8 < a < 1 
are completely continuous. It means that from each sequence un bounded in 
C2>a(Q) (Ca(Q)) we can choose a subsequence unk convergent in C1,a(Q) (CP(Q)). 

The subject-matter of this paper is the study of the following 
Problem (P). Find ueC2,a(Q) and constants qx, ...,qreRl satisfying equation 

(1.7) and conditions (1.3) —(1.6). • 

2. ESTIMATES OF SOLUTIONS OF LINEARIZED PROBLEM 

The main tools for proving the existence of a solution of Problem (P) are the strong 
maximum principle and estimates valid for solutions of elliptic equations. 

Let us consider a linear elliptic equation 
2 2 

(21) Lu = £ Atj(x) uXiXj(x) + X Mx) u*i(x) = #(x) > x e Q 

ij=l i=l 

with 

(2.2) Aip Ah g e Ca(Q), a e (0, 1) , AtJ = Aji9 

satisfying 
i 

(2.3) p{n\ + n2
2) £ X Atj(x) wj S v(n\ + nl) Vx e Q , fyl9 n2 e R1 , 

(li, v > 0 are independent of x, wl5 n2) and 

(2.4) My||o.«.n- M*llo.«.n =̂  Af , 

(2.5) ||g||o,osn.S c0. 

In the following we shall consider assumptions (1.10) —(1.12), (2.2)-(2.5). 
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2.6. Theorem (the Schauder estimate). There exists a constant kx dependent 
on 11, v, a, M and Q, i.e. kt = kt(fi, v, a, M, Q), such that any solution u e C2,a(Q) 
of equation (2.1) satisfies the estimate 

(2-7) N k « , n S fci[N|o,a.a + N U M - I ] • 

For proof see e.g. [1] or [9]. Q 

2.8. Theorem. Let u e C2(.Q) be a solution of equation (2.1) satisfying 

(2.9) « | 00 = # | 30 

with # e C2(D). Then 

(2-10) Nl-.«.-- _S fc2(A*9
 v> a> co, ||f|ko.n> O) . 

P roof is a consequence of results from [9, Ch. Il l , § 19 and § 1]. • 

2.11. Theorem (on the solvability of a linear elliptic equation). Under assumptions 
(1.10), (1.11), (2.2), (2.3) and $ e C2*(Q), problem (21), (2.9) has a unique solution 
ueC2>*(Q). 

Proof. See [9], Theorem 1.3 from Ch. Ill or [ l ] , § 5.7. • 

2.12. Theorem (strong maximum principle). Let (1.10), (1.11), (2.2), (2,3) be 
satisfied and let u e C2(Q) be a solution of the equation Lu = 0 in Q. Then: 

1. If u has maximum or minimum in Q, then u is constant in Q. 

2. Let us assume that xedQ and u is not constant in Q. Then, provided 

u(x) = max u or u(%) — min u , 
we have n fl 

— (St) > 0 or — (St) < 0 , respectively . 
dn dn 

Proof . See [1] (where the theorem is proved under weaker assumptions). • 

From (1.10) —(1.12) we get the existence of cp0, ...,cpTe C2,\Q) such that 

(213) a) cp0\Ci = ^i, i = 0,...,r, 

b) q>i\Cj=8U9 / = l , . . . , r , j = 0 , . . , r . 

( £ „ = l,c50-= 0 i f i * j . ) See e.g. [9]. 
Let us denote by u{, i = 0 , . . . , r, solutions of the following problems: 

(214) a) Lw0 = G in Q > u0\dQ = cp0\dQ, 

b) Lw; = 0 in Q , ut | dQ = (pt \ dQ , i = 1, . . . , r , 

where cp0, ..., cpre C2>\Q) satisfy (2.13). 
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2.15. Theorem. Problems (2A4) have unique solutions ute C2,a(Q). Moreover, 
there exist constants c1 = c^i, v, a, M, Q), c2 = C2(JI, v, a, c0, j|<p0||C

2(D)5 -2) tfttd 
c3 = C3(JJL, v, a, O) such that 

(2.16) IKIka . s = ci[||g||o,a,£> + I k o l k . , ^ ] -

||M.|k«,3 - ^i • * = l , . . . , r , 

( 2 . 1 7 ) | |Mo||l ,«,H •= C2 , 

lM»| | l ,a,J3 ^ c3, i = 1, . . . , r . 

