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A PETROV-GALERKIN APPROXIMATION
OF CONVECTION-DIFFUSION AND REACTION-DIFFUSION
PROBLEMS
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Summary. A general construction of test functions in the Petrov-Galerkin method is described.
Using this construction, algorithms for an approximate solution of the Dirichlet problem for
the differential equation —eu” + pu’ + qu = f are presented and analyzed theoretically. The
positive number ¢ is supposed to be much less than the discretization step and the values of |p|, g.

An algorithm for the corresponding two-dimensional problem is also suggested and results of
numerical tests are introduced.
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INTRODUCTION

Let a normed function space #, a continuous bilinear form a: # x # - R,
a continuous linear form f: # — R and a problem
(1) find ues: a(u,v)=f(v) YoeH

be given. Let us choose subspaces ¥~ (with a basis @, ..., ®,), #° (with a basis
¥,, ..., ¥,)in # such that n < k, and a bilinear form A4:¥" x ¥ — R. Let a linear
operator Z:¥" — W transform the given form a into the chosen form A in the
following manner:

a(u, Lv) = A(u,v) Yu,ve? .
We call the problem
(2 find u"e¥": a(u’, Lv) = f(Lv) Yve?
a (Petrov-Galerkin) &-discretization of (1)') and the function u" an ZL-discrete
solution of (1)!). If we denote u* = u;®; + ... + u,®, then (2) can be written in

1y Or of the corresponding classically formulated problem.
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the form
(3) find wuy, ..., u,: .Zluja(ibj, Lo) =f(LP,) for i=1,..,n.
=

The matrix of the system (3) will be called and &-matrix of (1)'). In this situation
the elements of ¥~ and £(¥") are referred to as shape functions and test functions
respectively.

Let us consider the problem

(4) —eu” + pu' + qu=f on (ab), u(a)=0=ub),

where ¢ is a positive real number, peC'(a, b), qcL® (a,b),0 < g — 0.5p" on
(a, b) and fe 1*(a, b). Using the Lax-Milgram theorem, one can see that (4) has
exactly one week solution u in Hg(a, b) and the supposition g € L"(a, b) implies
u € H*(a, b). Butif & < |p| or ¢ < g then there usually exist some small subintervals
in (a, b), called boundary or internal layers, in which values of u change extremely
quickly. This fact together with the use of the discretization step greater than ¢ are
the reasons why the classical finite difference method and the Galerkin method,
both having an optimal order of convergence, offer approximate solutions de-
based by oscillations on the entire interval. In order to remove these oscillations,
one can simply use a suitably decentralized approximation of u in the finite
difference method or substitute a suitable major value for ¢ in the Galerkin
method. Unfortunately, both these modifications reduce the order of convergence.
For example, the Galerkin approximation by linear splines reduces the order of
convergence from two to one in the L*>-norm and from onetozero inthe H'-norm.
Several numerical methods giving nonoscillating approximate solutions of various
special cases of (4) have been published. For some of them higher orders of
convergence than those of the modifications have been proved. See for example
[2]. [8], [17] and surveys in [3], [10]. There also exist algorithms producing
nonoscillating approximate solutions of the two-dimensional convection-diffusion
problem with good convergence properties. See [5], [9—16], [18].

The aim of this paper is to show that the Petrov-Galerkin #-discretization with
a suitable bilinear form A4 can be successfully applied to the problem (4) and also
to its two-dimensional analogue. The analyzed algorithms search for a solution
in the space of linear splines on an equidistant net on (a, b) in the following cases 1, 2.

1. g =0.1If p = 1 on (a, b) then it is proved that the L*-norm of the error is
of order 1.5 and its H'-norm is of order 1. If one admits a first-order zero of p at
one of the given nodes then the order of error decreases by 0.5 in both norms.

2.p=0,0< g, < g on(a, b)and q is uniformly continuous. The £2-, H'-norm
of the error is of order 2, 1, respectively.

These error estimates are e-uniform in the sense that they contain only constants
independent of e. This property is shared also by the so-called local error estimates,
which are of the same order as the estimates of the corresponding global errors.
All approximate solutions obtained are shown not to oscillate.
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1. PRELIMINARIES

In R", the symbol o will be reserved for the null-vector, PQ for a vector determined
by an ordered pair P, Q of points and ]PQ[ for its Euclidean norm. Notation for func-
tion spaces on an open interval (a, b) in R and in a bounded open subset Q in R*
with a polygonal boundary I' are used in the sense of [6]. Also the symbols ( , )
for the scalar product both in 12(a, b) and L*(Q), || ||, | [l for the norms in £%(a, b),
L*(a, b), respectively, and | |, | |, for the seminorms in H'(a, b), H*(a, b), re-
spectively, are taken from [6]. By | ||,, the max-norm in R" is denoted, too. The
symbol g/, stands for a restriction of a real function g from (a, b) to an interval
D < (a,b). If g € H'(a, b) and E is a positive piecewise constant function on (a, b)
then we put |g|z; = (Eg’, g')"/?. Any generic constant in this text depends neither
on ¢ nor on the step length.

