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THE ROTHE METHOD AND TIME PERIODIC SOLUTIONS 
TO THE NAVIER-STOKES EQUATIONS AND EQUATIONS 

OF MAGNETOHYDRODYNAMICS 

DANA LAUEROVA 

(Received March 29, 1988) 

Summary. The existence of a periodic solution of a nonlinear operator equation z' -+- A0z -f-
— B0z = F is proved. The theory developed may be used to prove the existence of a periodic 
solution of the variational formulation of the Navier-Stokes equations or the equations of 
magnetohydrodynamics. The proof of the main existence theorem is based on Rothe method 
in combination with the Galerkin method, using the Brouwer fixed point theorem. 
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AMS Classifications: 65N40, 35Q10. 

1. INTRODUCTION 

In this paper Rothe method is applied to prove the existence of a periodic solution 
of a nonlinear operator equation 

(1) u' + A0u + B0u = F, 

where A0 is a linear differential operator continuous as an operator from the separable 
Hilbert space L2(0, T; V) into his dual L2(0, T; V'), B0 is a nonlinear differential 
operator of a special type operating on L2(0, T; V) and F e L^O, T; V'). 

Special properties of the nonlinear operator B0 arise as a consequence of the fact 
that the equation (1) represents a general form of the variational formulation of the 
Navier-Stokes equations or the equations of magnetohydrodynamics. In particular, 
B0 does not fulfil the condition of monotonicity, therefore it is not possible to use 
Rothe method in such a way as it was done e.g. in [1 — 4]. The most similar problems 
to that given by (1) were solved by R. Temam in [5] but without periodicity as
sumptions. 

In solving our problem we first apply time-discretization to the equation (l) (with 
a partition of interval <0, T> in N subintervals of length h = T/N) and then we look 
for a solution of the m-dimensional approximation of this semi-discretized problem 
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(the principle of the Galerkin method). A solution of the equation (1) is then obtained 
by simultaneous limiting processes m —> oo and h = hm -> 0. 

2. DEFINITIONS AND NOTATION 

Let two real separable Hilbert spaces V, H be given, Vbeing compactly and densely 
embedded in H. Identifying H with its dual H', we may write VQ HQ V. The 
inner products in H and Vare denoted by (•, •) and [•, • ] , and the norms induced by 
these products are denoted by [•[, and [•], respectively. Further, let a real separable 
Hilbert space Vs be given, s e N (s fixed), with an inner product [•, - ] s and the norm 
[•]s, such that Vs is continuously and densely embedded in V. The dual pairing 
between Vand V as well as between Vs and Vs is denoted by <•, •>. 

In the sequel, B-spaces L2(0, T; X), L^O, T; X) will be used, where X is a B-space; 
their definitions may be found e.g. in [3]. 

We shall denote by ^ ' ( 0 , T; Vs) the space of distributions on <0, T> with values 
in Vs. We shall understand under the derivative z' of a function z e L2(0, T; V) ez 
cz £^'(0, T; V's) the derivative in the sense of distributions such that z' G L2(0, T; Vs). 

Let the operator A0: V-> V' be defined by the relation 

(2) <A0z,z) = {z,zj, z,zeV. 

A0 is a linear continuous operator on V. 

Let the operator B0: V-» Vs be defined by the relation 

(3) B0z = B0(z, z) , 

where B0: H x V-> Vs is a bilinear continuous operator such that 

(4) <B0(z, z), z> = - <B0(z, z), Z> , Z,Z€V, ZE Vs 

and 

(5) < B 0 ( z , z ) , f > g c | z | [ z ] [ z ] s , ZEH, zeV, z e Vs 

hold (c is positive constant). 
It follows from (4) that 

(6) <B0z, z> = 0 , z e Vs. 

We shall assume the operators A0, B0 to be defined on L2(0, T; V) by the relations 

(A0z) (t) = A0 z(t) 

(B0z) (t) = B0 z(t) 

for a.e. t e <0, T>. 
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Analogously, the operator B0 is supposed to be defined on L2(0, T; H) x 
x L2(0, T; V) by the relation 

(Bo(z,z))(t) = Bo(z(t),z(0) 

for a.e. t e <0, T>. 

3. EXISTENCE THEOREM 

Theorem 1. Let a function F e 1^(0, T; V') be given. Then there exists at least 
one function z satisfying the relations 

(7) z e L2(0, T; V) n La (0, T; H) , 

z 'eL 2 (0 ,T;V ; ) , 

(8) z' + A0z + B0z = F , 

(9) z(0) = z(T) . 