Proof is an immediate consequence of Theorems 2.6, 2.8 and 2.H. • 

2.18. Theorem. Let us consider operators 

(2-19) L„= £A;j-*— + iAl±, » = 1,2,..., 
i , J = l OXi OXj 1 = 1 Oxj 

2 O-2 2 a 
L= £ ^ - . £ — + 2 ^ — 

/ j = i dXidxj i = i OX-

with A";, Al7, A", AfG Ca(S) satisfying (2.3) with ^, v > 0 independent of n, 
functions gn, g e Ca(Q) and cp e C2,a(Q). Let un, u e C2,a(Q) be solutions of problems 

(2.20) a) L„u„ = gn in Q , un\cQ = (p\dQ, 

b) Lu = g in Q, u\dQ = q>\dQ 
and let 

(2.21) Anj-+Aij, An->Ai, gn-+g in C\Q). 

Then un->u in C2,a(Q). 

Proof. Denoting v„ = u - un and subtracting (2.20, a) from (2.20, b), we get 

2 2 

(2.22) I -V*- |X i + I At»»xt = Fn, vn\dQ = 0, 
ij=i i=i 

where 

(2.23) F„ = £ (A?,- - Au) u „ a j + £ (A? - A;) «„, + a„ - a . 
/ J = l 1=1 

It is evident that F„ e Ca(Q) for n = 1,2 , . . . . From Theorem 2.6 and the boundedness 
of Anj, An, gn in Ca(Q) we see that ||«J.||2,ajj g c, where c is independent of n. This, 
(2.21) and (2.23) imply that Fn -> 0 in C*(fi). Now, applying Theorem 2.6 to (2.22), 
we get the estimate 

H k . , 3 = ktQi9 v, a, I K I k . , 3 , M.|0,«,B, O) ||^||o,.,n • 

This already implies that v„ = u - un -> 0 in C2'a(D). • 
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Now, let us consider the following linear problem: 

P rob lem (L). Find ueC2,a(__) and qi9..., qre R1 satisfying (2.1), (1.3), (1.4), 

(2.24) ^ ( ^ i ) = ^ , * = l , . . . , m , 
on 

and 

(2.25) b(x) — (x) ds = v(, i = m -f 1 , . . . , r , 
Jc. 3n 

r 

with given t? l 5 . . . , vr e R1 and a given b e LG0( (J Ct). Further, we assume that 
i = m + 1 

r 

(2.26) 0 < cx ^ b(x) ^ c2 Vx e U C, . 
i = m + l 

2.27. Lemma. Problem (L) has at mOs. one solution. 

Proof. If Problem (L) has two different solutions, then the corresponding homo
geneous problem, i.e. Problem (L) with g = 0, i/t0 = 0, \jjt = 0, vt = 0 for . = 
= 1, . . . , r, has a nontrivial solution u. Hence, u is nonconstant in __ and by Theorem 
2.12, max u = qt = u \ Ct for some i e (1 , ..., r}. Then dujdn > 0 on C-. 

r_ 
If i e {1, ..., m}, we have a contradiction with (2.24) (where vt = 0). Let 
i G {m -f 1 , . . . , r}. Then, since b > 0, we get JCi b(dujdn) ds > 0, which is a contra
diction with (2.25). Q 

The solution of Problem (L) will be sought in the form 
r 

(2.28) u = u0 + YJ q/w/ • 
_ » 1 

It is easy to see that such u e C2,a(0) is a solution of equation (2.1) and satisfies 
conditions (1.3) and (1.4). We shall seek the constants q$ to satisfy (2.24) and (2.25), 
i.e. 

(2.29) f ^ / ( , , ) , . _ , - , , _ ^ _ ( Z | ) , . _ l , . . . , m , 
i = i On On 

, í = m 4- 1, ..., r , (2.30) £ f . ^ - d t ^ - r . - f fc^ds 
J = I J C , Sn Jc, 8n 

(2.29) and (2.30) form a system of linear equations 

(2.31) Aq = h , 

where 

(2.32) A = ( « x , i , _--(«_,..., _r", /.-=(&_,...,&r)
T, 
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a ř / = .-—ҶZO f° r Ï = 1, . . . , m , ; = l , . . . , r f 
дn 

—lds for i = m + l , . . . , r , 1 = 1,..., r , 
c > , 

• ( Z ř ) , i = 1 , . . . , m , 

дn 

hi = t ) . _ Г ь__id s, 
Jc, дn 

ŕ = m + 1,..., r . 

2.33. Lemma. The matrix A is regular. 

Proof. It. is evident that provided A is singular, Problem (L) with g = 0, \j/0 = 0, 
ij/. = 0, vt = 0, T = 1,..., r has a nonzero solution, which is a contradiction with 
Lemma 2.27. • 

From the above results we get the following 

2.34. Theorem. Problem (L) has a unique solution weC2 'a(__). This u has the 
form (2.28), where q is the unique solution of the linear system (2.31). • 

2.35. Theorem. The solution u of Problem (L) satisfies the following estimates: 

(2.36) | « | 2 > a , a 5i C l ( l + clC4\\A-%) [I«|lo,..D + \\<Poh,«,m] + 

+ c, i " i . 

