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APPROXIMATION OF A NONLINEAR THERMOELASTIC PROBLEM
WITH A MOVING BOUNDARY VIA A FIXED-DOMAIN METHOD

JiNDRICH NECAS, ToOMAS ROUBICEK

(Received April 10, 1989)

Summary. The thermoelastic stresses created in a solid phase domain in the course of solidifica-
tion of a molten ingot are investigated. A nonlinear behaviour of the solid phase is admitted, too.
This problem, obtained from a real situation by many simplifications, contains a moving boundary
between the solid and the liquid phase domains. To make the usage of standard numerical
packages possible, we propose here a fixed-domain approximation by means of including the
liquid phase domain into the problem (in this way we get the fixed domain involving the whole
ingot) and by replacing the liquid phase with a solid phase having, however, a small shear modulus.
The weak Lz-convergence of thus approximated stresses in the solid phase domain is demonstrat-
ed. Besides, this convergence is shown to be strong on subsets whose closure belongs to the solid
phase domain.

Keywords: nonlinear thermoelasticity, solidification, moving boundary.

AMS Classification: 35J70, 73C50.

1. MOTIVATION AND FORMULATION OF THE PROBLEM

The aim of the paper is to propose an effective approximation that enables us to
evaluate thermoelastic stresses within solidification of a molten steel ingot in a sand
form by using standard numerical packages. We admit only rather simple geometrica!
situations like that in Fig. 1. The ingot, occupying a fixed domain Q° = R3, is partially
in the solid phase (i.e. the domain Q = Q(r)), the rest (i.e. Q°\ Q(t)) being in the
liquid phase; Q(¢) depends on time ¢, hence the boundary 6Q,, = 0Q,(r) between
the solid and the liquid phases is moving. The fixed boundary of the ingot 9Q°
is divided into the parts 0Q°%, and 0Qp,,,, corresponding to the open-air surface and
the surface of the ingot/form contact, respectively. The parts corresponding to the
solid phase are denoted by 0Q,;, = 0Q,,(1) and 0Q¢yem = Qm(1) (possibly, Q,;.(1)
or 0Q0 N 0Q¢orm(t) may be empty).

As the real situation is extremely complicated, we are forced to make many simpli-
fications. We neglect mainly any changes concerning a composition of the material,
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any influence of the stress on the temperature field, all viscous effects, and inertial
forces. Particularly, for the stress, time ¢ will play the role of a parameter only (and
we will mostly omit it for brevity) and the heat-transfer equation is not coupled with
the system of equations for stress. Therefore we may and will suppose that we are
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Fig. 1. An example of a possible geometrical situation in the course of solidification of a molten
steel ingot Q° in a sand form. The ingot is partially in a solid phase (= the domain £2); the boundary
8%, between the solid and the liquid phases is moving.

given a temperature field 0 = 0(x, t) obtained by solving some nonlinear heat transfer
problem, e.g. a Stefan problem which is the simplest model of the heat transfer in
presence of phase transitions. Furthermore, denoting the solid/liquid transition
temperature by 6., we suppose:

Qt) = {xeQ%0(x, 1) < Os.} .

Besides, we employ small strains and a nonlinear Hook law in the solid phase; the
nonlinear elasticity is also called a deformation theory of plasticity. The ingot/form
contact is viewed as an elastic support, the friction being neglected. We are interested
only in the stress in the solid phase, and thus we come to the following boundary
value problem on the domain Q (recall that the parameter ¢ is omitted) for an un-
known vector field of displacements v = (vy, v, v3):

(1.1) oti(v, 0)fox; + fi=0 on Q,i=1,23,

(i.e. the Lamé system) with the boundary conditions

(1.2) (v, 0)n; + pn, =0 on 0Q,, i=123,
(1.3) 7(v, 0) n; = 0 on 0Q,., i=1273,
(1.4) 7(v, 0) ny + anw, =0 on 0Qpp, i=1,2,3,
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where we have used the summation convention and the following notation:
0 = 0(x) temperature (which is supposed to be given),
f = (fl,fz,f3) the gravitational force loading,

p = p(x) the pressure (i.e. the hydrostatic pressure in the liquid phase at the
point x € 0Q,)),

n = (ny, n,, ny) the vector of a unit outward normal to the boundary 0@,

v, = UM the normal displacement,

a = a(x) the coefficient characterizing the elastic support of the ingot in the
form,

