Aplikace matematiky

Franz-Jürgen Delvos

Approximation by optimal periodic interpolation

Aplikace matematiky, Vol. 35 (1990), No. 6, 451-457

Persistent URL: http://dml.cz/dmlcz/104427

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

APPROXIMATION BY OPTIMAL PERIODIC INTERPOLATION

Franz-J.Delvos

(Received October 9, 1987)

0. INTRODUCTION

Babuška [1] introduced the concept of periodic Hilbert space for studying universally optimal quadrature formulas. Práger [6] continued these investigations and discovered the relationship between optimal approximations of linear functionals on periodic Hilbert spaces and in minimum norm interpolation (optimal periodic interpolation). Recently we have shown that optimal periodic interpolation is closely related to interpolation by translation [2,3,5]. In this paper we will study the approximation power of optimal periodic interpolation in the uniform norm.

1. OPTIMAL PERIODIC INTERPOLATION

In this section we will describe minimum norm interpolation in periodic Hilbert spaces (optimal periodic interpolation) as developed by Práger [6]. A periodic Hilbert space H_{d} is defined by an l^{1}-sequence $d=\left(d_{k}\right)$ satisfying

$$
d_{0}=1, \quad d_{-k}=d_{k}>0 \quad(k \in \mathbb{N})
$$

Then

$$
H_{d}=\left\{f \in L_{2 \pi}^{2} ; \sum_{k=-\infty}^{\infty}\left|\left(f, e_{k}\right)\right|^{2} / d_{k}<\infty\right\}
$$

is the Hilbert space of continuous 2π-periodic functions with inner product

$$
(f, g)_{d}=\sum_{k=-\infty}^{\infty}\left(f, e_{k}\right)\left(e_{k}, g\right) / d_{k} .
$$

Here we use the notation $e_{k}(t)=\exp (\mathrm{i} k t)(k \in \mathbb{Z})$ and

$$
(f, g)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \operatorname{conj} g(t) \mathrm{d} t, \quad(\operatorname{conj} z=\bar{z})
$$

We denote by $A_{2 \pi}$ the Wiener algebra of functions from $C_{2 \pi}$ having an absolutely convergent Fourier series [4]. $A_{2 \pi}$ is a Banach algebra with respect to the norm

$$
\|f\|_{a}=\sum_{k=-\infty}^{\infty}\left|\left(f, e_{k}\right)\right| .
$$

The periodic Hilbert space is uniquely related to the generating function $\psi \in A_{2 \pi}$ which is defined by

$$
\psi(t)=\sum_{k=-\infty}^{\infty} d_{k} e_{k}(t)=1+\sum_{k=1}^{\infty} 2 d_{k} \cos (k t) .
$$

For any $a \in \mathbb{R}$ we have $\psi(\cdot-a) \in H_{d}$. Moreover, the relation

$$
\begin{equation*}
f(x)=(f, \psi(\cdot-x))_{d}, \quad f \in H_{d} \tag{1.1}
\end{equation*}
$$

holds for any $x \in \mathbb{R}$. Thus, H_{d} is a reproducing kernel Hilbert space with reproducing kernel function

$$
K(y, x)=\psi(y-x) .
$$

Minimum norm interpolation in H_{d} is related to the uniform mesh $t_{j}=2 \pi j / n$, $j \in \mathbb{Z}$. The functions

$$
\psi\left(\cdot-t_{j}\right), \quad 0 \leqq j<n,
$$

are representatives of the point evaluation functionals

$$
L_{j}(f)=f\left(t_{j}\right), \quad 0 \leqq j<n .
$$

We denote by S_{n} the unique orthogonal projector on H_{d} with

$$
\begin{equation*}
\mathfrak{R}\left(S_{n}\right)=\left\langle\psi\left(\cdot-t_{0}\right), \ldots, \psi\left(\cdot-t_{n-1}\right)\right\rangle \tag{1.2}
\end{equation*}
$$