(2.37) 

where 

\\u\\Ux,n ž c 2 (l + c^WA-^l) + CtlA-% \v\t , 

v-(vl,...,vry, И . - I I 4 

}j/^~xJ]^ is the norm of the matrix A - 1 induced by the norm l*^x in Rr. cl9 c 2, c 3 

are the constants from Theorem 2.15. c4 = r + c 2 measx (dQ)), where t2 is the 

constant from (2.26) and meas! is the one-dimensional measure on dQ. 

Proof. Let us denote either |jw|| = | | u | | 2 > a ^ or |ju|| = | | t t | | 1 > a ^. Then, by (2.28), 

(2.38) 

We have q = A'^-h and 

(2.39) 

Moreover, 

diu0 

dn I M i á l i + I 

M = Kil + Iklli max M, 
i = l r 

(*.) І |f ь ^ 
i = m + l | J C ( ŐП 

ds 
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If we use Theorem 2.15 and assumption (2.26), we get 

дuo 

ôn (-1) á Cl[|gllo,«,n + \\<Po 12,«,díl] > 

őм 

Ь ds 

, дn 

õn 

< 

Ч< = c2 , i = 1 , . . . , m ; 

cxc2 meaSi (C,) [||g||o,«,?. + IkolUa.ao] >• 

Í < Äs 
c. дn 

i = m + 1, ..., r 

Cic2 meaSi (C t), 

Hence, 

(2.40) |h | |i ^ ||»||i + cx(m + c2 £ meas1(Cj)[| |g | |0 ,a^+ iko|k«,an] S 
i = m+l 

= C l C 4 [ | M | o , « , B + H^olU.a.ail] + H - • 

Similarly we get 

(2.41) џ U % + Nu 
Now, if we substitute (2.39), (2.40) and (2.41) into (2.38) and use (2A6), (2.17), 
we get (2.36)-(2.37). Q 

In the following let us consider given constants ae(0,1), jx,v,M,t1,t2 > 0r 

p, <; v, c1=t2 and functions q>l9..., cpre C2,a(Q) with properties (2A3). Let us 
denote by J£(ot, pi, v, M) the set of all operators Lfrom (2.1) with properties (2.2) — 

r 

-(2.4), and by @(tl912) the set of all b e L°°( (J Ct) satisfying (2.26). Each 
i = m + l 

operator Le J£(a, n, v, M) can be associated with the functions u.L = ut 

(i == 1,..., r) — solutions of (2A4, b). Hence, each pair (L, b), Le <£(a, \i, v, M) and 
b e &(c1, t2), is associated with the regular matrix ALfb = A defined in (2.32). We 
shall prove 

2.42. Theorem. There exists a constant K > 0 such that 

(2.43) H ^ J I I ^ K VLeif(a,/x,v,M), Vbe*(tl9t2). 

Proof. Let us denote sf = {||4^i||i; Le $£(u,\i,v,M), be^(tl9t2)} and a =-
= sup J / . Then there exist sequences Ln e $£(&, \i, v, M) (Ln has coefficients An

ijy A") 
and bn e &[tl912), n = 1, 2, . . . . such that (denoting An = ALntK) 

(2.44) 
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By (2.32) we have 

(2.45) A„ 

where 

(2.46) 

( djM \ 
dn 

f l,n^jd5 . = l , . . . ,m, k = m + 1, . . . , r , 
Jck " dn J j = l , . . , r 

u ; e C 2 f ) , 

Lnu\ = 0 in Q , u" \ dQ = cpt \ dQ , 

i = l , . . . ? r , n = 1,2,... . 

Since the imbedding C2,X(Q) cz C1,X(Q) is completely continuous, on the basis 
of (2A6) we can choose a subsequence of u" (denoted again by w") such that u" -> t#, 
in CUa(Q) if n -^ oo (i = 1,..., r). Hence, Ow"/On (z,) ~» duf/dn (Z;) (i = 1,..., m, 
I = l , . . . , r ) . 

Moreover, in view of (2.26), the sequence bn is bounded in 

L2( U C,) 
i = m+ 1 

and thus it is possible to assume that bn -+ b weakly in 

L\ U C(). 
i = m + l 

On the other hand, the set 

{beL2( U C,); 0 < c x = b = ^2} 
* * m + l 

is convex and closed, and therefore, it is weakly closed. This implies that b satisfies 
(2.26), which means that b e J*(cx, £2). Further, it is evident that 

ÔUІІÔП -* ôUijðn in L2( Џ C () 
i = m + l 

strongly, which yields 

Г и ди"л Г иди л 
[ Ьл —

1 а5 -> Ъ — д5 , I -= т + 
^с^ 2п ^ с . дп 

l, . . . ,г. 