The following problem is a weak formulation of (4).

(%) Find wue Hy(a, b): a(u,v) = (f,v) VveHy(a,b). Here

a(u, v) = [Yeu'v' + pu'v + quv)dx .

1.1. Definition. Let r be a positive integer, m = n + landleta = x, < x; < ...
o <X, =b, a=xj <xi<..<xi,=b be equidistant nodes with step
length h, h*, respectively. Further, let us put x_, =a —h, x*, =a — h¥*,
X301 =b+ h* x,., =b+ h

1.2. Definition. For each interval D = (x,, x;) < (a, b) let us define the extension
D¢ of D by D° = (x,_1. X, )" (a, b).

1.3. Definition. Let us define scalar-valued functions

PR Ix — x| ! for xe(a,b)n(x;—q.xi41)s
(Pi(x) = < h
0 for xe(a,b) — (x;i—y, x;41),

i=0,....,m,

1 — |x — xj| ﬁl* for xe(a, b)n(xj_q, x}1y),

vi(x) =
0 for xe(a, b) — (x}_ 1, x}y),
j=0,...,2m, vector-valued functions
!Pi(x) = [ll/z.'— (%), l//Zi(X)’ Vais 1(X)]T ,
i =1,...,n,and linear spaces

I/h(aa b) = Span {(/)1’ tees (pn} ’ I/h“(a’ b) = Span {l/,l’ R ¢2u+1} .
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If L: V, (a, b) > V,.(a, b) is a linear operator then an L-discretization of (5) is
the problem

(6) find u"eV,(a, b): «(u", Lv) = (f,Lv) VveVa.b).
1.4. Notation. For every function v € ¥(a, b) we put

v=>) v, and v, =0=uy,.
i=1

1

1.5. Lemma. If v is an arbitrary function from V,(a, b) then the following asser-
tions (a), (b), () are true.

@ bF = 300 0

(b) ”v"z = g i(l’iz—l + ViV + Uzz) .

i=1

hie 1 2 _ < 2
(c) gl”ll + 1‘1”1)” ——iglvi .

®

Proof. The equations (a), (b) can be verified by a direct computation; (c) follows
immediately by (a), (b).

1.6. Definition. Let Q be a constant such that 0 < Q < g — 0.5p’ on (a, b)
and let E be a positive piecewise constant function on (a, b). We define a norm

[v] = (blz.. + €[o[*)"
in Hg(a, b).
1.7. Proposition. Let us suppose that a linear operator L:V,(a, b) - V.(a, b),

real numbers k, | with the property 1 < k < | and parameters ¢, h satisfy the follow-
ing conditions.

(cl) There exist positive constants Cy, C, such that max {¢, C;h'} < E < C,h*
on(a,b),

(c2) [v]? £ Cx(v, Lv),
(c3) |Lv|, = Ch™?[v],
(c4) |Lv — o] = Ch*~V2[0]

for all ve V,(a, b). Then the following assertions (al), (a2) hold for the solution u
of (5), the L-discrete solution u" of (5) and the interpolation ii of u in V,(a, b).

(al) [u - ﬁ] < Chmin(1+k/2,2}l.u[2 .
(a2) [u" — @)* < C,(h'*** + | p]lo 1712 + |a] h*72) ful, [u" — @] +
+ CZ(HP’“oo + ”q”w) B2 I”|2 ”uh B [4'” .
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Proof. Let us put n = u — & and 0 = u" — ii.
(i) hlnly + |n|| £ Ch?|u|, is true by [15], Theorem 3.2.1.
(ii) o6, LO) = afn, LO) is a consequence of the equation ofu — u”, L) = 0.
This one follows by (5) and (6).
Proof of (al). The condition (c1) and statement (i) imply [5]* < Ch*[n|} +
+ Q”nul é Chmin{2+k,4}[u|§‘
Proof of (a2).
1° Je(n', (LOY)| = CH'**=V2[u),[0] by (i), (c1). (c3).
2° |(pn', L6 — 0)] < C|p|., K>~ "?|u|, [6] by virtue of (i), (c4).
3° |(p'm. 0)] = C[[p'[[, h[ul> 0] by (i).
4° |(pn, 0)| = C|p[l. h*~"?|ul, [6] follows by (i), (c1).
5° |(qn, L6 — 0)| < C|q||,, h>~"*|ul, [6] is a consequence of (i), (c4).
6° |(qn. 0)| = Cllg| . h?|u|, |0] follows immediately by (i).
The conditions (c1)—(c4) and facts (ii), 1°—6° give (a2).