S_{n} is the projector of optimal periodic interpolation in H_{d}. For given $f \in H_{d}, S_{n}(f)$ is the unique interpolant of f in H_{d} with minimum norm, i.e.,

$$
\begin{align*}
& S_{n}(f)\left(t_{j}\right)=f\left(t_{j}\right) \quad(0 \leqq j<n) \tag{1.3}\\
& \left\|S_{n}(f)\right\|_{d}=\min \left\{\|g\|_{d}: g\left(t_{j}\right)=f\left(t_{j}\right), 0 \leqq j<n\right\}
\end{align*}
$$

It is easily seen that $\mathfrak{R}\left(S_{n}\right)$ is translation invariant with respect to t_{1}. Thus, the method of interpolation by translation is applicable [2, 3, 5]. It uses the discrete Fourier transform method. Let

$$
c_{k, n}(f)=\frac{1}{n} \sum_{j=0}^{n-1} f\left(t_{j}\right) e_{k}\left(-t_{j}\right), \quad k \in \mathbb{Z} .
$$

Then the trigonometric polynomial

$$
T_{n}(f)=\sum_{k=0}^{n-1} c_{k, n}(f) e_{k}
$$

satisfies

$$
T_{n}(f)\left(t_{j}\right)=f\left(t_{j}\right), \quad 0 \leqq j<n .
$$

This implies the discrete Fourier representation

$$
\begin{equation*}
S_{n}(f)=\sum_{k=0}^{n-1} c_{k, n}(f) S_{n}\left(e_{k}\right) \tag{1.4}
\end{equation*}
$$

Next we will determine the Fourier series of the exponential interpolants $S_{n}\left(e_{k}\right)$. We consider the functions

$$
\begin{equation*}
B_{k}(t)=\sum_{j=0}^{n-1} \psi\left(t-t_{j}\right) e_{k}\left(-t_{j}\right), \quad k \in \mathbb{Z} \tag{1.5}
\end{equation*}
$$

which satisfy $\mathfrak{R}\left(S_{n}\right)=\left\langle B_{0}, \ldots, B_{n-1}\right\rangle$. The Fourier series of B_{k} is given by

$$
\begin{equation*}
B_{k}(t)=n \sum_{r=-\infty}^{\infty} d_{k+r n} e_{k+r n}(t), \tag{1.6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
S_{n}\left(e_{k}\right)(t)=B_{k}(t) / B_{k}(0) . \tag{1.7}
\end{equation*}
$$

Since

$$
\begin{equation*}
c_{k, n}(\psi(\cdot-t))=B_{k}(t) / n \tag{1.8}
\end{equation*}
$$

we obtain the Fourier expansions

$$
\begin{equation*}
S_{n}\left(e_{k}\right)(t)=\sum_{r=-\infty}^{\infty} c_{k, n}(\psi)^{-1} d_{k+r m} e_{k+r n}(t), \quad k \in \mathbb{Z} . \tag{1.9}
\end{equation*}
$$

In view of

$$
\begin{equation*}
\operatorname{conj} c_{k, n}(f)=c_{-k, n}(\operatorname{conj} f) \tag{1.10}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S_{n}\left(e_{-k}\right)=\operatorname{conj} S_{n}\left(e_{k}\right), \quad k \in \mathbb{Z} \tag{1.11}
\end{equation*}
$$

2. CONVERGENCE IN H_{d}

Let $n=2 m+1$ and

$$
D_{n}=\sum_{r=1}^{\infty} d_{r m} .
$$

We assume that

$$
d_{k} \geqq d_{k+1}>0 \quad\left(k \in \mathbb{Z}_{+}\right) .
$$

Then we have

$$
\begin{equation*}
c_{k, n}(\psi)-d_{k} \leqq D_{n}(|k| \leqq m) \tag{2.1}
\end{equation*}
$$

