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A REMARK ON SOLVING LARGE SYSTEMS OF EQUATIONS 
IN FUNCTION SPACES 

I . BREMER, K . R . SCHNEIDER 

(Received June 10, 1989) 

Summary. In order to save CPU-time in solving large systems of equations in function spaces 
we decompose the large system in subsystems and solve the subsystems by an appropriate method. 
We give a sufficient condition for the convergence of the corresponding procedure and apply 
the approach to differential algebraic systems. 

Keywords: large system, decomposition, block iterative algorithm, differential algebraic 
equations 

A MS Classificanion: 65J15 

1. INTRODUCTION 

The simulation of highly integrated circuits in microelectronics requires the 
numerical solution of the Cauchy problem for very large systems of differential 
algebraic equations. The CPU-time needed for solving such problems by means 
of traditional solvers increases superlinearly (0(Nfi), 1.1 < fi < 1.5, where N is the 
number of nodes of the given circuit [4]). Therefore, the search for methods reducing 
the computation time in the process of solving very large systems is an important 
recent task. One possibility to reach this aim consists in applying block iterative 
methods, usually called relaxation methods. The basic steps of such an approach 
are partitioning of the large system and independent solving of the subsystems. This 
method is well-known for systems of linear and nonlinear equations [5, 8], Con
cerning the Cauchy problem for differential systems describing electrical circuits 
the so-called waveform relaxation method has been developed in [3] . 

In this note we first consider equations in metric spaces with Lipschitz operators 
and give a sufficient condition for convergence of relaxation methods. Finally, we 
apply this approach to the Cauchy problem for a differential algebraic system. 
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2. GENERAL PROBLEM. SUFFICIENT CONDITIONS FOR CONVERGENCE 

Let (X, d) be a complete metric space. We consider in X the operator equation 

(2.1) K(y) = 0 

where K maps X into itself. We assume (2.1) to be equivalent to the fixed point 
problem 

(2.2) y = t(y). 

The operator f is not uniquely determined by the operator K. Generally, it depends 
also on the numerical procedure used to solve (2.1). 

A fundamental step in applying block iteration methods to (2.2) is an appropriate 
partitioning, that is, we decompose y and T and get after some possible rearrange
ment and reassignment 

(2.3) xt = Tt(x), i=- 1,...,N, 

which is equivalent to (2.2). To be able to do this we assume 

(Aj) There are n complete metric spaces (Xu dt), ...,(Xn, dn) such that (X, d) is 

the product space of these metric spaces. 

Concerning the operators Tt we assume 

(A2) The operators Th i = 1, ...,N, map X into Xt. There are positive constants 
kip 1 = i,j = N, such that Vx;, x{ eXt 

(2.4) WJJ^^V^^)' 
j = i 

Let K be the matrix defined by K = (ktj). We are interested in a condition on K 
ensuring the convergence of the iteration scheme 

(2.5) xk = T ^ " 1 ) , k = 1 ,2 . . . 

in some metric space (X, d) for any initial guess x°. 

Lemma 2.1. Assume the hypotheses (A t), (A2) hold. Further we suppose that the 
spectral radius Q(K) of K satisfies 

(2.6) Q(K) < 1 . 

Then there is a metric d in X such that (2.5) converges in (X, d) for any initial 
guess x°. 

Proof. The matrix K maps the cone Rn
+ into itself. If K is not strictly positive, 

that is, there are elements in Rn
+ which are mapped by K into the boundary of Rn

+, 
then K contains zero elements. Under the assumption (2.6) we can replace these zero 
entries by a small positive number such that the perturbed matrix K is strictly positive 
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and satisfies Q(R) = O(KT) < I.1) According to the Frobenius-Perron theory [1, 2, 6] 
Q(KT) is an eigenvalue of KT with an eigenvector a = (al9 ..., aN)T in the interior 
ofjR"+. 

Therefore, we have 

(2.8) KTO < KTa = O(KT) a < a . 

