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35(1990) APLIKACE MATEMATIKY No. 5, 361—372 

APPROXIMATION OF A NONLINEAR THERMOELASTIC PROBLEM 
WITH A MOVING BOUNDARY VIA A FIXED-DOMAIN METHOD 

JlNDRICH NEC AS, TOMAS ROUBICEK 

(Received April 10, 1989) 

Summary. The therrnoelastic stresses created in a solid phase domain in the course of solidifica
tion of a molten ingot are investigated. A nonlinear behaviour of the solid phase is admitted, too. 
This problem, obtained from a real situation by many simplifications, contains a moving boundary 
between the solid and the liquid phase domains. To make the usage of standard numerical 
packages possible, we propose here a fixed-domain approximation by means of including the 
liquid phase domain into the problem (in this way we get the fixed domain involving the whole 
ingot) and by replacing the liquid phase with a solid phase having, however, a smalt shear modulus. 
The weak L2-convergence of thus approximated stresses in the solid phase domain is demonstrat
ed. Besides, this convergence is shown to be strong on subsets whose closure belongs to the solid 
phase domain. 

Keywords: nonlinear thermoelasticity, solidification, moving boundary. 

AMS Classification: 35J70, 73C50. 

1. MOTIVATION AND FORMULATION OF THE PROBLEM 

The aim of the paper is to propose an effective approximation that enables us to 
evaluate thermoelastic stresses within solidification of a molten steel ingot in a sand 
form by using standard numerical packages. We admit only rather simple geometrical 
situations like that in Fig. 1. The ingot, occupying a fixed domain Q° cr (R3, is partially 
in the solid phase (i.e. the domain Q = Q(t)), the rest (i.e. Q°\Q(t)) being in the 
liquid phase; Q(t) depends on time t, hence the boundary dQm = dQm(t) between 
the solid and the liquid phases is moving. The fixed boundary of the ingot dQ° 
is divided into the parts dQaiT and dQform corresponding to the open-air surface and 
the surface of the ingot/form contact, respectively. The parts corresponding to the 
solid phase are denoted by dQlÚT = dQair(t) and dQform = dQ[orm(t) (possibly, dQ.dir(t) 
o r ^ L m \ SQform(t) may be empty). 

As the real situation is extremely complicated, we are forced to make many simpli
fications. We neglect mainly any changes concerning a composition of the material, 
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any influence of the stress on the temperature field, all viscous effects, and inertial 

forces. Particularly, for the stress, time t will play the role of a parameter only (and 

we will mostly omit it for brevity) and the heat-transfer equation is not coupled with 

the system of equations for stress. Therefore we may and will suppose that we are 

OPEN-AIR SURFACE дSla 

Fig. 1. An example of a possible geometrical situation in the course of solidification of a molten 
steel ingot Q° in a sand form. The ingot is partially in a solid phase(=the domain^); the boundary 

dQm between the solid and the liquid phases is moving. 

given a temperature field 0 = 9(x, t) obtained by solving some nonlinear heat transfer 

problem, e.g. a Stefan problem which is the simplest model of the heat transfer in 

presence of phase transitions. Furthermore, denoting the solid/liquid transition 

temperature by 6>SL, we suppose: 

Q(t) = {xeQ°;9(x,t) < 0SL} . 

Besides, we employ small strains and a nonlinear Hook law in the solid phase; the 

nonlinear elasticity is also called a deformation theory of plasticity. The ingot/form 

contact is viewed as an elastic support, the friction being neglected. We are interested 

only in the stress in the solid phase, and thus we come to the following boundary 

value problem on the domain Q (recall that the parameter t is omitted) for an un

known vector field of displacements v = (vx, v2, v3): 

(1.1) dTij(v, 0)j3xj +fi = 0 on Q, i = 1, 2, 3 , 

(i.e. the Lame system) with the boundary conditions 

(1.2) xu(v, ) nj + pni = 

(1.3) xu(v, ) Пj = 0 

(1.4) xu(v, ) Пj + an-vn 

0 on дQn 

on ôQa 

= 0 on ôQ{ form 

= 1 2 3 

= 1 2 3 

= 1 2 3 
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"„ = VІПІ 

a = a(x) 

