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Summary. We consider triangulations formed by triangular elements. For the standard linear
interpolation operator m, we prove the interpolation order to be v -my |, ,< Chlp|, , for
p > 1 provided the corresponding family of triangulations is only semiregular. In such a case
the well-known Zlamal’s condition upon the minimum angle need not be satisfied.
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1. INTRODUCTION

Let Q = R* be a bounded polygonal domain with a Lipschitz boundary Q.
Let T, denote the standard triangulation of @ into (closed) triangles K. This means
that the union of all K € T, is @, the interiors of all K € T, are mutually disjoint,
and any side of any K € T; is either a side of another element from T,, or a subset of
the boundary éQ. As usual, we set hy = diam K and the discretization parameter h
will be the maximum of hy over allK € T},

A set of triangulations & = {T,} of @ is called a family of triangulations if for
every ¢ > 0 there exists T, € & with h < &.

Next we introduce two definitions. The first is standard (see e.g. [3, p. 124])
while second is new.

Definition 1.1. 4 family of triangulations & is said to be regular if there exists
a constant m > 0 such that for any T,e€ & and any K € T, there exists a ball by
of radius ry such that by = K and

(1.1) mhK é Fg -

Definition 1.2. A family of triangulations & is said to be semiregular if there
exists a constant M > 0 such that for any T, € & and any K € T, we have

(1.2) Mhyg = Ry,
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where R is the radius of the circumscribed ball %y of K (i-e., all vertices of K
belong to 0%y).
Note that we always have M = 1, since hy < 2Ry. Moreover,

(1.3) re £ ox < hg,
where
2 meas, (K)
L4 = 2 (%)
(L4) 2 meas, (0K)

is the radius of the inscribed ball of K. In Section 2 we show that any regular family
of triangulations is semiregular, but the converse implication is not valid. To see this,
take for example Q = (0, 1) x (0, 1) and consider the sequence (family) of triangula-
tions # = {T'}{Z, as sketched in Figure 1. Sides parallel to the axes x, and x, have
the lengths 27 % and 272, respectively.

Fig. 1

The condition (1.2) is clearly satisfied for M = 1, since R = 1hy. However,
we see that the triangles in T' degenerate if i — oo and for K € T' we have, by (1.3)
and (1.4),

—2i
Tk < O _ 2 meas, (K) <h,(2 2150 as io o0,

hy — hg hgymeas; (6K)  hg27'

i.e., the condition (1.1) does not hold.

Let us denote by W,(Q), ke {0, 1, ...}, p = 1, the Sobolev space with the standard
norm ||*|., = ||*x.p.c and the seminorm ||, = |*|x,5.0- By ;v and 0;;v we shall
mean the derivatives dv[dx; and 8%v[0x; Ox;, respectively. The symbol P,(Q) stands
for the space of polynomials of degree at most k defined on Q.

With any triangulation T, we associate the finite element space

V, = {ve C(Q)| v|xe P,(K) VK € T;}

and the interpolation operator m,: C(Q) — ¥}, which is uniquely determined by the
relation

(1.5) m, v(x) = v(x)
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for all vertices x of all K € T,. Recall that 7,0 is well-defined also for ve W}(<Q),
p > 1, due to the Sobolev imbedding (see [9, p. 72])

(1.6) wiQ) < C(@),

which is valid for all bounded domains having a Lipschitz boundary.
The main aim of this paper is to generalize the well-known approximation

properties of the interpolation operator 7, (see e.g. [3, 5, 10]). In Section 2 we will
prove the following theorem.

Theorem 1.3. Let & be a semiregular family of triangulations of Q and let p > 1.
Then there exists a constant C > 0 such that for any T,e F with h < 1 we have

(1.7) o = 7|y, £ Chlo],, VveWi(Q).

The approximation properties of 7, are thus preserved when the condition (1.1)
for a ball contained in K € T, is replaced by the weaker condition (1.2) for the circum-
scribed ball. In [1, p. 223], [10, p. 138] or [12, p. 365] there are examples for which
(1.2) do not hold and the linear triangular elements loose their usual approximation
properties (1.7).