Hence, 

(2.47) 
' 2fw* 

Jck дn 
ds i = 1,..., m, k = m + 1,..., r , 

j = 1,..., r . 
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Let 0 < /? < a. As the imbedding C\Q) ^ CP(Q) is completely continuous and 
(2.4) is valid for all n — I, 2, .. . , we choo$e subsequences Anj, An such that 

(2.48) A'y+Atj, A»^Ai in C(B). 

Of course, the coefficients Au satisfy (2.3). j$y Theorem 2.15, (where we substitute 
a := /?), there exist unique solutions ut e Qz,P(@) of the problems 

(2.49) Lux = 0 in O , wf | dO ^ (?i \ dQ , i = 1, . . . , r . 

Let us define the matrix 

(2.50) üL,ь -

<5tf 
(- l ) 

\ 

ás 

which is regular, as follows from Lemma 2.33. 
Now, by Theorem 2.18 we have 

(2.51) i i ^ f l , in c 2 ' ^ ) . 

On the other hand, un-+ut in Cx'a(.Q). From this, (2.50), (2.51) and (2.47) we 
conclude that ut = ut and therefore A = A~. Hence, 

sup sé = a — lim II A„ 
И->oo 

< +00 , 

which we wanted to prove. 
As a consequence of 2.35 and 2.42 we get 

D 

2.52. Theorem. To given constants a, JU5 v, M, c 0, c 1 ? c 2 > 0, a e (0, 1), / i ^ v , 

c x _ c 2 there exist constants c\,cl > 0 such that 

(2-53) H2,«,i5 ^ 4[| |g | |o, a,D + \<Po\it«w + H i ] 

and 

(2-54) H i . * * = cj(l + IIHIO 

fOr each solution u of Problem (L) with aw operator Le *£?(a, /L, v, M), a right-hand 

side of equation (2.1) g e Ca(0) satisfying (2.5), and with a function b e &(cu t2) 

from conditions (2.25). 

Proof. From (2.36), (2.37) and (2.43) we see that it is sufficient to put c\ = 

= max {c t(l + cic4K), ciK} and c\ = max {c2(l + Kc^c*), c3K}. • 

We shall close this section by a theorem on continuous dependence of the solution 

to Problem (L) on the data: 

2.55. Theorem. Let us consider operators Ln, L form (2.19) with coefficients 
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from C\Q) satisfying (2.3). Further, let g„, g e C\Q), bn9 b e L°°( U Ct) satisfy 
i = m+ 1 

(2.26), ^ .eC2 '*(C;) , i = l , . . . , r , v", v e Kr. We denote by w„ and ueC2,\Q) the 
solutions of the problem 

(2.56) Lnun = gn in Q, 

un\C0^^0, 

un\Ct~ •>,+ q% ql - c o n s t , i = l , . . . , r , 

dun 

Í 

! ( z , ) - o ï , i = l , . . . , m , 
<m 

frв ÉHs ds = гï , i = m + l , . . . , r 
Cř д n 

and 0/ Problem (L), respectively. 
Then, provided 

(2.57) ,4"y - A u , A? -> A„ 3 , - ^ » C\Q), 
r 

bn-+ b almost everywhere in \J Ci9 
i = m + l 

vn -> v in i* r , 
we have un-+ u in C2,a{Q). 

P r o o f is analogous to the proof of Theorem 2.18. From (2.57) it follows that 
there exists M such that Ln, Le J$?(a, /x, v, M). Moreover, b„, be^(c1,t2). By 
Theorem 2.52 and assumption (2.57), 

(2.58) | |u„ | | 2 , , , a g ct[ | | f l„| | 0, a,n + \\<Poh,*,m + M J = * i = const, 

IW|i.«,n ^ c*(l + | t f [,) g fc* = const, n = 1,2,... . 

Let us put w„ = u — u„ e C2 , a(fl). Then w„ is a solution of the problem 

,(2.59) Lwn~F„, 

w „ | C 0 = 0 , w „ | C ; = ^ , j = l , . . . , r , 

— (z.) = di , i = 1,..., m , 
on 

f b ^ - " d s = d ? , i = m + l , . . . , r , 
Jc< 5" 

where F„ is given by (2.23) and 

(2.60) d ? - » , - » ? , i = l , . . . , m , 

d? = i>, - f? - f (fc-&„)^ds, i = m + l , . . . , r . 
J c , 3n 
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(2.57) and (2.58) imply 

(2.61) P„-+0 in C%Q) and dn - 0 in Rr. 