XlĂ°: • ) 

(1.5) 

where we have used the summation convention and the following notation: 

0 = 0(x) temperature (which is supposed to be given), 

/ = (fi,f2,f3) the gravitational force loading, 

p = p(x) the pressure (i.e. the hydrostatic pressure in the liquid phase at the 

point x e cQm), 

n -= (n1, n2, n3) the vector of a unit outward normal to the boundary dQ, 

the normal displacement, 
the coefficient characterizing the elastic support of the ingot in the 
form, 

the stress tensor components subjected to the nonlinear Hooke law: 

ru(v, 0) = (k(6) - |/I(F(v), 6)) div v 8U + 2»(r(v), 0) eu(v) 

- 3 k(0) a(0) Su , 

with eu(v) = i(dVijdXj + dVj\dxf) the small strain tensor components and F(v) = 
= (efj(v) eu(v))1/2 the intensity of shear strains, where e*j(v) = eu(v) — i5u div v, 
Su is the Kronecker symbol, k the bulk modulus (depending on temperature), fi 
the shear modulus (depending on temperature and also on F(v), which makes the 
problem nonlinear), and a: U -> U; typically <x(0) = cc0(0)(9 — 60) where oc0 is 
a temperature-dependent thermal dilatability related to a reference temperature 00. 

Applying Green's formula once to (1.1) and employing the boundary conditions 
(1.2) —(1.4), we obtain in a usual way the weak formulation of the problem (Hk(Q) 
will denote the Sobolev space of all functions from L2(Q) with k-th distributional 
partial derivatives from l3(Q))\ 

Definition 1. A function ve[Hi(Q)~]3 is called a weak solution of the problem 
(1-1) —(1.5) if, for every z e [H\Q)f, 

(1-6) In ?ij(v> 0) eu(z) dx + f f̂orm avnzn dS = f^fz,. dx - faflm pzn dS . 

2. APPROXIMATION OF THE PROBLEM VIA A FIXED-DOMAIN METHOD 

The moving boundary dQm is very unpleasant from the viewpoint of making 
a computer program. We propose here an approximation of the original problem 
by another problem that uses the fixed domain £2°. The idea is very simple indeed: 
we replace the liquid phase by a solid phase with a very low shear modulus (being 
equal to some small e > 0). Thus we have got only a solid phase on the whole domain 
Q°. Of course, the temperature-dependent properties of the solid phase (i.e. k, /i, 
and a) must be now defined also for the temperature greater than the solid/liquid 
transition temperature 0SL, at which some of them may have jumps. In other words, 
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for 0>0SL the Poisson ratio v = (3k — 2/L)/(6k + 2D.) is very near to 1/2, while 
the Young modulus F = 3k/L/(3k -f JI) approaches zero. Besides, suppose f and a 
to be defined on Q° and O-3°orm, respectively. 

Hence, we consider the following fixed-domain problem {e > 0): 

(2.1) dz*u(v9 0)1 dxj +fi = 0 on Q° , i = 1, 2, 3 , 

(2.2) 4<v , 0) ̂  = 0 on dQ°aiT, i = 1, 2, 3 , 

(2.3) TJ/I>, 0) nj + antvH = 0 on dQ°orm , / = 1, 2, 3 , 

with 

(2.4) xu(v, 0) = (fc£(0) - tf(r(v), 0)) div t> <5;, + 2fi%r(v), 0) e /Xr) 

- 3 k£(0) 5(0) 5 y , 
where 

, k(0) for 0 < 0SL , 
(2.5) /c8(0) = < 

N A + ¥ for 0 ^ 0SL , 

u(r, 0) for 0 < 0SL , 
(2.6) / / ( r , 0 ) = < M j

 fl>/L 

£ for 0 ^ 0SL , 

. a(0) for 0 < 0SL , 
2.7) a(0) = < W 

X 0 for 0 ^ 0SL . 

In the usual manner we define the weak solution of the problem (2.1) —(2.7). 