Linear operators L will be always constructed so that

supp Lv < suppv Vve V(a, b).
This condition is fulfilled if and only if Lcan be defined as in

1.8. Lemma. Let a linear operator L:V,(a, b) — V,.(a, b) be given by
Lo, = ¢; + xiTY’i,

where X; = | X;{, X;3, X;3| 1S a real vector fori = 1, ..., n. Then
h [ 3" l S 1 Th
2 m
(a) |Lo|f = B 'Zl[viz—l(zxiz—l,:i — 2,3 Ximg 2 F Xiogp F Xiog 2 + 0.5) +

+ vi—lvi(4xi-—1,3xi1 — 2X;1,3%i2 — 2X;- 10X — Xi—q,2 — Xi2 — 1) +
+ 07(2x7, = 2x;1%1, + XF + xi5 + 0.5)]

and
h m
(b) ”L” - UHZ =_6 > [”iz—l(xiz—l,z + 2xi2—1,3 + Xi_1,3%Xi-1,2) +
i=1
+ Ui—IU;(xi—l,inl + 4X;_y 3Xig + Xi-q1,3%i2) +
+ 07 (x} + 2xH + xi2%11) ]
for an arbitrary function v € V(a, b).

Proof. Both statements can be proved by a direct computation.

The L-discrete solution of a problem does not oscillate whenever its L-matrix 4
is monotone (i.e. A™* does exist and is non-negative). For an explanation consult[19].
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1.9. Lemma. (Bramble, Hubbard [4]) 4 real square matrix M = (m;) of order n
is monotone whenever the following assertions (), (b), (c) are true.

(a) iFj=>m;=<0.
(b) There is a non-empty set I < {1, ..., n} such that

Ym;>0<iel and m;=0<i¢l.
j=1 =1

J

(c) Forevery ie{1,....n} one can find indices jeI and ky, ..., kyin such a way
that each of the numbers my, , my,,, ..., my_; is non-zero.

1.10. Lemma. (Raviart [19]) If Mx = b is a system with a monotone matrix
M = (m;;) of order n then

Smy 2o >0 for i=1,.on = |x|. < a5'[b]..
j=1

2. THE CASE ¢ = 0

Let us consider the problem (4) provided with restrictions ¢ = 0 and p = 1 on
(a, b). A weak formulation of this problem is
@) find ueHy(a,b): ay(u,v) = (f,v) VvoeHy(a,b). Here

ay(u, v) = [S(ew'v’ + pu'v)dx .

2.1. Definition. Let us put
E,; = max {s, [¥'_ po,.,dx},
E(x)=E,; for xe{x;—y,x;), i=1,...,m and

Ay(u,v) = [YEu'v + pu'v)dx Vu,ve H'(a,b).

2.2. Remark. Obviously, the following assertions (a)—(c) hold for i = 1, ..., m.
(@) Ay@i-1,9) =0,

(b) Ay(pimy + @i + @11, 0:) =0,

(¢) e = 5" poidx = Ay(9ivy, 1) = 0.

2.3. Definition. Let us define a linear operator L,: Vj(a, b) — V,.(a, b) by
Lip;=¢; + [a,0, — a;4| ¥; for i=1,...,n, where
a; = (Ey; — o)/(p,Y3i-y) for i=1,...,m.

334



2.4. Lemma. We have a,(u, Liv) = Ay(u, v)Vu,ve V,,(a, b).
Proof. Since oy and A4, are bilinear, it is sufficient to prove
(1) o(@, Lip,) = Ay(o;, 9;) for i,j=1,..,n:

(@i Ligs) = ay(@im 1, @3) + ay(@io 1, ¥2ioy) =

1 . ,
= al(cpi—l’ ‘Pi) - (Eu - 3);1 = “1(‘!’;—1’(0.') + IZ(El - 3) ;-1 @idx =

= Al((/)i—— 15 (/’i) .

If j = i, i + 1 then (i) can be proved analogously and for the other values of j it
holds obviously.