By Theorem (2.52) applied to problems (2.59) we get 

Wk.,D = C*[|Wk«,S + |M"||l]-0, 
which concludes the proof. • 

3. SOLVABILITY OF THE NONLINEAR PROBLEM 

Now we shall study nonlinear Problem (P) (i.e. (L7), (1.3) —(1.6)) and prove its 
solvability. 

3.L Theorem. Let functions \\/t e C2,a(Cf), i = 0, ..., r and constants y^R1, 
i = 1, . . . , r be aiven ana7 /ef (p̂  be functions satisfying (2.13). Further, let M > 0 
ana7 let (1.10)—(1.15) be satisfied with constants a, \i, v, c, c0, M0 , M l 5 L0, L, c t , c2 

sweh that 

(3.2) c + Mx + L(l + c*2)1/2 c* (l + ||y||i max ( 1 , ~\\ S M , 

where c2 and c* arc constants from (2.54) ana1 (1.16), respectively. 
Then Problem (P) has af least one solution u e C2'*(Q). 

Proof. For each weC1 , a(fi) we shall consider the following problem: Find 
w = w(u) and qt = qf(w), i = 1, ..., r, such that 

(3.3) Luw = b0(*,w,Vw) in .Q , 

(3.4) w | C 0 « * 0 , 

(3.5) w | C, = \pi + qt, i = 1 , . . . , r , 

(3.6) r & ( - , u , V u ) ^ l ( Z < ) = y f , i = l , . . . , m , 

(3.7) b(% w, Vw) — ds = y f , f = m + 1, ..., r , 
Jc£ ^ 

where 
2 

(3.8) LMw = X auO, »>• V w ) w*(*., + &,(•> w> V u ) w*. • 
i ' , i=i 

Now (1.13) implies for x, y e Q the inequality 

|al7(x, w(x), Vw(x)) - atj(y, u(y), Vu(y)\ S 

S M, | x - j | a + L(|w(x) - w(j)|2 + |Vw(x) - Vw(j>)|2)1/2
 = 

^ [ M ^ L a + c ^ ^ l l w l l L ^ l x - ^ . 
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Similar estimates hold for br Hence, au(
m

9 u, Vu), b-(', u, Vw) e C*(Q) and 

(3.9) [ «« ( ' , « , Vu)||0>a,D, m - , u, Vu)||0>a>D S 

^ c + Mx + L(l + c*2)1 '2 |tt|| lf«,D , i j = 1, 2 , 

| |b0(-,w,Vtt) |0 ,0 ,n ^ c 0 , 

||b0(-,tt, Vtt)||0,a,D = c0 + M0 + L0(l + c*2)1'2 H i - . * -

By (1.15), b(-, M, Vw) | 30 e C(i3.Q) and 

(3.10) ^ g b(«, u, Vu) g c2 on dQ . 

Let us put vt = yf for i = m + l , . . . , r and v; = y^z-, u(z^), Vw(zl-))~
1 for 

i = 1 , . . . , m. Then 

(3.11) H . * Mi =-«(-.£)• 

We see that (3.3) —(3.7) form a linear Problem (L) with a differential operator 
L = Lu satisfying (2.2), (2.3). By results from Section 2, there exists a unique solution 
w = w(u) e C2 'a(0) to (3.3) —(3.7). Hence, we can define the mapping <2>: CiA(Q) -» 
-> C2 'a(0) by 

(3.12) 4>(tt) = w(u), ueCUa(Q). 

In view of the imbedding C2'a(Q) c= C1 a(0) we have also the mapping F: C l a ( 0 ) -> 
-> CU\Q): 

(3.13) F(w) = w(tt), ueC^%Q). 

That is F = J o 0 , where J is the imbedding operator of C2 'a(S) into C1 ,a(5). It is 
obvious that u is a solution of Problem (P) if and only if u is a fixed point of the 
mapping F. 

Now let us put 

(3.14) SUl = j u E C'-^S); H i , . , . , g c* ( l + Hrfli'-max ( l , j-))\ • 

This set is nonempty, bounded, convex and closed in C1 '*(£?). If u e 9JI, then by 
(1.14), (3.2) and (3.9), 

(3.15) | f l | / . , u, Vu)|0>a>s , ||b.(-, u, Vu)||0>a>s $ M , i,j = 1, 2 , 

L„ e J5f(a, /i, v, M) . 
Moreover, 

(3A6) K- ' " ' V M ) I U C.e^(Cl,c2), 
i = m+l 

gu = b0(-,u,Vu)eC%Q), ||a„|j0>a>Ii ^ M = 
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= c0 + M0 + Io( l + c*2)1 '2 ( l + Hvlj, max A , 1 ^ , \gu\ S c0 . 