Definition 2. A function vEe[H1{Q0)']3 will be called a weak solution of the 
problem (2A) —(2.7) if the following integral identity holds for every z e [ H 1 ^ 0 ) ] 3 : 

(2.8) j^o z)j{v\ 0) eu{z) dx + $dQOform av£
nzn dS = J W , z ( dx . 

3. ASSUMPTIONS AND APRIORI ESTIMATES 

Let us collect the assumptions imposed on the data we will need in what follows: 

(3.1) Q°, Q c Q° and Q°\Q are three Lipschitz domains, Q° is connected, 
and, for very connected component Q of Q° \ Q, Q n dQ®ir has a positive 
two-dimensional Lebesgue measure (the bar denotes the closure), 

(3.2) a e U°(dQ?om), a(x) £ «mi„ > 0 for a.a. x e 6O?0rm , 

(3.3) Vz e [^(Q)]3: eu(z) = 0 a.e. in Q & ̂  a z„2 dS = 0 => 

=> z = 0 a.e. in Q , 

(3.4) 30 e C ' f S 0 ) : / = - V0 and ^ ( ^ ° r ) = (£0 = const. , 
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(3.5) k: [ - c o , 0SL] -> R is Lipschitzian, V0: fc(0) ^ kmn , 

fi: R+ x [ - 0 0 , 0SL] -> R fulfils: 

3L„e R, A > 0, /.min > 0, /.„,„ > 0 V0, 0', T, T': 

|MT o) - /i(r, 0)| ^ L„\r - r | , 
|MT, 0) - n(r, ff)\ g L„(I + r ) |0 - 0 ' | . 
/{min g ^(r, 0) ^ |(/c(0) - i ) , 

n(r, o) + 2r~ fl(r, o) ^ »'min, 
01 

(3.6) a: [ — 00, fjSL] —> R is Lipschitzian , 

(3.7) 0 e L2(Q), VS open, S c Q: 0 e W] '°°(S). 

Let us remark that the conditions (3.1) in particular does not admit liquid phase 
components disconnected with the open-air surface (which could not be properly 
described by our small strain model). The condition (3.3) means that the solid phase 
domain Q is well fixed in the form, i.e. it cannot be moved without deformation. It 
is obvious that (3.3) together with (3.1) enables us to exploit the well-known Korn 
inequality both on Q and Q°. The condition (3.4) means that the loading force / 
has a potential cj> which is constant on the open-air surface of the body dQ®ir. In most 
applications, <fi will be just the gravitational potential of the earth multiplied by the 
specific mass of the material of the ingot. 

Of course, the pressure p that appears as data in the moving-boundary condition 
(1.2) is related with the loading force potential by 

(3.8) p = 0O - c/> . 

It is known (see [1], the proof of Thm. 8.2.1 after a slight modification) that under 
the conditions (3.1) — (3.7) there exists just one solution v by Def. 1 and, for every 
s > 0, just one solution vF' by Def. 2. To prove our convergence results, we need 
some apriori estimates. Let us emphasize that the problems (2.1) —(2.7) are not 
uniformly coercive with respect to s > 0, and for the following estimates it is essential 
that the loading force is irrotational in the liquid phase domain (as in applications/ 
is constant in time while Q is not, we suppose / t o be irrotational even over the whole 
domain Q°). 

Lemma. Let e > 0, let (3.1) —(3.7) be fulfilled, and let vc be the unique solution 
by Def. 2. Then there is a constant C independent of s such that for all i, j — 1, 2, 3 
and all s > 0: 

(3-9) IIC.HH.,00, S C/Ve , 

(3-10) MUHQ^C, 

(3.11) H,-(/, 0)|U«o> ^ c , 
(3-12) k l U w , o r m , ^ C . 
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Proof . We can put z = ve in (2.8), By using 

f^i dx = — — zt dx = (j) div z dx — j 0z„ dS 
J Q° JQ°^Xi J_Q° J dQ° 

we obtain 

I«o((/cE(0) - iAr(v% 0)) (div t><)2 + 2n\r(v% 0) etJ(v
c) eu(vf dx + 

+ W m a . (t>„)2 dS = | n 0 (3fcE((j) a(0) + </») div »• dx - J,n0 # „ dS . 