Proof. We shall apply Rothe method in the following way: Let {tp}"=1 be a uni
form partition of <0, T>, h = T/N, N e N, tp = ph. Semidiscretizing (8) we get 
a system of N equations 

(10) ^ + V + v = F , p=l,...,N, 
h 

where zp = z(tp), 

Fp = - \ F(t)dt, Ip = (tp^tp\ p=l,...,N. 

It is evident that 

(11) \\F"\v,^\\F\\Lm{0J.,Y,). 

We shall use the Galerkin method to solve (10). 
The space Vs being compactly embedded in H, there exists an orthonormal base 

{cOi}f=l in Vs and the set of numbers yt > 0, i = 1, 2, ... such that 

(12) {cohy}5 = yi(ojhv) 

for every v e Vs. 
For every m e N we look for a sequence {z£}, p = 0, 1, ..., N of the form 

m 

(13) zl = X «a>£ 
1 = 1 
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so that the following equations are satisfied: 

(14) (*'" ~ / ;

4 ' , coj) + {zm, coj} + <B0zm, e>,> 

= <Fp,ш,->, j = 1, . . . , m , 

O N 

- z,„ (15) 

To prove the existence of a solution of (14) and (15) we formulate the next two 
lemmas: 

Lemma 1. There exists a number R > 0 independent of m, h, p and such that 
the following assertion holds: If zm~l e Bm(0, R) for some p e {1, ..., N} (Bm(0, R) 
denotes the closed ball with center 0 and radius R in the space lin {cOt}f=l with the 
norm | - | ) , and if z~~l, zm satisfy the equation (14), then zm e Bm(0, R) as well. 

P r o o f of L e m m a 1. Using (6) we obtain from (14) (s > 0) 

(16) \ztf + h{zmf ^ i-SL-i- + --=-- + ^ * ' + - - - - £ - - • 
2 2 2e 2 

For 0 < s < 2 and R such that 

(") *zc,mLM, 7(<r^)) 
we get easily from (16) that the desired implication 

(18) lzp~1l < R => lzpl < R 
V 1 C 7 | - - m I — / v | - ; m | = x v 

holds (c! denotes the constant of the embedding of Vin H). 

Lemma 2. Let R satisfy (17). Then for every m e N there exists h = hm such 
that the following assertion holds: If zm~[ e Bw(0, R) then there exists a unique 
function zme Bm(0, R) such that zm~l, zm satisfy the equation (14) (with h = hm). 
Moreover, zm depends continuously on zm~l. 

To prove Lemma 2 we shall use the theorem on local existence of a solution of 
an equation depending on a parameter (Theorem 3.4. V Chap. I, [6]) which we 
present here as Lemma 3: 

Lemma 3. Let (Xudi), (X2,d2) be two complete metric spaces, let x0eXu 

p0 e X2, a, p > 0, 0 S A < 1 and suppose that 

(i) G: B(x0, a; Xt) x B(p0, /?; X2) -> Xt is continuous; 

(ii) dl(G(xu p), G(x2, p)) ^ A d{(xu x2) for xu x2 e B(x0, a; Xx) and 
pGB(p0 , /?:K2) ; 

(iii) dx(G(xQ, p), x0) < a(l - X) for p e B(p0, /?; X2). 
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Then the equation x = G(x, p) has a unique solution x = x*(p) e B(x0, a; Xt) 
for any p e B(p0, /?; X2). Moreover, x*: B(p0, /?; X2) -~> B(x0, a; Xj) is continuous. 

Proof of Lemma 2. Using (13) we can rewrite the equation (14) in the form 

(19) l* = e " 1 + liA"1^ - A^ - B(^) £*] 

where £p and <pP are vectors, the coordinates of which are respectively £p and (Fp, cof), 
i = 1, ..., m, while Af, A and B(^) are matrices, the elements of which are respec
tively (A)ij = {coj, C0i}, (A)ij = (coj, C0i) and B(£p)u = (B0(zm, ojj), ojr>, i = 1, ..., m, 
j = 1, ..,, m. To prove the existence of a solution of the equation (19) we use 
Lemma 3: 

Let the mapping G: Rm x Rm -> 0?m be defined by the relation 

(20) G(^ , p-1) = Z*'1 + hA~'[(pp - A? - B(£p) ^ ] . 

Without going in details, we may ensure that the conditions (i)-(iii) of Lemma 3 be 
fulfilled by making h dependent on m. In particular, it can be easily shown that for 
every m e N there exists h = hm sufficiently small (hm -» 0, m -» oo) such that G 
defined by (20) satisfies the conditions (i) — (iii) of Lemma 3 (with a > /? > 0). 
Moreover, we choose (for every m) h = hm so that hm = TJNm, where Nw e N. 
Thus, the partition of the interval <0, T> is made dependent on m. 