This result is used to establish

Proposition 2.1. Let $n=2 m+1$ and $|k| \leqq m$. Then we have

$$
\begin{equation*}
\left\|e_{k}-S_{n}\left(e_{k}\right)\right\|_{d}=O\left(D_{n}^{1 / 2}\right) \quad(n \rightarrow \infty) \tag{2.2}
\end{equation*}
$$

Proof. Parseval's relation yields

$$
\begin{aligned}
& \left(e_{k}-S_{n}\left(e_{k}\right), e_{k}-S_{n}\left(e_{k}\right)\right)_{d}=\left(1-d_{k} c_{k, n}(\psi)^{-1}\right)^{2} / d_{k}+\sum_{r \neq 0} d_{k+r n} c_{k, n}(\psi)^{-2} \leqq \\
& \leqq D_{n}^{2} d_{k}^{-3}+D_{n} d_{k}^{-2}=O\left(D_{n}\right)
\end{aligned}
$$

which completes the proof.
Recall that the projector of optimal periodic interpolation is an orthogonal projector on H_{d}. Moreover, the algebra of trigonometric polynomials

$$
\tau=\left\langle\left\{e_{k}: k \in \mathbb{Z}\right\}\right\rangle
$$

is dense in H_{d}. Taking into account Proposition 2.1 and the Banach-Steinhaus theorem we obtain

Proposition 2.2. For any $f \in H_{d}$ we have

$$
\lim _{n \rightarrow \infty}\left\|f-S_{n}(f)\right\|_{d}=0
$$

Remark. Práger [6] proved the convergence of the optimal approximations Φ_{n} of the bounded linear functional $\Phi \in H_{d}^{*}$ in the norm topology of H_{d}^{*}. Moreover, he showed that

$$
\Phi_{n}(f)=\Phi\left(S_{n}(f)\right) \quad\left(f \in H_{d}\right)
$$

Thus, Proposition 2.2 follows also from Práger's results in view of the duality theory for Hilbert spaces.

3. CONVERGENCE IN $A_{2 n}$

In this section we will extend the convergence result of Proposition 2.2 from (the periodic Hilbert space) H_{d} to the Wiener algebra $A_{2 \pi}[4]$. Note first that

$$
\begin{equation*}
\|f\|_{\infty} \leqq\|f\|_{a} \quad\left(f \in A_{2 \pi}\right) \tag{3.1}
\end{equation*}
$$

Proposition 3.1. For $f \in A_{2 \pi}$ the estimate

$$
\begin{equation*}
\left\|S_{n}(f)\right\|_{\infty} \leqq\|f\|_{a} \tag{3.2}
\end{equation*}
$$

holds.
Proof. Recall that

$$
S_{n}\left(e_{k}\right)(t)=B_{k}(t) / B_{k}(0) .
$$

Since $\left|B_{k}(t)\right| \leqq B_{k}(0)$ we have

$$
\begin{equation*}
\left\|S_{n}\left(e_{k}\right)\right\|_{\infty}=1 \tag{3.3}
\end{equation*}
$$

Using the discrete Fourier representation and the relation

$$
c_{k, n}(f)=\sum_{r=-\infty}^{\infty}\left(f, e_{k+r n}\right)
$$

we can conclude

$$
\left|S_{n}(f)(t)\right| \leqq \sum_{k=0}^{n-1}\left|c_{k, n}(f)\right| \leqq \sum_{k=0}^{n-1} \sum_{r=-\infty}^{\infty}\left|\left(f, e_{k+r n}\right)\right|=\|f\|_{a},
$$

which completes the proof.