By Theorem 2.52 and (3.11), 

(3.17) H i ^ - S c ^ l + l v l . m a x ^ I ^ 

and thus, w e 9R. This means that F: SR -+ 9K. 
In order to complete the proof by applying the well-known Schauder fixed point 

theorem it is sufficient to prove 

3.18. Lemma. The operator F is completely continuous in ffll. 

Proof, a) By (3.15), (3.16) and Theorem 2.52, 

K«)l2 . . .D = K")l2,«,n = c?[JU + \\<PO\\2,«,Q + I^HJ < +oo . 

Hence, the set #(9M) is bounded in C2*(Q). Since the operator J: C2*(Q) -» C 1 " ^ ) 
is completely continuous, the set F(90i) = J(<P(9Jt)) is compact in Cl,<x(Q). This 
implies the compactness of F. 

b) Let us show that F is continuous. Let y e (0, a). The operator F can be written 
in the form F = 3 0 $, where J is the imbedding of C2>y(Q) into ClA(H) and the 
mapping <£: Cl>*(Q) -> C2y(Q) is defined by $(u) = w(u) for u e C 1 •*(£). The 
operator J is continuous and therefore, it is sufficient to prove the continuity of $. 

Let uneCUa(Q), w„ = $(u„), n = 1, 2 , . . . , wn ~> w in C1'*(£.). We shall prove 
that 

(3.19) af/% wn, Vwn) -> a 0 ( - , w, Vw), 

H ' , « n , Vw„)-+ b,(-,w,Vw) in C( f i ) . 

If x e Q, we denote <i;n(x) = (wn(x), Vwn(x)), £(x) = (w(x), Vw(x)). For arbitrary 
x, y e Q, x + y, we have 

(3.20) hn(x, y): = |a , / x , £,(*)) - a0(y, £„(y)) -

- a i X x , ^ ) ) + fliXy,«y))||*-y|-rs; 

^ min {[Mx + L(\\un\\u^ + H | i , a , a ) ] |x - j ! | * - * , 

4ia^)-^)i + ia^)-^)i]^-^i"v}-
There exists k > 0 such that | |w|| l a ^, ||i*B||i,a>n £» k (n = 1, 2 , . . . ) . Further, £B -> f 
uniformly in D and thus, at7(-, f„) -> al7(*, f) in C(S). We need to prove that 

(3.21) lim [ sup h„(x, y)] = 0 . 

Let e > 0; we find <5 > 0 and n0 such that 
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(3.22) (Mx + 2Lk)<5a~y < e , 

2L\£n(x) - £(x)\ S~y < e VxeQ, Vn > n0 . 

Now, if n > n0, then \hn(x, y)\ < e, as follows from (3.20) and (3,22). This yields 
(3.21). Similar results hold for b^,u, Vu), i = 0 , 1 , 2. 

Further, from the continuity of b we have b(*, un, Vun) --> b(*, u, Vu) and therefore, 
v" --> v, where v- = y;/b(zf, un(zt), Vun(zt)), vt = y,/fc(z„ u(zt), Vu(zi)), i = 1,..., m 
and v" = v| = ji for i = m + 1,..., r. 

Now, by the application of Theorem 2.55, where we substitute a := y, we find out 
that $(un) = w(uM) ~> $(u) = w(u) in C2,7(.Q), which we wanted to prove. • 

3.23. Remark. We have proved the solvability of nonlinear Problem (P) under 
the restrictive condition (3.2). This is satisfied, e.g., if the constant Lof the Lipschitz-
continuity of atj and bt is sufficiently small. This is caused by the fact that we are 
not able to estimate the constants K and c* from (2.43) and (2.54), respectively, 
in dependence on the constant M. Therefore we have obtained the solvability result 
for a model of rotational compressible flows with a small velocity (i.e., with a small 
Mach number). As a special case of our results we get the solvability of a rotational 
incompressible flow studied in [4]. The general case of rotational compressible flows 
past profiles with trailing conditions, when the velocity is high, remains open. 

4. APPLICATIONS 

Let us investigate a steady, plane, compressible, subsonic, adiabatic, barotropic 
flow. It is described by the following equations: 

(4.1) p = CQX , C > 0 , x > I are constants , 

(4.2) 0>(Q) = — (T) - d t , e0 > 0 is a constant, 
Lode T 

(4.3) H = &(Q) + i|v|2 , 

(4.4) 

(4.5) 

(4.6) 

2 

ľ 
i = l 

õ ( \ 
OXІ 

= 0, 

Û) 
дv2 

дxľ 

дv! 

дx2 

a) æv2 = 
дH 

дxt 

b) — Wv! = 
дн 
õx2 ' 
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which are considered in the domain Q filled by the fluid. We use the following nota
tion: p — pressure, Q — density, H — generalized enthalpy, 0 — pressure function, 
v = (v1? v2) — velocity vector, co — vorticity. (4.1) is the adiabatic barotropic state 
equation ,(4.4) is the continuity equation and (4.6, a —b) are the Euler equations of 
motion. We neglect the outer volume force. 