For G defined by (20) the assertion of Lemma 3 can be formulated as follows: 
For every ^ ~ 1 e B(0, p, Rm) (B(0, /J, R) denotes the closed ball with center 0 and 

radius ft in the space Rm) there exists one and only one Cp e B(0, a, Rm) (a > /?) such 
that €p~1,l;p satisfy (19) (with h = hm) and, moreover, £p depends continuously 
o n ^ " 1 . 

To interpret this result in the space of functions zm~\ zm, we choose fi sufficiently 
large so that 

B(0, R, Rm) c B(0, P, Rm) 
m 

where Rm denotes the space Rm with the norm |D|W y = N/( £ (Of/y,)), (yt were defined 
in (12))/ 

Thus, C7*"1 GB(0, p, Rm) for zm~1 e Bm(0, R), and we may define a continuous 
mapping «̂ "w (ra e AV, p e {1, ..., Nw}) in the following way: 

3Tp
m: Bw(0, R) -> Bw(0, fca) 

where k is the constant of the embedding of Vs in H, a > /? > 0, and zw is the unique 
solution of the equation (14). From Lemma 1 we obtain that zm = ^~m(zp~l)e 
e Bw(0, R). Thus, the mapping STp

m maps the closed ball Bm(0, R) continuously into 
itself. This completes the proof of Lemma 2. 
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Define a mapping 

CM _ arNm ar\ 
^m ~ J m ° • • • ° ^ m 

W (z°) - Z
N>" 

** mV'm) Lm 

such that in the sequence 

(21) {zm , . . . ,zM 

each two neighbouring elements satisfy the equation (14) (with h = hm)9 each element 
is uniquely determined by its predecessor and depends on it continuously. 0>

m maps 
the closed ball Bm(0, R) continuously into itself. From the Brouwer fixed point 
theorem we obtain the existence of a function z0m such that ^Jz0m) = z0m. We put 
zm = z0m and for this initial function there exists a unique sequence (21) with the 
properties mentioned above. The following estimate takes place: 

(22) \zp
m\ ̂  R9 p-0,l,...,Nm, m e / V . 

4. APRIORI ESTIMATES AND LIMITING PROCESSES 

Using the sequence (21) with zm = z0m we define functions 

(23) zjt) - zfn9 telp, Ip = ((p - 1) hm, phmy , p = 1 , . . . , Nw , 

*„(0) - zl, 

(24) zjt) = (LzAl^AJlA Zm + (?h^J\ 4- i , 

telp, p = 1, ...,Nm, 

zm(0) = Z°m . 

Further, we define 

Fjt)~Fp, telp9 p= 1, . . . , N m . 

In the following lemma standard methods are used to prove some of the apriori 
estimates (cf. e.g. [4], [5]). 

Lemma 4. The sequences of functions {zm}m=i, {Zm}m=1 are bounded in the 
space L2(09 T; V) n LjO, T; H). Moreover, 

(25) zm - Zm -> 0 in L2(0, T;H), m -> oo . 

Proof. From (22) we immediately obtain 

C26) ||^|L(0,T;H) = R 

( 2 7 ) ||Zm||Loo(0,T;H) = R 
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The equation (14) implies 

I (NT - NTT + K - - rT) + 2hJf{ZmY ^ 
P=i P = i 

^fhJ\\F"\\2v + HY). 

P=l 

Using (11) and the periodicity condition (15), we conclude that 

(28) £ K - - * r T = ̂ > 

(29) IMŽ.ÍO.™ = f h j z m ] 2
á d 1 ; 

p = l 

(30) IKILo.T-.vy á 2 5 !ímM2 ^ 2d. 
p = l 

where d, = T||E||L(0(r:K')-
The condition (25) is easily proved if we notice that 

zjt) - Zjt) = P^LZJ (z, _ z r i) , r e / , 
«« 

and that (28) holds. 

Lemma 5. The sequence {dZm/dt}m°=1 is bounded in the space L2(0, T; V^). 

Proof. The proof of this lemma is based on a special choice of the base {coi}fL1 

in the space Vs (relation (12)): For the functions (23), (24) the equation (14) is of the 
form 

(31) (~^1, a,,) + [2Jt), a>j$ + <B0(zJt), zjt)), co,> = <Fjt), o>,> , 

for a.e. t e <0, T> , j = 1,..., m . 

Define a projector 

m 

(32) Pjv) = £ 7i(v, o>,.) <o;. 
i = l 

For v e Vs we have from (31) 

(33) ( ^ , v) = <Fm(0, J»„.t» - (zjt), Pmv\ - <5oW0. *»(0). -V> • 
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It follows from (32) that 

(34) [Pm„], =g [„], 

and, consequently, 

(35) [ P m » ] g c 3 t > L . 