We use the vector a to define the metric d by 

(2.9) d = Oidi + ... + aNdN , 

Thus, from (2.4), (2.5), (2.7) and (2.8) we get 

d(x*+1, xk) - <?(r(x*)> T(x*- ) ) = J M / T / x * ) , T / x ^ 1 ) ) £ 
i = i 

^ Z d,(x\ x ' " 1 ) £ fc>, = e ( £ T ) £ M>(**-, x*-1) = 
i = 1 / = 1 I = 1 

= O^(K) d(x\ xk~l) S Q(K)k d(x\ x°) . 

Since O(K) < 1 the sequence (2.5) converges in (X, d) for any initial guess x°9 q.e.d. 

3. APPLICATION TO DIFFERENTIAL ALGEBRAIC SYSTEMS 

To give an application of Lemma 2.1 we consider the initial value problem for 
the differential algebraic system 

(3.1) ^=fi(x1.x2,t), 

at 

x2=f2(xl9x29t)9 x(0) = 0 , te(09T) 

under the assumptions 

(Hi) fi e C(Rn x Rm x R, Rn) , f2 e C(Rn x Rm x R, Rm) . 
(H2) There are positive constants ln9l\29l2i9l22 such that for all (xl9 x2), 

(xl9 x2) eRn x Rn and for all t e R 

(3.2) [fi(xi, x2, t) - fi(xi, x291)\ ^ hi\x1 - xi| + l12\x2 - x2\ , 

| / 2 (Xl , X2, t) — f2(xl9 X2, t)\ ^ l2l\x ~~ xl\ + h2\
X2 ~ x

2\ -

(H3) (3.3) l22 < 1 . 

Let Xi be the space of continuous functions x mapping [0, T] into Rn and satisfying 
x(0) = 0. Xi equipped with the norm 

(3.4) [|x||i := max {e""ar|x(*)|} 
[0,T] 

1 KT denotes the transpose of K. 
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is a Banach space where a is a (suitable chosen) positive number. Let X2 be the space 
C([0, T] , Rm) endowed with the norm ||*||2 which coincides with the norm | | ' | | i -

Let us introduce operators T1:Xl x X2 -> Xu T2:X1 x X2 -> X defined by 

(3.5) Ti(xi, x2) (t) := j0fi(xi(s), x2(s), s) ds , 

T1(xl9x2)(t):=f2(x1(t),x2(t),t). 

Then the system (3.1) is equivalent to the system 

(3.6) Xj = T1(x1,x2), 

x2 = T 2 (x l 5 Xj) . 

It is easy to verify that T\ and T2 satisfy the relations 

(3.7) \Tx(xl9 x2) - Tj(xl5 x2)||i g -11 |x i - xilli -f — ||x2 - x2 | |2 , 
a a 

| |T2(X1, X2) — T2\XUX2)\2 fg / 21P1 ~" ^ l | | l + '22[|-x:2 "~ ^2II2 

for all (x1? x2), (x1? x2) e l t x K2. In order to be able to apply Lemma 2A we have 
to verify the validity of the relation (2.6). Let K be the matrix defined by 

It is easy to verify that under the condition (3.3) there is a positive number a such 
that for a > a0 the spectral radius of K is less than one. Applying Lemma 2.1 we 
have the following result. 

Theorem 3.1. Assume the hypotheses (Hx) — (H3) hold. Then the initial value 
problem for the differential algebraic system (4.1) has a unique solution for any 
given T, which can be approximated by the iteration scheme 

x\+\t):=p0f1(x\(s),xk
2(s),s)ds, 

xk
2
+1(t): = f2(x\(t),xk

2(t),t) 

where (xi(t), x2(t)) is any initial guess. 
An other important application of Lemma 2.1 is concerned with the waveform 

relaxation method in circuit analysis (see [7]). 
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Souh rn 

POZNÁMKA K ŘEŠENÍ VELKÝCH SOUSTAV ROVNIC 
V PROSTORECH FUNKCÍ 

I . BREMER, K . R . SCHNEIDER 

S cílem ušetřit čas základní jednotky při řešení velkých soustav rovnic v prostorech funkcí je 
daná soustava rozložena na menší, které se řeší vhodnou metodou. Je podána postačující pod
mínka konvergence příslušné procedury. Metoda je aplikována na diferenciální algebraické 
soustavy. 
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