Employing the assumptions (3.2) a (3.5), we get the estimate 

X Jno (div v'f dx + 2jimta Jn e./c ') «,/»•) dx + 

+ 2s Jnovn cy(o-) ey(i>
£) dx + «min Janoform(^)2 dS £ 

£ - Jno (div v% dx + — j n 0 (3kB(6) S(6) + cj>)2 dx + 
2 2k 

+ K d n Uo f o r m (^ ) 2 <^ + - 1 - Jafl0form 0 2 dS + Jafl0alf <K dS = 

2amin 

= I± +I2 + .. . + I 5 . 

We may and will suppose <j)0 = 0. Then I5 = 0. The terms It and I3 can be absorbed 
in the left-hand side, which offers the estimate 

(3-13) ~ \Qo (div v£)2 dx + 2fimin Jfl eu(v°) eu(v*) dx + 

+ 2e J^f l *,,(*•) *,/*•) dx + iamin J8fl0form (v^)2 dS £ 

= ~ l-oo (3k£(^) «(») + <i>Y ^ + J - Jaft0form <f>2 dS £ C0 . 
2X 2amm 

Note that, by (3.6), a has a linear growth, and by (3.7) a(0) e L2(0). As k£ is bounded 
independently of e, the constant C0 can be taken also independently of e. In particular, 
we have proved: 

K I L w w ) g V(2C 0 /aV I n) , 

which is nothing else than (3.12). 
In view of (3.1) and (3.3) we can apply the Korn inequality on Q°, which yields 

the estimate e||v*||Hi(fl0) ^ C (C will be a generic constant independent of e). Thus 
(3.9) has been proved. 

From (3.13) we get also the estimate 

Jn (2/2 (div v% dx + 2pmlB eu(v>) ey(^)) dx + |am i n U o r r > „ ) 2 dS £ C0 

As Q is Lipschitzian, we can employ on it the Korn inequality (using again (3.3)), 
which yields ||vf[|fli(fl) ^ C, i.e. (3.10). 

366 



Now we only have to estimate the stress tensor components: 

hW, 0)|UflO) ú \\(m - W(r(ď), o)) div V%HÍ20) + 

+ 2lť(r(ď),0))eij(ď)\\L2{QO) + 31^)5(5)1^0., ú 

á K™AdÍV ď\\u(!2°) + 3 f cmax| |«lX«S)l | í . J(fi) + 

+ 2£lhXt,£)!Uno\-Q> + 3fcmax|a(5)||LHno) g 

á /cmax(2C0/A)1/2 + 3femax(C0/(2/imin)),/2 + (2eC0)'/
2 + 3fcmax | |a(<9) |LW 

The estimate (3.11) is thus proved. • 

4. CONVERGENCE RESULTS 

Now we are going to prove the convergence of displacements obtained by solving 
the problem (2.1) —(2.7). restricted to the solid phase domain Q. It should be em
phasized that, to pass through the nonlinearity describing the plastic behaviour 
of the solid phase, we must exploit some regularity results on sets having a (uniform) 
neighbourhood contained in Q. We employ also the following interesting property 
of Nemytskii operators in Lp-spaces: any Nemytskii operator, which does not gener
ally map weakly convergent sequences onto weakly convergent ones, does map 
them so provided possible oscillations (which deteriorate the strong convergence 
to a weak one) are "cumulated" on a set of zero measure — here on the boundary 
of Q. 

Theorem 1. Let (3A) —(3.8) be valid, let {v£}£>0
 De a sequence of the weak solutions 

by Def. 2, and e —> 0. Then 

(4.1) v\-+Vi weakly in HX(Q) , 

(4.2) Tfj(v
E, 0) -» TU(V, 0) weakly in L2(Q) , 

where v = (v1? v2, v3) is the unique weak solution by Def. 1. Moreover, 

(4.3) v£ -> Vi weakly in H2(S) and 

(4.4) Tij(v\ 0) -> TU(V, 0) strongly in L2(S) 

for every open set S such that S c Q. 