7,0, 0) the stress tensor components subjected to the nonlinear Hooke law:

(1.5) (v, 0) = (k(0) — 3u(I(v), 0)) div v ;; + 2u(I(v), 0) e;(v)

— 3 k(6) «(0) 5

ijs
with e;;(v) = 4(dv;/0x; + @v;[ox;) the small strain tensor components and I'(v) =
= (e}i(v) ef{(v))"/* the intensity of shear strains, where e};(v) = e;;(v) — 15;; div e,
d;; is the Kronecker symbol, k the bulk modulus (depending on temperature), u
the shear modulus (depending on temperature and also on I'(v), which makes the
problem nonlinear), and «: R — R; typically «(6) = a,(0) (0 — 0,) where x, is
a temperature-dependent thermal dilatability related to a reference temperature 0.

Applying Green’s formula once to (1.1) and employing the boundary conditions
(1.2)—(1.4), we obtain in a usual way the weak formulation of the problem (H*(Q)
will denote the Sobolev space of all functions from I*(Q) with k-th distributional
partial derivatives from L*(Q)):

Definition 1. A function ve [H'(Q)]? is called a weak solution of the problem
(1.1)=(1.5) if, for every z e [H'(Q)],

(1.6) fotij(v,0) e;i(2) dx + [ag,.... av,2,dS = [, fiz;dx — [0 pz,dS.

2. APPROXIMATION OF THE PROBLEM VIA A FIXED-DOMAIN METHOD

The moving boundary 0Q, is very unpleasant from the viewpoint of making
a computer program. We propose here an approximation of the original problem
by another problem that uses the fixed domain Q°. The idea is very simple indeed:
we replace the liquid phase by a solid phase with a very low shear modulus (being
equal to some small ¢ > 0). Thus we have got only a solid phase on the whole domain
Q°. Of course, the temperature-dependent properties of the solid phase (i.e. k, ,
and o) must be now defined also for the temperature greater than the solid/liquid
transition temperature 0g;, at which some of them may have jumps. In other words,
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for 0>0s, the Poisson ratio v = (3k — 2u)/(6k + 2u) is very near to 1/2, while
the Young modulus E = 3k;1/(3k + u) approaches zero. Besides, suppose f and «
to be defined on Q° and Q... respectively.

Hence, we consider the following fixed-domain problem (¢ > 0):

(2.1)

(2.3)

with

(2.4)
where

(2.5)
(2.6)

(2.7)

oti(v, 0)fox; + fi =0 on Q°, i=1,23,
(v, 0)n; = 0 on 0QY., i=123,

(v, 0)n; + anw, =0 on 0QF, ., i=1273,

(v, 0) = (K5(0) — 3u°(I(v), 0)) div v 6;; + 2u*(I(v), 0) e;;(v)
— 3k%(0)(0) 5, '

y k(6) for 0 < O,

k(6) =
©) N+ 3 for 020,
, (I, 0) for 0 < b,
1T, 0) = <

‘g for 0 = 6.,

a(0) for 0 < O ,
a(0) = ©) S

N0 for 0= 0 .

In the usual manner we define the weak solution of the problem (2.1)—(2.7).

Definition 2. A function v* e [H'(Q°)]* will be called a weak solution of the
problem (2.1)—(2.7) if the following integral identity holds for every z € [H'(Q°)]*:

(28)

oo (1%, 0) €;(2) dx + [og0,.... aviz, dS = [go fiz; dx .

3. ASSUMPTIONS AND APRIORI ESTIMATES

Let us collect the assumptions imposed on the data we will need in what follows:

(3.1)

(3.2)
(3.3)

(3.4)
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Q° Q < Q° and Q°\ Q are three Lipschitz domains, Q° is connected,
and, for very connected component Q of Q°\ 0, 0 n QY has a positive

two-dimensional Lebesgue measure (the bar denotes the closure),
ael”(6Q), ), a(x) = a,;, > 0fora.a. xedQ),, ,