2.5. Lemma. There exists a constant K such that
!ail =K for i=1,...m
holds for all positive ¢, h.

Proof. Let us put p; = p(x;) fori = 1, ..., m and denote by ¢, C constants satisfy-
ing0 < ¢ < —p’ < Con(a, b). Then

pi + ¢(x; — x) £ p(x) £ p; + C(x; — x)
on(x;_,, x;». Hence

Eli — & <‘E1i § I;:-—l [pl + C(x‘ - x)] qu_l dx = plhlz + Ch2/3
and

pih[2 + ch?[4 = ph[2 + c(x; — %, Ypi-1) < (P, Yai-1) -

These two inequalities give |a,| < (6p; + 4Ch)/(6p; + 3ch). This together with
p. = 1 yields |a,| < K for K = 1 + %C.

b

L1‘fi
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2.6. Remark. If p = 1 on (a, b) and & < h[2 then E;; = hf2 and a;, = 1 — 2/h.
The graph of L,¢; can be seen in Fig. 1. Thus, up to the right-hand side, the classical
upwind scheme is obtained by using the test functions L,¢; in this case.

2.7. Theorem. The L,-matrix of problem (7) is monotone.

Proof. If M = (my;) stands for the L,-matrix of (7) then M is tridiagonal and
m .= A(@i—y, ;) for i=2...n,
my; = A 0;) for i=1,...,n,
m; iy = Ay(@isp,0) for i=1,..,n-1
according to 2.4. Now using p’ < 0 and 2.2(a), (b), (c), one can easily verify 1.9(a),
(b), (©)-
2.8. Definition. Let Q be a constant such that 0 < @ < —0.5p’ on (a, b). We put
[v]: = (ol + Qo]
for arbitrary (c, d) < (a, b) and ve H'(c, d).

%

2.9. Theorem. Suppose that ¢ < h, u is an exact solution of the problem (7) and

u" is an Ly-discrete solution of (7). Then
[u — "], < Ch¥?uf, .

Proof. Let us denote by # an interpolate of u in V(a, b) and put y = u — #,
0=u"— i

(i) Obviously there exist positive constants C,, C, such that max {¢, C h}
< E, < C,hon(a,b). _

(i) [v]? < o4(v, Lyv) Vo€ Vj(a, b) is a consequence of [v]; < 4,(v,v) and 2.4.

(iii) [Lyv|, £ Ch™'?[v], Yve V,(a,b): By 18(a) it follows that [Lyv|f =

= (l/h)‘_zl(4ai2 + 1) (v; — v;—;)? This, 2.5 and 1.5(a) give [L,v|; < Clv|,. The last

IA

inequality together with (i) implies (iii).
(iv) |[Lyv — o] < ChY?[v], VoeV(a.b): By 18(b) we get [L,v— vf> =

= (h/3) Y. a}(v; — v;—;)*. With respect to this equality and 2.5, 1.5(a) we obtain
i=1

[Liv — | £ Chlv],. Now, (iv) holds by (i).

By virtue of (i)—(iv) and 1.7, the following assertions (v), (vi) are true.

() [rls = CHul,

(vi) [6]F < C,1*?|ul, [6]; + Coh’[ul; 0] :

It follows by (i) and the Friedrichs inequality that ||0]] < Ch™'/?[6],. This and (vi)
imply

(vii) [0]; < Ch¥?|ul,
and the statement of the theorem is an immediate consequence of (v), (vii).
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2.10. Remark. If the exact solution u of (7) has a boundary or internal layer then
the norm |u|, is proportional to ¢~ '*® thanks to the behaviour of u within the layers;
see [15], Theorems 2.1, 2.3. Hence, Theorem 2.9 does not give any information con-
cerning exactness of L;-discrete solutions of such problems. The following local
error estimate is much more valuable.

2.11. Theorem. Suppose that ¢ < h, u is an exact solution of the problem (7) and
h

u” is an Ly-discrete solution of (7). Let a subinterval D = (a, x,) in (a, b) have
the property

l<m = &= [ pp dx.
Then

[(u — u")[p]; = Cha/zl“/mlz .

Proof. The function u* = u,¢@, + ... + u,p, is a solution of the equations
(8) Y uAi(o;, 0:) = (f,Lyp;) for i=1,...,n
j=1

by 2.4. The case | = m being trivial, we suppose that I < m and
(i) e = ﬁ:“ ppidx .
If we put ¢ = x;,, then D° = (a, c). Let us consider the problem
9) find e H'(a,c): By(ii, v) = (f,v) Vve Hy(a,c) and
i(a) = 0, i(c) = u(c),
where B,(i1, v) = [; (eii'v’ + pit'v) dx .
(ii) # = upe is true obviously.

Let @; = @;fpe for i =0,...,1+ 1, let R;:V,(a,c) > Vu(a,c) be the linear
operator from 2.3 and #" = @@, + ... + #;41@;4; an R -discrete solution of (9).