Note that the proof of convergence (rate of convergence) of the finite element
method of many problems is usually transformed just to the investigation of ap-
proximation properties of m, (see e.g. Céa’s lemma in [3, p. 104] for linear elliptic
problems, or [8, p. 207] for some nonlinear problems).

To prove Theorem 1.3 we shall employ the standard technique using transforma-
tions of K € T, onto a reference triangle. However, all estimates are done more
finely than usual. Our technique differs from those presented in [1, 2,4,5,6, 11],
where (1.7) is obtained for p = 2 (cf. Remark 2.2). For the three-dimensional case
we refer to [5, 7].

2. INTERPOLATION ORDER FOR SEMIREGULAR FAMILIES
OF TRIANGULATIONS

First of all we prove the following theorem.

Theorem 2.1. Any regular family of triangulations of a polygon is semiregular.

Proof. Let & be a regular family of triangulations of a polygon, let T, € & and
K e T, be arbitrary. Denote by oy the minimum angle of K (see Figure 2). Then by
(1.1) and (1.3)

O ge
mhy £ rg S 0k < hxtgz‘h,
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and therefore,

(2.1) ag = oty = 2arctgm > 0 (Zlamal’s condition [13, p. 397]).

A

0

This implies that
(2~2) YKEV=ET -0,

where y, is the maximum angle of K. We immediately see that o, < n/3 and y €
€ [og, m — a,]. Hence,

(2:3) sin y, = sin op = sin (m — &) .

Setting now M = (2 sin a,)~*, we find by (2.3) and the Sine Theorem that

Mhy = - h z —
2sina,  2sin yg

Thus (1.2) holds. g

hg

ZRK'

Remark 2.2. By (1.2) and the Sine Theorem we have

Mz !
2 sin g

which immediately implies (2.2), i.e., the maximum angle condition is equivalent
to the semiregularity of a family of triangulations. Recall that the minimum angle
condition (2.1) is equivalent to the regularity of a family of triangulations. We see
that (2.1) implies the condition (2.2) upon the maximum angle, but not conversely
(cf. Figure 1). Synge (see [11, p.211]) was probably the first who suggested that the
greatest angle should be bounded away from 7 as h — 0 to obtain ﬂu - n,,v”l'p =
= O(h) for p = 0. An analogous result for p = 2 has been obtained by Babuska
and Aziz [1], Barnhill, Gregory [2] and Gregory [4]. We prove (1.7) for p e (1, o).
For the case p € (2, o] the estimate (1.7) may be proved by a technique presented
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in Jamet [5, p. 55]. We see that it is better to pay attention to angles that tend to =
rather than those that tend to zero. Note that we can construct a family of triangula-
tions & such that

inf ag =0
KeTheF

and (2.2) hold. Then (1.7) still remains valid due to Theorem 1.3. This fact may be
useful for developing FE-software for adaptive mesh refinement as we need not
prescribe any lower positive bound upon the minimum angle. Thus we may employ
triangular elements which are almost “flat”’ (almost degenerate). This can be advisable
for covering thin slots or strips of different materials (e.g. in magnetic head, trans-
former thins, insulation of wires) to save computer memory.

Let K be the closed reference triangle with the vertices 4, = (0, 0)7, 4, = (1,0)",
A, = (0,1)". Analogously to (1.5) we define #d € P;(K) by

(#9) (4) = 8(4), i=0,1,2, veC(R).

Lemma 2.3. For any p € (1, ) there exists a constant C > 0 such that
(2.4) [6:(6 — #0)]o,px < Cloib]s,px VOEeWHR), i=1,2,
where 3; = 30%;.
Proof. For simplicity we omit the symbol ” throughout the whole proof. Define
the operator
(25) Qi W(K)~ Po(K)
by
(2.6) Qz = [ z(s,0) ds .

According to the Trace Theorem (see [9, p. 86]), we have z|y € I?(9K) for z e
€ W;,(K), i.e., Q is well-defined. Since Qz is constant, we get by the Holder inequality
and the Trace Theorem that

2.7 [Qzl5,,.x = meas, (K) If5 z(s, 0) ds|r <
<ifs {z(s, 0)]" ds < Cy||z|5 .k Vz€ Wi(K),

where C, depends upon p. Therefore, Q is continuous.
By (2.6), we immediately see that

(2.8) 0z = z VzePy(K).
Now due to Theorem 3.1.4 from [3, p- 121] there exists C > 0 such that
(2.9) |z = Qzfopk £ Clzli,px Vze Wi(K) .