Proof. In view of the apriori estimates (3.10) —(3.12) we can choose a subsequence 

{v£}£>0 which satisfies (4.1) and such that 

(4.5) T£
7(v

£, 0) -* (Tij weakly in L2(Q°) and 

(4.6) v«->w weakly in L2(dQ?orm). 
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Passing to the limit in (2.8), we evidently get 

(4.7) j^o en ei}(z) dx + JVQ0 awzn dS = j^f-z,- dx . 

It is clear that 

(4.8) w = v„ a.e. in dQform , 

which follows from (4.1), the continuity of the trace operator v i 
to L2(dQform), and from (4.6). 

Furthermore, we will prove 

v„from [H'(Q)]2 

(4.9) ) a.e. in Q, 

from which we shall obtain in particular (4.2) due to (4.5). Take an open set S, 
S a Q. We want to employ the H2-regularity of the displacements in the domain S. 
By [2; Sec. 5.2] we need the regularity of the loading f, namely fe LZ(Q), which is 
surely valid because of (3.4). Furthermore, we need k(6) a(6) belonging to H^S") 
for some open S' => 5, which is fulfilled for Sf cz Q as a consequence of (3.5), (3.6) 
and (3.7). Also we need a regularity of the coefficients, namely for a.a. x e S' and 
all F > 0: 

k( (x)) + àk 

d 
V (x) 

+ __ 

Õ 
(Г, (x)). V (x) 

+ fi(r, o(x)) 

š c(í + r), 

ÕГ 
(Г, (x)) ѓ C 

which is guaranteed by the assumptions (3.5) and (3.7). Using also (3.10), by [2; Sec. 
5.2] we get the H2-regularity on S: 

\\V]\\H2(S) ~ Q 9 

where Cs is a constant depending on S but not on s. Thus we can choose a sub
sequence from {v£} converging weakly in [H2(S)]3 . [n view of (4.1) its limit is again 
v (restricted on S), and therefore even the whole (already chosen) sequence {v£} 
converges to v weakly in [H2(S)]3; i.e. we have proved (4.3). 

Now we will prove (4.4), from which we immediately obtain (4.9) because, by 
(4.5), we then have ai} = Tt/(v, 0) a.e. on S and by the sets S the whole solid phase 
domain Q can be covered. 

To show (4.4) we use the compact imbedding of [H2(S)]3 into [H^S ) ] 3 . Then, 
by (4.3), eu(v

E) converge strongly to etj(v) in L2(S). The function from 1R9 to U defined 
by 

eh ^ K\/((eu ~ duekkl3)(eij - dijekkll)),Q) 

is clearly bounded (independently of 0) and continuous, and therefore the correspond

ing Nemytskii operator is continuous from [L2(S)]9 to L2(S) (or even to LP(S) with 
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every p < +00) . We thus see that /i(F(v£), 6) -» /L(F(v), 0) strongly in L2(S), and 
therefore also in the measure on S, i.e. 

(4.10) VO* > 0: lim meas (S \ S(e, (5)) = 0 , 
£ - 0 

where 
S(e, 5) = (x G S; |/L(F(v£), 0) (x) - /i(F(v), 0) (x)\ £ S] . 

Now we can estimate: 

\\n(r(v% 0) eiJ(v>) - »(r(v), e) eiJ(v)\lHS) s 

S2ln(r(v%e)eu(v°-v)\\2
LHS) + 

+ 2l(n(r(v%e) - n(r(v),o))eiJ(v)\\lKSiEM) + 

+ 2\\(»(r(v%e) - n(r(v),e))eiJ(v)\\lHm)) s 
S ^IJe^v* - v)\\lHQo) + 252||e,7(t>)||22(S) + ffe2

ax|| eu(v)\\iHs^S)). 

By (4.3) with the compactness of the imbedding [H2(S)]3 c [ / / '(S)]3 , by (4.10), 
by the absolute continuity of the Lebesgue integral, and by (3.10), we obtain the 
estimate 

lim \\»(r(v% e) eu(ď) - n(r(v), 0) e>J(v)y {S) < 

^ 2 l / 2 % , 7 ( t > ) | | t 2 ( S ) ^ 2 1 / 2 < 5 C . 