On the basis of (4.4) we introduce the stream function u: Q -> Rl satisfying the 
relations 

/A ^ du du 
(4.7) — = -QV2, —- = Qvt. 

oxt ox2 

Since both u and H are constant along an arbitrary streamline, we introduce the 
assumption that H is a function of u. It means that there exists a function A: R1 -> R1 

(we assume that A is sufficiently smooth and bounded) such that 

(4.8) H = A(u) = A o u . 

Substituting (4.7) and (4.8) into (4.5) —(4.6, a — b) we derive the stream function 
equation 

.= i oxt \Q ox J dw 

With the use of (4.1) —(4.3) and (4.7) we derive the implicit equation 

X - 1 / , , x i i . . •-,\T /(X ' '"1) 

(4,0) ( = 4.+^(+)-^N'î 0 < a0 = const, 

for the density. If we introduce the speed of sound a = (dp/dD)1/2 and the Mach 
number M = |v|/a, we can prove that for a subsonic flow, i.e. M < 1, equation 
(4.10) has exactly one solution Q = Q(U, |Vu|2) > 0. Hence, if we put 

(4.11) fi = - and f = Q ^ , 
Q du 

equation (4.9) assumes the form 

(4-12) Z / - (j5(«, |V»|2) 1 -̂) = /(u, |V«|2). 
i=l oxi \ oxj 

After differentiation we get a special case of equation (1.7). 
It is not difficult to prove that for each fixed M* e (0, 1) it is possible to modify b 

and f in such a way that the coefficients atj, bt from (1.7) satisfy assumptions 1.9 
and the following assertion holds: If u is a solution of (1.7), Q = l//?, vi9 v2 are given 
by (4.7), p by (4.1) and the corresponding Mach number satisfies the condition 
M ^ M*, then vi,v2,p,Q represent a real subsonic flow satisfying equations 
(4.1)-(4.6). 
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Further, the constant L of the Lipschitz-continuity of the functions atp bt depends 
on M* in such a way that 

(4.13) L = L(M*) -> 0 if M* -> 0 . 

A similar result holds for axially symmetric flows (cf. [3, 10]). 
In the following we shall study two patterns of a plane flow. 

I) Plane rotational flow past a group of profiles. Let Q a R2 be a bounded domain 
with dQ e C2>*(a e (0, 1)), dQ = C0 u Cx u . . . u Cr. The curves Cu . . . , Cr represent 
fixed and impermeable profiles, see Fig. 1. The problem of a flow past these profiles 
is described by equation (4.12) with the boundary conditions 

(4.14) 

(4.15) 

(4.16) 

w | C0 = i//0 , 

u \ d = qi9 i = 1, . . . , r , 

du 

ðи 
( z , ) = - 0 , i = ! , . . . , r . 

Fig. 1. 

The stream function ueC 2 , 0 1 (fl) and constants qx, .,., qre Rl are unknown. The 

function i/̂ 0 is obtained by integrating the quantity gvn | C 0 past C 0 (v„ = v . n, 

where n = ( n l 9 n 2) is a unit outer normal to O'iQ). On the inlet F7 c C 0 , i.e. F7 = 

= {xe C 0 ; Ovn(x) < 0} (see Fig. 1), we prescribe the distribution of H, and this 

determines the function A. (We do not go into details. The situation is quite analogous 

to [4].) zt e Ct are given trailing stagnation points, where the velocity is zero. 

If we consider the trailing conditions (4A6) on the profiles Cu ..., Cm (m < r) 

only and prescribe the velocity circulations ( — y() past the profiles C„ J + 1 , ..., C r, i.e. 

(4.17) j c . v . t d s = -y t-, i = m + 1, . . . , r , 
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where t = ( — n2, nx) is the unit tangent to Ch then by (4.7) and (4.11) we get the 
conditions 

(4.18) L ß(u, |VtiJ2) — ds = yi9 i = m + 1,..., r 
дn 

We see that the rotational compressible flow past profiles C 1 , . . . ,C r can be 
formulated as Problem (P). On the basis of the above results and (4A3), to a prescribed 
constant M > c (the constant Mx = 0 in (1.13) in this case) we can choose M* e (0, l) 
in such a way that the solvability condition (3.2) is satisfied and hence, by Theorem 
3.1, our model problem (4.12), (4A4), (4.15), (4.16) (i = 1,..., m) and (4.18) has at 
least one solution. 

outlet 

inlet K, 

d 

Fig. 2. 