Proposition 3.2. For any $f \in A_{2 \pi}$ we have

$$
\lim _{n \rightarrow \infty}\left\|f-S_{n}(f)\right\|_{\infty}=0
$$

Proof. It follows from Proposition 3.1 that the sequence of linear operators

$$
S_{n}: A_{2 \pi} \rightarrow C_{2 \pi} \quad(n=2 m+1, m \geqq 0)
$$

is uniformly bounded. Moreover, the estimate

$$
\begin{equation*}
\|f\|_{\infty} \leqq \sqrt{ }[\dot{\psi}(0)]\|f\|_{d} \quad\left(f \in H_{d}\right) \tag{3.4}
\end{equation*}
$$

holds. Taking into account Proposition 2.2 we obtain

$$
\lim _{n \rightarrow \infty}\left\|f-S_{n}(f)\right\|_{\infty}=0 \quad\left(f \in H_{d}\right) .
$$

Since H_{d} is dense in $A_{2 \pi}$ again an application of the Banach-Steinhaus theorem completes the proof.

4. QUANTITATIVE ERROR BOUNDS

The generating sequence $d=\left(d_{k}\right)$ of H_{d} defines the linear operator A in $L_{2 \pi}^{2}$ by

$$
\begin{equation*}
A f=\sum_{k=-\infty}^{\infty}\left(f, e_{k}\right) d_{k}^{-1} e_{k} \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{dom}(A)=\left\{\psi * g: g \in L_{2 \pi}^{2}\right\} . \tag{4.2}
\end{equation*}
$$

Proposition 4.1. Let $n=2 m+1$ and $|k| \leqq m$. Then we have

$$
\begin{equation*}
\left\|e_{k}-S_{n}\left(e_{k}\right)\right\|_{\infty} \leqq 2 D_{n}\left\|A e_{k}\right\|_{a} \tag{4.3}
\end{equation*}
$$

Proof. Taking into account the Fourier series of $S_{n}\left(e_{k}\right)$ we get

$$
\begin{aligned}
& \left|e_{k}(t)-S_{n}\left(e_{k}\right)\right| \leqq\left|1-d_{k} c_{k, n}(\psi)^{-1}\right|+\sum_{r \neq 0} d_{k+r n} c_{k, n}(\psi)^{-1}= \\
& =2\left(c_{k, n}(\psi)-d_{k}\right) / c_{k, n}(\psi) \leqq 2 D_{n} / d_{k}=2 D_{n}\left\|A e_{k}\right\|_{a} .
\end{aligned}
$$

This completes the proof.
We will extend the error estimate (4.3) for the exponentials e_{k} to a larger class of functions.

Proposition 4.2. Suppose that $f \in \operatorname{dom}(A)$ satisfies $\|A f\|_{a}<\infty$. Then we have for $n=2 m+1$:

$$
\begin{equation*}
\left\|f-S_{n}(f)\right\|_{\infty} \leqq 2 D_{n}\|A f\|_{a} . \tag{4.4}
\end{equation*}
$$

Proof. We denote by F_{m} the Fourier partial sum projector:

$$
F_{m}(f)=\sum_{k=-m}^{m}\left(f, e_{k}\right) e_{k} .
$$

Then we have

$$
\begin{equation*}
\left\|f-F_{m}(f)\right\|_{\infty} \leqq D_{n}\left\|A\left(f-F_{m}(f)\right)\right\|_{a} . \tag{4.5}
\end{equation*}
$$

Now we can conclude

$$
\begin{aligned}
& \left\|f-S_{n}(f)\right\|_{\infty} \leqq\left\|f-F_{m}(f)\right\|_{\infty}+\left\|F_{m}(f)-S_{n}\left(F_{m}(f)\right)\right\|_{\infty}+ \\
& +\left\|S_{n}\left(F_{m}(f)-f\right)\right\|_{\infty} \leqq 2 D_{n}\left\|A\left(f-F_{m}(f)\right)\right\|_{a}+ \\
& +\sum_{k=-m}^{m}\left|\left(f, e_{k}\right)\right|\left\|e_{k}-S_{n}\left(e_{k}\right)\right\|_{\infty} \leqq 2 D_{n}\left\|A\left(f-F_{m}(f)\right)\right\|_{a}+ \\
& +2 D_{n} \sum_{k=-m}^{m} \mid\left(f, e_{k}\right)\left\|d_{k}=2 D_{n}\right\| A f \|_{a},
\end{aligned}
$$

which completes the proof of Proposition 4.2.