Vze[H'(2)]*:e;(z) = 0ace.in Q& [a,., az;dS=0=

=z = 0a.e.in Q,

Jpe C'(Q°):f = —V¢ and ¢(09y;,) = ¢, = const.,



(3.5) k:[—o0, 05 ] — R is Lipschitzian, V0: k(0) < k,,, ,
wR" x [—oo, Og ] = R fulfils:
AL, eR, 2> 0, fipy >0, gy, >0 V0,0, 1,1
(T, 0) — u(r', 0)] < L,Jr — T
(I, 0) — w(r, 0)] = L1+ )]0 - 0].
Mo < 1(T, 0) = 3(k(0) = 2),

H(I0) 28 Z (T 0) 2
U

)

(3.6) a: [ —oo, Og. ] — R is Lipschitzian ,
(3.7) 0e*(Q), VS open, S <= Q:0eW"*(S).

Let us remark that the conditions (3.1) in particular does not admit liquid phase
components disconnected with the open-air surface (which could not be properly
described by our small strain model). The condition (3.3) means that the solid phase
domain Q is well fixed in the form, i.e. it cannot be moved without deformation. Tt
is obvious that (3.3) together with (3.1) enables us to exploit the well-known Korn
inequality both on Q and Q°. The condition (3.4) means that the loading force f
has a potential ¢ which is constant on the open-air surface of the body dQ% . In most
applications, ¢ will be just the gravitational potential of the earth multiplied by the
specific mass of the material of the ingot.

Of course, the pressure p that appears as data in the moving-boundary condition
(1.2) is related with the loading force potential by

(3.8) p=dho— .

It is known (see [ 1], the proof of Thm. 8.2.1 after a slight modification) that under
the conditions (3.1)—(3.7) there exists just one solution » by Def. 1 and, for every
¢ > 0, just one solution ¢* by Def. 2. To prove our convergence results, we need
some apriori estimates. Let us emphasize that the problems (2.1)—(2.7) are not
uniformly coercive with respect to ¢ > 0, and for the following estimates it is essential
that the loading force is irrotational in the liquid phase domain (as in applications f
is constant in time while Q is not, we suppose f to be irrotational even over the whole
domain Q°).

Lemma. Let ¢ > 0, let (3.1)—(3.7) be fulfilled, and let * be the unique solution
by Def. 2. Then there is a constant C independent of ¢ such that for all i,j =1,2,3
and all ¢ > 0:

(3:9) [0 00y = CIVe
(3.10) [ 41, < €,

(3.11) ”rfj(v“, O)NLZ(_Q(,) <C,
(3.12) 03] L2000y < C -
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Proof. We can put z = ¢° in (2.8). By using

A
.“ fiz,.dx=-—j ﬁz@x:j‘ d)divzdx—'[ ¢z, dS
Qo Qo UX; Qo 000

Jaol (K5(0) = 3p(I'(+%), 0)) (div v)?* + 2p°(1(1°), 0) e;;(v°) €i,(v)) dx +

+ fogopnn @ - (V)2 dS = [ g0 (3k5(0) a(0) + ) div v° dx — [s00 Ppv5dS .
Employing the assumptions (3.2) a (3.5), we get the estimate

A Jgo (div 0°)? dx + 2p, o €:,(v%) €;;(v°) dx +

+ 2¢ §90\9 ef,-(uﬂ) e,-j(uc) dx + a.;, §69°form(l’:)2 ds <

we obtain

< Lo (v e v+ L Lo (R0 30) + ) dx +

1

+ 34 fmofo,m (l’f:)z ds + jem,»o,m 4’2 ds + Iam,,, ¢v,dS =

=1, +1, +..+1Is.

We may and will suppose ¢, = 0. Then I = 0. The terms I, and I can be absorbed
in the left-hand side, which offers the estimate

(3.13) gtjm (div 072 dx + 2ty [ €(0F) e(eF) dx +
+ 2¢ foog €if(v7) €1j(0%) dx + $pin fanop,,,, (12)* dS <
< il'i foo (3K(0) &(0) + ¢)* dx + Jm— §600r0m $> dS = Co .
Note that, by (3.6), @ has a linear growth, and by (3.7) &(0) € L*(Q). As k* is bounded

independently of ¢, the constant C, can be taken also independently of ¢. In particular,
we have proved:

”“:E:“szn%rm) = \/ (2Co/apin) »

which is nothing else than (3.12).