II) Cascade flow problem. We consider a domain Q a R2 with the boundary 
dQ e C2,a(a e (0,1)) formed by two straight lines Kt = {(x1? x2); xt = dh x2 e R1}, 
i = 1,2, dx < d2, and disjoint simple closed curves Q, k = 0, ± 1 , ± 2 , . . . , 
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periodically spaced in the direction x2 with a period T > 0 and contained in the 
strip Q* = [dl9 d2] x R1. The curve Ck is obtained by translating C0 in the direction 
x2 by fcT. The curves Ck form the so-called cascade of profiles. Kx and K2 represent 
the inlet and outlet of the cascade, respectively. See Fig. 2. The domain Q is periodic 
in the direction x2 with the period T: 

(4.19) (xl9 x2)eQo(xl9 x2 + t) e Q . 

We shall consider equations (4.1) —(4.6, a —b) in the domain Q combined with the 
following boundary conditions (cf. [4, 6]): 

(4.20) Qvn = 0 on Ck , fc = 0, ± 1 , . . . , 

(4.21) Qvn(dt, x2) = cpi(x2) on Kf, i = 1, 2 , 

(4.22) H(dl9 x2) = h(x2) on K, , 

(4.23) - [ * % ( < * ! , &) <«, = & , 
T J * 2 

(4.24) vt(zk) = 0 , fc = 0, ± 1, ± 2 , . . . . 

Here <j>l9 <p2 e C1,a(Kx), ft e C 2 '*^ 1 ) are given T-periodic functions, cp1 = <p > 0, 
<p = const, 

(4.25) fiS+ t*.(0« = J S + f ^ ( 0 d « » G V^eR 1 . 

/Ij e JR1 is a given constant which represents a mean value of the tangential velocity 
component over the segment of the inlet Kx of the length %. zk = z0 + (0, kx) e Ck 

are the trailing points. We assume that vl9 v2, p, Q, CO are T-periodic in the direction x2. 
Introducing the stream function u satisfying (4.7) we come to the following 

problem: Find ueC2,a(Q) and constants go^gi^K1 satisfying equation (4A2) 
in Q and the conditions 

(4.26) u(xl9 x2 + T) = u(xl9 x2) + Q , (xl9 x2) e Q , 

(4.27) u | Ck = qc + kQ , fc = 0, ± 1 , ±2, ... , 

(4.28) u(dh x2) = \l/i(x2) + qi9 i = 1, 2 , x2 e K1 , with q2 = 0 , 

x^єK1 (4.29) p + X jflii, H 2 ) | J (dl9 e) d^ =- -xPi 

(4.30) — (zk) = 0, fc = 0, ± 1 , ±2, . . . . 
dn 

Here ^ e C 2 ' ^ 1 ) is a primitive to ^ f , i = 1, 2. Hence, by (4.25), ^(x 2 + kx) = 
= ^.(^2) + kg, x2 e K1. The function A from (4.8) is determined on the basis of 
(4.21), (4.22) (cf. [4]) and is (^-periodic in K1. 
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Ёико^кёпо оаЧокоуе рос-гшпку. УузЬс-ку Ьу1у 21зкапу ротос! зПпёпо рппс!ри тах1та а УПОС--
пусп арпогтсп ооЪасШ гезет а 1гщр арНкасе V й1опасп оЫёкат ргоШй а р г о й ^ у с п т г ш , 
пэгтЫоуапусЬ ротос ! ргоиск^ё шпксе. 

Р е з ю м е 

НЕЛИНЕЙНАЯ ЭЛЛИПТИЧЕСКАЯ ЗАДАЧА С НЕПОЛНЫМИ КРАЕВЫМИ 
УСЛОВИЯМИ ДИРИЦХЛЕ И РЕШЕНИЕ ДОЗВУКОВЫХ ЗАВИХРЕННЫХ 

ОБТЕКАНИЙ ПРОФИЛЕЙ И РЕШЕТОК ПРОФИЛЕЙ 
ПРИ ПОМОЩИ ФУНКЦИИ ТОКА 

МI^о8^АV Е Е К Т А Ш К 

Статья посвящена разрешимости нелинейной эллиптической задачи в многосвязной 
области. На внутренних компонентах границы условие Дирихле известно только до аддитив
ных постоянных, которые надо определить вместе с неизвестным решением таким образом, 
чтобы были выполнены так называемые условия Кутта-Жуковского. Результаты получены при 
использовании строгого принципа максимума и априорных оценок решения и имеют прило
жения в задачах для функции тока, описивающих обтекание профилей и решеток продилей. 

АШког'з аМге$$: Оос. 1ШОг. МИо$1а\ РегьШиег, С8с, Ма1етаиско-!у21ка1п1 ГакиИа ШС, 
5око1оузка 83, 186 00 Ргапа 8. 
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