As 5 > 0 is arbitrary, we eventually get 

lim \\n(r(v% 0) <?,,(->) - w>)> 0) eiJ(v)\\LHS) = o . 
£-+0 

Hence (4.4) is proved because the convergence in the other terms in the stress tensor 
components, which are either linear with respect to the displacement or even constant, 
is obvious. 

It remains to demonstrate that v is the weak solution by Def. 1. It is clear that 
T]J(V\0) = Xdi\veSij + 2eeu(ve) in the liquid phase domain Q°\Q. By (3.9) we 
have ||2c eij(v

E)\\L2iQo\ci) = <9(yf e) for e -> 0. Since the convergence from (4.5) holds 
also in L2(Q° \ £>), we can see that - A d i v v £ - » p weakly in L2(Q°\Q), where 
— p is the diagonal component of the limit stress tensor which has the form 

(4.11) <JU = -p8u in Q°\Q . 

Now we use this fact for (4.7). Besides, let us take a test function z e [ C 1 ^ 0 ) ] 3 

for (4.7) having its support in Q° \ Q. Then 

IQ*\Q P div z dx = $Qo\Q V(j) z dx , 

hence by using Green's formula we have 

W V(p + 0) z dx = 0 . 
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As z is arbitrary, we can see that Vp = ~ V0 a.e. on 0° \ Q, and thus also p = <j)c - 4> 
on .Q0 \ .0, where <£c is a piecewise constant function on each connected component 
of Q°\Q. 

Now we take z e f C 1 ^ 0 ) ] 3 with the support in (Q° \ Q) u dQ°it. From (4.7) 
and (4.11) with p = 0C - (f> we get (by using Green's formula again) 

J^oa l r 0cz dS = ldQoair 4>z dS = Jafioalr </>0z dS , 

where 0O is the constant from (3.4). As z is arbitrary we have, thanks to (3.1), <f>c = 4>0 

over the whole liquid phase domain Q° \ Q. 
Finally, we take a test function z e [Hl(Q)Y for (1.6). We may and will suppose 

z G [L°°(Q)Y because U°(Q) n H1^) is dense in II1^). Furthermore, we can take, 
for n > 0, some extensions z^ e [ H 1 ^ 0 ) ] 3 of z such that the sequence {zn}n>0 is 
bounded in [U°(Q°)Y and z11 = 0 on {x e 5Q?orm; dist (x, Q) ^ 77}. Let us put zn 

into (4.7). Denote {x e dQ°orm\dQform; dist (x, Q) < *?} by M*. Using again (4.11), 
we easily obtain 

$Q Vij eu(z) dx + Jaflform awz„ dS - ffi0̂  P div z" dx = 

= f o / ^ i dx - ffloXfl V̂ > z" dx - JM, flwzj dS . 

Employing Green's formula on iQ0 \ Q and the fact that p = 0C — </> = <£c — </>0 = 0 
O n d 0 i r X ^ a i r > W e g e t 

Joo\o p div z'; dx - ffl0\fl V0 zn dx = ~ J^ m pz„ dS + JM„ pz\ dS 

(recall that the normal to dQm has been oriented from Qto Q° \Q). This yields 

(4.12) ffl (j,y etj(z) dx + J6^form awz„ dS = $QfiZi dx - \dQm pzn dS + 

+ fM„ (aw + p) z* dS . 

Now we pass to the limit with n -» 0 in the last term. As Ml/1 => M^2 for ^ ^ 77 2 > 0 
and f]n>0Mn = 0, we have got l im^o meas Mn = 0 because of the continuity 
of the Lebesgue measure. Since {zn}n>0 is bounded in [L°°(:Q0)]3, the traces of zn 

on a.Q0
orm are bounded in [L"(dQ°orm)Y, too. Besides, (aw + p) e Hl'2(dQ°{orm) c 

d ^ ) , All these facts yield l i m ^ 0 fM|f (aw + jp) z\ dS = 0. From (412) 
combined with (4.8) and (4.9), we then obtain (1.6). 