In view of (3.1) and (3.3) we can apply the Korn inequality on Q°, which yields
the estimate &]|v}] 710, < C (C will be a generic constant independent of ¢). Thus
(3.9) has been proved.

From (3.13) we get also the estimate

Jo (A2 (div 1) dx + 2t €:;(v%) €:(0)) dx + 30 Jonpen (V) dS < Co

As Q is Lipschitzian, we can employ on it the Korn inequality (using again (3.3)),
which yields |0} g1y < C.i.e. (3.10).
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Now we only have to estimate the stress tensor componznts:
173(0% 0)] 2oy = [(K(0) = 215(1 (%), 0)) div 07| g0y +
+ ZU/,;S(F(US), 0)) "ij(”a)”m(m) + 3![k£(0) 5‘(0)” r20) =

é kmux

div o°| Laao, + 3Kpae €1 ()| o) +

+ 2ele;(0)] c2camay + Smax|E(0)] 200y =

< Kpnax(2Co /)" 4 3kipan(Col ptain)'? + (26Co)'? + 3k [@(0)]] 120, -
The estimate (3.11) is thus proved. O

4. CONVERGENCE RESULTS

Now we are going to prove the convergence of displacements obtained by solving
the problem (2.1)—(2.7). restricted to the solid phase domain Q. It should be em-
phasized that, to pass through the nonlinearity describing the plastic behaviour
of the solid phase, we must exploit some regularity results on sets having a (uniform)
neighbourhood contained in Q. We employ also the following interesting property
of Nemytskii operators in [P-spaces: any Nemytskii operator, which does not gener-
ally map weakly convergent sequences onto weakly convergent ones, does map
them so provided possible oscillations (which deteriorate the strong convergence
to a weak one) are “cumulated” on a set of zero measure — here on the boundary
of Q.

Theorem 1. Let (3.1)—(3.8) be valid, let {v*},. , be a sequence of the weak solutions
by Def. 2, and ¢ — 0. Then

(4.1) vt — v, weakly in H'(Q),

(4.2) 1,;(v%, 0) > 7;;(v, 0) weakly in 1XQ),

where v = (vy, v, v3) is the unique weak solution by Def. 1. Moreover,
(4.3) v} — v, weakly in H*(S) and

(4.4) 7,;(v%, 0) = 15(v, 0) strongly in  I*(S)

for every open set S such that S = Q.

Proof. In view of the apriori estimates (3.10)—(3.12) we can choose a subsequence
{v*},» o which satisfies (4.1) and such that

(4.5) 515, 0) > o;; weakly in  [*(Q°) and
(4.6) vE o w weakly in  2(0Qp,.) -
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Passing to the limit in (2.8), we evidently get

(4.7) fao i €i(z) dx + [s00 awz, dS = [go fiz; dx .
It is clear that
(4.8) w=uv, a.e.in 0Qmqm -

which follows from (4.1), the continuity of the trace operator v — v, from [H'(Q)]?
t0 I*(0Qqym), and from (4.6).
Furthermore, we will prove

(4.9) o = 1;(v,0) aein Q,

ij
from which we shall obtain in particular (4.2) due to (4.5). Take an open set S,
S < Q. We want to employ the H2-regularity of the displacements in the domain S.
By [2: Sec. 5.2] we need the regularity of the loading f, namely f e I*(2), which is
surely valid because of (3.4). Furthermore, we need k(6)«(6) belonging to H'(S’)
for some open S’ = 5, which is fulfilled for ' = Q as a consequence of (3.5), (3.6)
and (3.7). Also we need a regularity of the coefficients, namely for a.a. x € S” and
all ' = 0:

k(0(x)) + l%g CVO(x) | + (I, 0(x))

o

+ | o)) Vo) | < (1 + 1),
ro)| < c,

which is guaranteed by the assumptions (3.5) and (3.7). Using also (3.10), by [2; Sec.
5.2] we get the H?-regularity on S:

”L’?HHZ(S; = GCs,

where Cg is a constant depending on S but not on ¢. Thus we can choose a sub-
sequence from {v} converging weakly in [H?(S)]>. In view of (4.1) its limit is again
v (restricted on S), and therefore even the whole (already chosen) sequence {v*
converges to v weakly in [H?(S)]?; i.e. we have proved (4.3).