5. EXAMPLES

Let $r \in \mathbb{N}$ and

$$
d_{0}=1, \quad d_{k}=k^{-2 r} \quad(k \neq 0) .
$$

The periodic Hilbert space is the periodic Sobolev space $W_{2 \pi}^{r}$. The generating function ψ is given by

$$
\begin{equation*}
\psi(t)=1+(-1)^{r} B_{2 r}(t) \tag{5.1}
\end{equation*}
$$

where $B_{q}(t)$ is the Bernoulli function of degree q :

$$
\begin{equation*}
B_{q}(t)=\sum_{k \neq 0}(\mathrm{i} k)^{-q} \exp (\mathrm{i} k t) . \tag{5.2}
\end{equation*}
$$

It is easily seen that $\mathfrak{R}\left(S_{n}\right)$ is a space of periodic monosplines of degree $2 r[2,5]$.

Suppose that $f \in C_{2 \pi}^{2 r}$ satisfies $D^{2 r} f \in A_{2 \pi}$. Then an application of Proposition 4.2 yields the asymptotic error estimate

$$
\begin{equation*}
\left\|f-S_{n}(f)\right\|_{\infty}=O\left(m^{-2 r}\right) \quad(n=2 m+1 \rightarrow \infty) . \tag{5.3}
\end{equation*}
$$

Next we consider the sequence

$$
d_{k}=\exp (-|k| b) \quad(k \in \mathbb{Z})
$$

where b is a positive real number. The generating function ψ is a Poisson kernel given by

$$
\begin{equation*}
\psi(t)=\sinh (b) /(\cosh (b)-\cos (t)) . \tag{5.4}
\end{equation*}
$$

The periodic Hilbert space consists of functions being holomorphic in $|\operatorname{Im}(z)|<b$ and satisfying the growth condition

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left|\left(f, e_{k}\right)\right|^{2} \exp (b|k|)<\infty . \tag{5.5}
\end{equation*}
$$

The space $\mathfrak{R}\left(S_{n}\right)$ consists of rational trigonometric functions.
Suppose that

$$
f=\psi * g, \quad g \in A_{2 \pi} .
$$

Then an application of Proposition 4.2 yields the asymptotic error estimate

$$
\begin{equation*}
\left\|f-S_{n}(f)\right\|_{\infty}=O\left(e^{-b m}\right) \quad(n=2 m+1 \rightarrow \infty) . \tag{5.6}
\end{equation*}
$$

References

[1] I. Babuška: Über universal optimale Quadraturformeln. Teil 1, Apl. mat. 13 (1968), 304-338, Teil 2, Apl. mat. 13 (1968), 388-404.
[2] F.-J. Delvos: Periodic interpolation on uniform meshes, J. Approx. Theory 51 (1987), 71-80.
[3] F.-J. Delvos: Interpolation of odd periodic functions on uniform meshes. ISNM 74 (1985), 105-121.
[4] Y. Katznelson: An introduction to harmonic analysis. Dover, New York 1976.
[5] F. Locher: Interpolation on a uniform mesh by translates of one function and related attenuation factors. Math. Computation 37 (1981), 403-416.
[6] M. Práger: Universally optimal approximation of functionals. Apl. mat. 24 (1979), 406-420.

Souhrn

APPROXIMACE OPTIMÁLNÍ PERIODICKOU INTERPOLACÍ

Franz-Jürgen Delvos

V článku se studuje rychlost konvergence optimálních aproximací v periodických Hilbertových prostorech v návaznosti na dřívější výsledky I. Babušky a M. Prágera. Hlavním výsledkem je konvergenční věta a odhad chyby ve stejnoměrné normě. Tento odhad je ilustrován na dvou príkladech.

Author's address: Prof. Franz-Jürgen Delvos, Lehrstuhl für Mathematik I, Universität Siegen, Hölderlin-Strasse 3, D-5900 Siegen, FRG.