Thus we have shown that v from (4,1) is the weak solution by Def. 1. The uni
queness of this solution then implies the convergence of the whole sequence {vc}. 

• 
5. MISCELLANEOUS REMARKS 

R e m a r k 1. (A non-Lipschitzian moving boundary.) To simplify the preceding 
considerations we have assumed the moving boundary to be Lipschitzian, which 
however may be sometimes not too realistic. Let us briefly outline what should be 
changed in the case of non-Lipschitz moving boundaries. It is essential that the 
Korn inequality could not be employed on Q, but only on internal Lipschitz ap-
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proximations of Q. Hence the displacements would not belong to [ H 1 ^ ) ] 3 , but 
only to a set [JT1(Q)Y with Jf (Q) = {z: Q -> R; V77 > 0 z e H1^)}, where Q„ = 
= {xeQ; dist (x, OY2m) > n}. As we could not speak about traces of ze:/fl(Q) 
on dQM, we would have to define the weak solution of the original problem as a couple 
(v,p)eje1(Q) x L2(Q°\Q) such that TU(V,0) defined by (1.5) belongs to L2(Q) 
and the integral identity 

JV2 °ij(v, 6) eu(z) dx - Joovo p div z dx + j ^ f o r m avnz„ dS = J^ofz,. dx 

holds for every z e \_Hl(Q)Y such that zn = 0 on d£2°orm \ dQf0Tm in the sense of traces. 
All the apriori estimates as well as the convergence results would have to be modified 
appropriately. Also the proof of convergence would have to be modified, particularly 
by using a construction of the displacement y e f j f 1 ^ ) ] 3 by successive extension 
from Qn to Qnjl and to Qn/3 e tc , and afterwards by choosing a subsequence by 
a diagonalization procedure. Unfortunately, in this case no uniqueness result are 
known, hence we would obtain the convergence only in terms of subsequences. 

R e m a r k 2. (Numerical treatment of the fixed-domain problems (2.1) —(2.6)). 
We will briefly mention how the weak solutions from Def. 2 can be obtained numeri
cally. It is clear that (2.1) —(2.6) represents a problem of nonlinear thermoelasticity 
with temperature-dependent coefficients on the fixed domain Q°. Let us first employ 
a linearization by the so-called secant modulus method, i.e. for e > 0 fixed and 
some vE° G [H l(Q0)]3 we define the approximations vEk e \_H\Q)Y recursively for 
k= 1,2,. . . by requiring the following integral identity to be valid for all 
zG[H l(«20)]3 : 

Joo n(v*k; v*>k~\ 0) eu(z) dx + j ^ 0 f o r m avfzn dS = j W ^ dx , 

where 

T[.(v; v, 0) = (kE(0) - M F ( v ) , 9)) div v Su + 

+ 2fiE(r(v), 0) eu(v) - W(0) a(9) su, 

with kE, ixe and a from (2.4) —(2.6). Clearly we have replaced the nonlinear problem 
on Q° by a sequence of linear problems on Q°. It is known (see [1; Thm. 11.5.1]) 
that the above introduced conditions together with (djujdr) (F, 0) ^ 0 for all 0 < 0SL 

guarantee the convergence vEk -> vE for k -> 00 strongly in [ H 1 ^ 0 ) ] 3 . Finally,, 
we can employ a finite element approximation by using piecewise linear elements 
and numerical integration in the boundary terms and in the terms containing tem
perature 0 (we can simply replace 0 by a piecewise constant approximation 6h such 
that 0h -> 0 strongly in L2(.Q°) for h -> 0). The approximate solutions vckh thus 
obtained can be actually computed by means of any standard package for the Lame 
system. The convergence vekh -» vEk in [HJ(.Q)]3 for the mesh parameter h tending 
to zero can be proved under some usual additional assumptions in a quite standard 
manner (using also induction according to k) but the fact that we cannot use continuity 
of the Nemytskii operators in question because the functions / / and possibly also 
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Jč and a háve jumps at the phase transition temperature 0SL. Nevertheless, this 
continuity is valid at any 6 e L2(í2°) such that meas {x e Q°; d(x) = 6SL) =-* 0, 
which means that we must suppose, in addition, that there is no "mushy region" 
(i.e. a region of positive measure where the solid and the liquid phases co-exist). 