Let v € W2(K) be arbitrary now. Setting z = d,v € Wi(K), we find that
Qz =[5 04v(s,0)ds = v(1, 0) — v(0, 0) = 8,(nv),
and from (2.9) we get (2.4) for i = 1. The case i = 2 can be proved similarly. u
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Consider.now an arbitrary triangle K with vertices 4;, i = 0, 1,2 (4; — column
vectors). Assume that the greatest angle yx of K is at the vertex A, (see Figure 2).
Let fi and g, denote the lengths of the sides 4,4, and A4,4,, respectively. Define
an affine one-to-one mapping Fy: K — K by

(2.10) Fe(R) = Bxk + Ap, £ =(%,%,) ek,

where By = (B;;)} ;=1 = (A; — Ao, A; — A,) is a nonsingular 2 x 2 matrix as
Fy(4)) = A;, i = 0,1, 2. From the expression for By we arrive at

(2.11) Bl + B3y = fx, Bi, + By =gx,
[Bu| < Jio [Ba < i,
[Biz| < gk > |Baa| < 9k»
max (|By1], [Bya]. |Baif. [Bas]) < b

Note that fy and gx may considerably differ (see e.g. Figure 1). For every v € I/(K)
and almost every £ € K let us set

(2.12) (%) = o(x),

where x = Fi(£). Thus we have a one-to-one correspondence between § and v..
From (2.10) and (2.12) we can directly derive the next two relations. If 6 € W3(K)
and v e W(K) then

(2.13) (8,8(R), 0,0(2))T = BE(d,0(x), 0,0(x))T

for almost every £ € K and the corresponding x € K. If # € W3(K) and ve W3(K)
then similarly for the second derivatives we have

9116 5112;7 T (0110 0120
2. - ~ =B
( 14) (012ﬁ 022{) K 6121) 6220 BK

Lemma 2.4. Let p = 1. Then for any ve Wi(K) and t € W(R) satisfying (2.12)
we have

(2.15) [o]1,p.x < 2|det B 7" (gk0:0]0,p.& + Fil020]0..6) -
Proof. Let us denote the entries of By ! by C,;, that is
(2.16) Bt = ! ( Bas _B“> =<C“ C”).
det By \—B,; By, Cai Cy
Recall a special case of the Jensen inequality
@17) (] # ) S P e p 2L, yieR

228



Using now (2.17), the substitution x = Fy(%), (2.13), the Minkowski inequality and
(2.16), we get that

2
ol = (T [0l? 4977 < [oso]o e + [020]o.x =

= |det By|"" (g |C110,0 + C5,0,0]° d2)'? +
+ ([ |C120:0 + C,,0,0]P) d£)1/?) <
< |det By[7 (IC1i] 1818 0,p.k + |Cai] 10200002 +
+ [Cia| [010] 0,58 + |Caal [0:0]0,5.8) =
= [det By /=1 ((|B2a] + [B1a]) 310056 +
+ (1B2a| + [Byi]) [028] 0,5.6) -
Thus (2.15) follows from (2.11). g

Lemma 2.5. Let p 2 1. Then for any o € Wi(K) and ve W3(K) satisfying (2.12)
we have
(2.18) 618]; p.x < 8|det Be| ™17 fhylv]spk »
|028]y p.x < 8|det By| ™/ ghg|v]s .k -
" Proof. Using the substitution £ = Fg'(x) = Bg'x — Bg'A4,, (2.14), (2.17), the
Minkowski inequality and (2.11), we find that
N 2
|alﬁ|1‘p,K = (
j=1

[& |01,8]” d2)'77 =

M i

2
= (|det Bg'|'Y fx| Y BiyBydpv|” dx)'/P <

j=1 k,=1

2 2
< |det BFI”"Z}(IK lkllekaljak,vP dx)' <
i= =

2 2
< |det BKI—W,Zl . IZI}BMBUI (Ji [Owiv]” dx)!77 <
=

2
(2.19) < 2|det By|™'” f,(hxk [Zl [8k%] 0., -

From here we obtain the first relation of (2.18). The second can be proved analo-
gously. m :
For any K € T, and v e C(Q) we set