Now we will prove (4.4), from which we immediately obtain (4.9) because, by
(4.5), we then have o;; = 7;;(v, 0) a.e. on S and by the sets S the whole solid phase
domain © can be covered.

To show (4.4) we use the compact imbedding of [H*(S)]* into {H'(S)]’. Then,
by (4.3). e;;(t) converge strongly to e;;(v) in I*(S). The function from R® to R defined
by ‘

€ij = H(\/((eu - 5ijekk,/3) (eij - 5ijekkll3))’ 9)
is clearly bounded (independently of 0) and continuous, and therefore the correspond-
ing Nemytskii operator is continuous from [L2(S)]° to I*(S) (or even to L"(S) with
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every p < +o0). We thus see that u(I(vf), 0) » u(I'(v), 0) strongly in I*(S), and
therefore also in the measure on S, i.e.

(4.10) V§ > 0: lim meas (S\ S(e, 8)) = 0,

&0

where
(6. 8) = {x e 5: [u(T(¥), 0) (x) — w(I(0),0) (4] = o}
Now we can estimate:
(I (v%), 0) e,(v) — w(I'(v), 0) e1;(v)] sy =
< 2[u(I(v7). 0) e4j(v* — 0)]|ags) +
2[(u(r(v), 0) = w((v), 0)) e;; (©)]| Eaesie.on +
2||(u(r (v‘)~ 0) = u(T(v), 0) €1,(0) [ Lagsisieom =
Shmae €0 — U')H?.z(szo) + 267 e;(v)|12s) + 3K K| ei(0) Lsise o) -

By (4.3) with the compactness of the imbedding [H*(S)]® = [H'(S)]*, by (4.10),

by the absolute continuity of the Lebesgue integral, and by (3.10), we obtain the
estimate

II/\ + +

lvi“(‘) (I (v%). 0) e;,(v°) — w(I(v), 0) eij(”)HLﬁ(s) =
<2V 5]e(v)] s, = 2'17 0C.

As ¢ > 0is arbitrary, we eventually get

il“; |w(T (%), 0) e;(v°) — (I (v). 0) eij(0)] 2cs)

I

0.

Hence (4.4) is proved because the convergence in the other terms in the stress tensor

components, which are either linear with respect to the displacement or even constant,
is obvious.

[t remains to demonstrate that v is the weak solution by Def. 1. It is clear that

5,(v%, 0) = Adiv 1*S;; + 2e e, ;(v°) in the liquid phase domain Q°\ Q. By (3.9) we
have [2¢ el](v)I]Lz(Qo\(), = 0(5, /8) for ¢ — 0. Since the convergence from (4.5) holds
also in 2(Q°\Q), we can see that —Adive® — p weakly in [}(Q°\Q), where
— p is the diagonal component of the limit stress tensor which has the form

(4.11) o= —pS; in QNQ.

Now we use this fact for (4.7). Besides, let us take a test function z e [C'(Q°)]?
for (4.7) having its support in Q°\ Q. Then

Jaoe pdivzdx = oo Vo z dx,
hence by using Green’s formula we have

fgo\QV(p + ¢)Zd\ =0.
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As z is arbitrary, we can see that VP = —V¢a.e.on Q°\ Q,and thusalso p = ¢, — ¢
on Q°\ @, where ¢, is a piecewise constant function on each connected component
of Q°\ Q.

Now we take ze[C'(Q°)]* with the support in (2°\ Q) U 0Q%,. From (4.7)
and (4.11) with p = ¢, — ¢ we get (by using Green’s formula again)

,ram..r ¢z dS = Iasz%., ¢z dS = famm $oz ds,

where ¢, is the constant from (3.4). As z is arbitrary we have, thanks to (3.1), ¢, = ¢,
over the whole liquid phase domain Q°\ Q.
Finally, we take a test function z e [H'(Q)]? for (1.6). We may and will suppose

z € [L*(Q)]® because L*(Q) n H'(Q) is dense in H'(Q). Furthermore, we can take,
for n > 0, some extensions z" € [H'(Q°)]* of z such that the sequence {z"},., is
bounded in [L*(Q°)] and z" = 0 on {x € 0Q),,,; dist(x, Q) = n}. Let us put z”
into (4.7). Denote {x € 0Qf, 1\ 0Qrorm; dist (x, Q) < 17} by M". Using again (4.11),
we easily obtain