Acknowledgement. The authors are indebted to Professor I. Hlaváček for thorough-
ly reading a working version of the páper and for many useful comments to it. 
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S o u h r n 

APROXIMACE NELINEÁRNÍ TEPELNĚ-ELASTíCKÉ ÚLOHY 
S POHYBLIVOU HRANICÍ POMOCÍ METODY PEVNÉ OBLASTI 

JINDŘICH NEČAS, TOMÁŠ ROUBÍČEK 

Jsou zkoumána tepelně elastická napětí vznikající v oblasti tuhé fáze při tuhnutí roztaveného 
ingotu. Připouští se též nelineární chování tuhé fáze. Taková úloha, jež vznikne po mnoha 
zjednodušeních reálné situace, obsahuje pohyblivou hranici mezi tuhou a kapalnou fází. Aby 
bylo možno použít běžného programového vybavení, navrhuje se zde aproximace metodou 
pevné oblasti zahrnutím oblasti kapalné fáze do úlohy (pevná oblast pak znamená celý ingoť) 
a změnou kapalné fáze na tuhou, avšak s malým modulem pružnosti ve smyku. Je dokázána 
slabá L2-konvergence takto aproximovaných napětí v oblasti tuhé fáze. Navíc se ukazuje, že 
tato konvergence je silná na množinách, jejichž uzávěr leží v oblasti tuhé fáze. 

Pe3K>Me 

HPHBJ1H>KEHHE HEJ1MHEMHOM T E P M O Y n P y V O M HPOBJ1EMBI 
C nOABM>KHOM VPAHHÍIEM METO jTOM n O C T O t f H H O M OBJTACTM 

J I N D Ř I C H N E Č A S , TOMÁŠ R O U B Í Č E K 

M3yHaK>rcH TepMO-ynpyrne HanpH^eHna B03HHKaK>HiMe B oónaciH TBepAoM 4>a3Bi BO BpeMH KpHcraji 
jiH3anHH pacnjiaB.T2HHoro cjiwTKa. HeKHHeííHoe noBe/ienne iBep/40K ^a.3h\ Taoce jjpnyCKaeTCH. 
3Ta npo6,T^Ma, nony-ieHan MHorHMH ynponieHHííMH psaubnoM CHTyanuM, HMeeT HOABM>KHVK> 
rpaHHuy MSI-K-IM o6jiacTHMH TBep/aoří M >KHAKOÍI (}>a3bí. JJ,sm BO3MO>KHOCTH Hcnojib30BaHHH CTaH-
^apTHbix BbiHMCJiHTejíbHbix naKCTOB npe,zuraraeTCH npM6jM>KeHMe MCTO/JOM nocroflHHOH oónacTH 
TaK, HTO >K«/iKaH (J>a3a 3aMeHaeTca TBep^oií, HO o6jrajiaK>nj;eň MajibíM MO/ryjaeM nonepeHnow 
ynpyrocTH. jroKa3biBaeTCH L -CXO/IHMOCTK npH6jiH>KeHHbix nanp>T>KeHHH KpoMe TOTO, 3 ia CXO/TM-
MOCrb CHJTbHa Ha nOAMHO>KeCTBaX, HMeKDHIWX 3aMbIKaHHC B OÓJiaCTH TBepfloií <j>a3bi. 

Authors" addresses: Prof. RNDr. Jindřich Nečas, DrSc, Matematický ústav UK, Sokolovská 83, 
CS-186 00 Praha 8; Ing. Tomáš Roubíček, CSc, Ústav teorie informace a automatizace 
ČSAV, Pod vodárenskou věží 4, CS-182C0 Praha 8. 

372 


		webmaster@dml.cz
	2020-07-02T07:24:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