Thus, from (33) we get 

|(z;(o,*OI2 a i{\FMr- + W01 2 + MOI2 WO]2} H 2 

and this implies, by virtue of (11), (26) and (29), the assertion of Lemma 5. 
Lemmas 4 and 5 enable us to assert that there exist subsequences {z/t} c {zw}, 

{Z^} c {Zm} such that 

(36) z^ -^ z (weak convergence in L2(0, T; V) and 

*-weak convergence in L^O, T; H)), 

(37) Z/t -*• Z (weak convergence in L2(0, T; V) and 

*-weak convergence in L%(0, T; H)), 

(38) z ; -- Z' (weak convergence in L2(0, T; V^)). 

The theorem on compact embedding (Theorem 5.1, Chap. I, [7]) implies that 

(39) Z„ -> Z strongly in L2(0, T; H). 

From (25) and (36)-(39) it follows that 

(40) z = Z 

and 

(41) Z^ -*• z' (weak convergence in L2(0, T; V^)). 

From the definition of A0 we have 

(42) AQZ^ -- A0z (weak convergence in L2(0, T; V')). 

Lemma 6. There exists a subsequence of B0(z^ zM) that converges weakly to 
B0(z, z) in L2(0, T; V;). 

Proof. Using the properties of B0 and the fact that zM -> z in L2(0, T; H), it can 
be easily proved that 

(43) <B0(z„ z„), v> - <B0(z, z), v> for v e L,(0, T; Vs). 

Since (26) and (29) hold, the sequence B0(z^, z j is bounded in L2(0, T; V^.). Thus, 
there exists a subsequence of B0(zM, z^) that converges weakly in the space 
L2(0, T; V^). For simplicity it will be denoted by B0(z^ z j again. By virtue of (43) 
the assertion of Lemma 6 is proved. 
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Lemma 7. The sequence {F.J converges to F in L2(0, T; V). 
The proof of this lemma is quite analogous to that of Lemma 4.9, Chap. Ill , [5], 

therefore we do not present it here. 
The system of equations (31) can be rewritten in a form suitable for the limiting 

process: 

(44) 3 £ ) , a>\ + <A0 Zii(t), cojy + <B0(z£), zM(r)), cojy = 

= (F^t), cojy , j = !,...,/!. 

Let {gt}fLi denote the base in L2(0, T). From (44), using Lemmas 6 and 7 and the 
relations (41) and (42), we obtain by the limiting process /L -> oo, for every i,j e IV, 
the equation 

(45) <z', gtWjyt + (A0z, g^y, + (B0z, g-w^, = <F, g^X , 

where <•, •>, denotes the dual pairing between L2(0, T; Vs) and L2(0, T; Vs). This 
implies that (8) is fulfilled. The periodicity condition (9) is also satisfied since it 
follows from (37), (40) and (41) that 

(46) %df) "^ z ( 0 (weak convergence in Vs) for every t e <0, T> , 

and, simultaneously, 

Z„(0) = ZJ(T) for all fi. 

This completes the proof of Theorem 1. 

Remark . Specifying the operators A0, B0 and the spaces Vs, Vand H, we can use 
Theorem 1 to prove the existence of a periodic solution of a variational formulation 
of the Navier-Stokes equations and the equations of magnetohydrodynamics, for 
details see [8], 
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Souhrn 

ROTHEHO METODA A PERIODICKÉ ŘEŠENÍ NAVIER-STOKESOVÝCH ROVNIC 
A ROVNIC MAGNETICKÉ HYDRODYNAMIKY 

DANA LAUEROVÁ 

V článku je dokázána existence periodického řešení nelineární operátorové rovnice z' + 
-f- A0z + B0z = F, která vzniká zobecněním variační formulace úlohy Navier-Stokesových 
rovnic nebo rovnic magnetické hydrodynamiky. Vhodným spojením Rotheho metody, Galerki-
novy metody a Brouwerovy věty je dokázána hlavní existenční věta. 

Р е з ю м е 

МЕТОД РОТЕ И ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ УРАВНЕНИЙ 
НАВИЕРА-СТОКСА И УРАВНЕНИЙ МАГНЕТОГИДРОДИНАМИКИ 

^ А N А ^А^ЕКОVА 

В статье доказывается существование периодического решения нелинейного операторного 
уравнения г' + А02 + В0г = К Сформулированную теорему существования можно непо
средственно применить к доказательству существования периодического решения вариа
ционной формулировки уравнений Навкера-Стокса или уравнений магнетогидродинамики. 
Главным методом доказательства является метод Роте в комбинации с методом Галеркина 
при использовании теоремы Броуэра. 

АшНог'8 аййгез$: 1ШОг. Ваш ^аие^оVа, С8с, йзигу ^аа,е^пепо Vу2кити, 250 68 Йех. 
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