Jaoije(z)dx + fa0,,... Wz, dS — [0 o pdivz'dx =

= [ofiz;dx — [qoo Vo 2" dx — [y awz] dS .
Employing Green’s formula on Q°\ Q and the fact that p = ¢, — ¢ = ¢p. — o =0
on 8%, \ 0Q,;,, we get

jno\g pdivz"dx — fQO\Q Vo z"dx = — joszm pz, dS + jMn pzpdS
(recall that the normal to 0Q,, has been oriented from 2 to Q°\ Q). This yields
(4.12) faoije(z)dx + [ao... awz,dS = [o fizidx — [, pz,dS +

+ [y (aw + p) z1dS.
Now we pass to the limit with n — 0 in the last term. As M, > M, forn, = n, > 0
and N,>o M, = 0, we have got lim,_, meas M, = 0 because of the continuity
of the Lebesgue measure. Since {z"},., is bounded in [L*(Q°)]?, the traces of z"
on Q7. are bounded in [L*(0Q,.,)]% too. Besides, (aw + p)e H'*(020,,) <
& L(0QPm)- All these facts yield lim,_, [, (aw + p)zIdS = 0. From (4.12)
combined with (4.8) and (4.9), we then obtain (1.6).

Thus we have shown that v from (4,1) is the weak solution by Def. 1. The uni-

queness of this solution then implies the convergence of the whole sequence {v°}.

d

5. MISCELLANEOUS REMARKS

Remark 1. (4 non-Lipschitzian moving boundary.) To simplify the preceding
considerations we have assumed the moving boundary to be Lipschitzian, which
however may be sometimes not too realistic. Let us briefly outline what should be
changed in the case of non-Lipschitz moving boundaries. It is essential that the
Korn inequality could not be employed on Q, but only on internal Lipschitz ap-
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proximations of Q. Hence the displacements would not belong to [H'(Q)]*, but
only to a set [#7'(Q)]* with #(Q) = {z: Q > R; Vn > 0 ze H'(Q,)}, where Q, =
= {xe Q; dist(x, 0Q,) > n}. As we could not speak about traces of ze #'(Q)
on 09Q,,, we would have to define the weak solution of the original problem as a couple
(v, p)e #'(Q) x I2(Q°\ Q) such that 7,,(v, 0) defined by (1.5) belongs to [*(Q)
and the integral identity

Jaoi(v,0) e(z) dx — fpog pdivzdx + [, av,z,dS = [q fiz; dx

holds for every z € [H'(Q)]? such that z, = 0 on 0Qf,  \ 0Q,... in the sense of traces.
All the apriori estimates as well as the convergence results would have to be modified
appropriately. Also the proof of convergence would have to be modified, particularly
by using a construction of the displacement ve [#'(Q)] by successive extension
from Q, to Q,,, and to Q, ; etc., and afterwards by choosing a subsequence by
a diagonalization procedure. Unfortunately, in this case no uniqueness result are
known, hence we would obtain the convergence only in terms of subsequences.

Remark 2. (Numerical treatment of the fixed-domain problems (2.1)—=(2.6)).
We will briefly mention how the weak solutions from Def. 2 can be obtained numeri-
cally. It is clear that (2.1)—(2.6) represents a problem of nonlinear thermoelasticity
with temperature-dependent coefficients on the fixed domain Q°. Let us first employ
a linearization by the so-called secant modulus method, i.e. for ¢ > 0 fixed and
some v** € [H'(Q°)]® we define the approximations v** e [H'(Q)]* recursively for
k= 1,2,... by requiring the following integral identity to be valid for all
ze[H'(Q%)]:

Jao TE(0™; 05471, 0) e5(2) dx + [go,,,,. aviiz, dS = [go fiz;dx,

where
T (v; 0, 0) = (k°(0) — 3p°(I(2), 0)) div v §,; +
+ Z,ue(F(E), 0) eij(z‘) — 3/(“(9) &(0) Sijs

with k%, i and & from (2.4)—(2.6). Clearly we have replaced the nonlinear problen
on Q° by a sequence of linear problems on Q°. It is known (see [1; Thm. 11.5.1])
that the above introduced conditions together with (éu/oI) (I, 0) < 0 for all 0 < O
guarantee the convergence v — v* for k — oo strongly in [H'(Q°)]°. Finally,
we can employ a finite element approximation by using piecewise linear elements
and numerical integration in the boundary terms and in the terms containing tem-
perature 0 (we can simply replace 0 by a piecewise constant approximation 0" such
that 0" - 0 strongly in L*(Q°) for h — 0). The approximate solutions t*" thus
obtained can be actually computed by means of any standard package for the Lamé
system. The convergence v*" — v™* in [H'(Q)]? for the mesh parameter I tending
to zero can be proved under some usual additional assumptions in a quite standard
manner (using also induction according to k) but the fact that we cannot use continuity
of the Nemytskii operators in question because the functions x* and possibly also
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k* and @ have jumps at the phase transition temperature Og . Nevertheless, this
continuity is valid at any 0eI*(Q°) such that meas{xe Q% 0(x) = 05} =0,
which means that we must suppose, in addition, that there is no “mushy region”
(i.e. a region of positive measure where the solid and the liquid phases co-exist).
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Souhrn

APROXIMACE NELINEARNI TEPELNE-ELASTICKE ULOHY
S POHYBLIVOU HRANICI POMOCI METODY PEVNE OBLASTI

JinDRICH NECAS, TOMAS ROUBICEK

Jsou zkoumana tepelné elasticka napéti vznikajici v oblasti tuhé faze p¥i tuhnuti roztaveného
ingotu. Pfipousti se téZ nelinearni chovani tuhé faze. Takova uloha, jeZ vznikne po mnoha
zjednoduSenich realné situace, obsahuje pohyblivou hranici mezi tuhou a kapalnou fazi. Aby
bylo moZno pouZit b&Zného programového vybaveni, navrhuje se zde aproximace metodou
pevné oblasti zahrnutim oblasti kapalné faze do alohy (pevna oblast pak znamena cely ingot)
a zmé&nou kapalné faze na tuhou, avSak s malym modulem pruZnosti ve smyku. Je dokazana
slaba L?-konvergence takto aproximovanych napdti v oblasti tuhé faze. Navic se ukazuje, Ze
tato konvergence je silna na mnoZzinach, jejichz uzavér lezi v oblasti tuhé faze.

Pe3iome

TMTPUBJIVIKEHUE HEJUHENHOM TEPMOYIIPYTIOM TMPOBJIEMBI
C TMOABUXHON IMPAHULIEN METOJOM ITOCTOSHHOM OBJIACTH

JinDRICH NEeCAS, ToMAS ROUBICEK

W3y4arores TepMO-yIpyrue HanpsKeHKHs BO3HUKAIOLIME B 00,1aCTH TBEP A0 (hasbl BO BpeMsi KPHCTAI
JM3AUAKH PACTUTABIAZHHOTO CauTka. HekuHeiiHOS ToBe/ieHHe 1BEPAOH (asbl TakkKe JOIyCKaeTCs.
Dta npobazma, TOdyyeHass MHOTUMM YHPOIISHUAMM PpeasibHOW CHUTyallMH, MMEET IOABUKHYIO
IPAHULLY MSK/Ibl 06JaCTAMM TB2PAON M KUAKOH (asbi. i1l BO3MOXKHOCTH HCIOJIb30BAHUS CTaH-
JAPTHBIX BLIMUCIUTEMbHBIX TAKETOB TIPS/UTaraeics NpuOImKEeHUe METOAOM TOCTOSHHOMK 00JilacTi
TaK, 4TO XuaKass (a3a 3amMeHseTcsl TBEP/Oi, HO OOIAZAIONIeit MAJIbIM MO/YJICM TIONEPEUHOMH
ynpyrocti. JokaspBaercst L2-CXOAMMOCTD NPUGIIMKEHHbIX HATIPSHKEHHI KPOME TOTO, 514 CXOAU-
MOCTh CH/IbHA HA TIOJAMHOXKECTBAX, MMEIOLIMX 3aMbIKaHWe B 06nacTu TBepoi (asbi.
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