(2.20) o = (mp)| -
Using the transformation (2.10), we easily deduce (see e.g. [4, p. 124]) that
(2.21) (ng)* = #(v]x)" -

229



Proof of Theorem 1.3. Let & be a semiregular family of triangulations of Q,
let T,e # and K € T, be arbitrary (see Figure 2). According to well-known relations
from planar geometry and (1.2) we have

(2:22) |det Bg| = 2 meas, (K) = Sfx9xhk > Sx9x )

2Ry  2M

Now let v e W3(RQ) be arbitrary. Writing v — mgv in (2.15) instead of v, we get by
(2.21), (2.4), (2.18) and (2.22) that

l” - nl{vll,p,K =

< 2|det B| /P~ (g 31(0 = (nx0)*)]o,p.x + F32(0 = (m&0)")]l0,.6)
=< 2C|det BKI(I/”_I (gKiélﬁll,p,K +fx|‘§2ﬁ!1,p,x) =

32C|det B| ™! fxgxhklv|2,px < Cihglv)spx s

and thus
lv — mgoff px < CRRE|V]3 , k-

Summing this inequality over all triangles K € T;, we find that
(2.23) [v — mwly, S Cihlv|,, Voe W(Q),
where C, is independent of 4. By [3, p. 118, 120]
v — mgv]lo,px = |det Be|'? |0 — (mgv)* 0,58 <
< C,|det Bg|'7 |0], ¢ <
< Cj|det Bg|'' | B||* |det Be| =7 |v], , x <
< Cohglv2,x Yve Wi(K),
where ” . || stands for the spectral norm. Hence, we have
(2.24) o = mwlo,, S Coh?lv]5, VYveWi(Q)

without any regularity assumptions upon the family of triangulations. Finally, from
(2.17), (2.24) and (2.23) we have

(2.25) o = mol, £ o = mollo, + [0 — mol1,, S (Coh? + Cyh)|v]2,,

and the desired estimate (1.7) follows for h < 1. g

3. NUMERICAL EXAMPLE
Assume that Q = (0, 1) x (0, 1),
v(xy, x;) = 2x} — x,x, — 3x3,

and consider the sequence of triangulations {T}2, of Figure 1. Let |||, = |-]1,2
and |+|, = |+],,,. To evaluate the norms v — m,|,, we have used a numerical
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integration formula which is exact for all quintic polynomials on each triangle (see
[8, p- 58]). Thus the norms [v — |, were computed exactly (except the rounding
errors). The next table confirms the theoretical rate of convergence (D(h) as stated in
Theorem 1.3.

i o —moely H o = mol ol
0 1-414214 2:100264 0-203996
1 0-559017 0-732818 0-180067
2 0-257694 0-318461 0-169751
3 0-125973 0-153600 0-167485
4 1 0-062622 0-076344 0-167462

The numbers of the last column tend to 0-167 ... . If each T® consisted of right-
angled isosceles triangles then the numbers of the last column would tend to 0-202 ...
for the same v.

Finally, note that the approximation of the Laplacian with homogeneous Dirichlet
boundary conditions over the triangulations of Figure 1 by Courant’s basis functions
yields the standard sparse Gram matrices whose main diagonals contain only 4’s
and there are at most four — 1’s in each row. The condition number of these matrices
behaves as O(h~2) when h tends to zero.
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Souhrn
O SEMIREGULARNICH SYSTEMECH TRIANGULACI
A LINEARNI INTERPOLACI
MicHAL KRiZEK
V &lanku se uvaZuji triangulace tvotené trojuhelnikovymi prvky. Pro standardni linearni
interpolatni operator m, se dokazuje, Ze fad interpolace je |jv —m,v []1.p§ Ch]v]zip prop> 1

za predpokladu, Ze odpovidajici systém triangulaci je pouze semiregularni. V tomto pripadé znaima
Zlamalova podminka na minimalni Ghel nemusi byt splnéna.
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