(iii) @; = u;for i = 1,..., I: Clearly, ii,,, = u(c)and u;, ..., i, satisfy
1+1
(10) Y a;8(@;, Ri@;) = (f, Ry@;) for i=1,...,1.
j=1

Using 2.4, one can easily see that R;@p; = L;¢;[p. and B,(@;, R13;) = A((0;, ¢;)
forj=1,..,1+1,i=1,...,1 Hence (10) can be written in the form
1+1

(11) .ZlafAl((pf’ 9;) = (f, Lyp;) for i=1,...,1.
i=

We have 4,(¢;, 1, ¢;) = 0 according to (i) and 2.2(c). Thus, one can easily see that
the values uy, ..., u; (iiy, ..., if;) do not depend on u,, 1, ..., u, (on i, ,, respectively).
This and the fact that equations (10) are exactly the first I equations from (8) imply
(iti).
Now (i1),(iii) 2.9,(ii)
[ = s = [ = @Yol = [T - @], % CHfue]s
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2.12. Remark. If one computes an L,-discrete solution u" from Fig. 2 then one
uses a bilinear form A, with E,; = 0.05. In Fig. 2, besides u" a Galerkin solution

ug € V,(0, 1) of the problem
~0.054" +u' =x on (0,1), u(0)=0=u(l)

is shown. The reader can observe an essential difference in the exactness of u" and ug
in the whole interval.

x\

Fig. 2

—0.01u” 4w’ =x on (0,1), u(0)= 0= u(l)

—_—— = exact solution
—_— L,-discrete solution with step 0.1
———- Galerkin solution with step 0.1

—0.05¢" +u' =x on (0,1), u()= 0= u(l)

.......... Galerkin solution with step 0.1

2.13. Remark. Theorems 2.9 and 2.11 can be reformulated for the case p=s —1
on (a, b) in an obvious way. If we admit that p has a first-order zero at one of the

nodes Xy, ..., x,, then Theorems 2.9, 2.11 remain valid with the following modifica-
tion: h'-* has to be substituted by h.
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3. THE CASE p=0
Let us consider the problem (4) provided with restrictions p = 0,0 < g, < g and
q is uniformly continuous on (a, b). A weak formulation of this problem is
(12) find ue Hy(a, b): ay(u,v) = (f,v) VveHy(a, b). Here
ay(u, v) = [ofeu'v’ + quv)dx .

3.1. Definition. Let us put

i

E,; = max {Ss h ,(;i..l q¢i—1¢idx} )
Ey)(x) = E,; for xed{x;_,x;), i=1..,m and

Ay(u,v) = [5(E,u'v’ + quv)dx Vu,ve H'(a, b).

3.2. Remark. Obviously, the following assertions (a)—(c) hold for i = 1, ..., n.
(a) Az((Pi—la ?:)) = Ax(¢i, 0,-1) £ 0.
(b) Az((Pi—l + @i+ Pivr. ) = (q, <Pi) 2 qoh > 0.
(C) e<h I;'-l q@;-19; dx = Az(‘ﬂi—h ¢:)) = 0 = Ay(9, (0;'—1) .
3.3. Definition. Let us define a linear operator L,: Vj(a, b) - V,.(a, b) by
chpl’:(/)i“*'C;rqli for i=1,...,n,
where ¢; = ointhecase E,; = ¢ = E, ;. and c; is a solution of the equations
(13) (@), L) = Ay(@;. 0) for j=i—1,ii+1

inthecase E,; > ¢or E, ;,{ > ¢.
3.4. Lemma. We have a,(u, Lyv) = A,(u, v) Yu, ve V,(a, b).

3.5. Lemma. There exist positive constants C and h, such that
”Cz”w <C for i=1,..,n
is true for all positive ¢ and all h € (0, h).
Proof. Using the uniform continuity of g, we define h, as a positive number
satisfying

() |x = y| < 2hy = Ja(x) — q(»)] < 3q, for all x, ye(a, b).
Let i be a fixed index, ¢; = [¢;, ¢,, ¢;]7, m; the minimum and M; the maximum
of gon (x;_y,x;>forj=1i,i+ 1

Obviously, it is sufficient to consider the case E,; > ¢ or E, ;,; > ¢. Then

(i) & < (h?[6) max {M,, M, ).
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By a simple modification of (13) we get

aj a;; 0 Cy 1 —E,; +¢
(14) Ayy A3z Az3 || C2| = 7 2E,; +2E, ;. —4e|, where
0 a3 as3]|c3 —E; i1t €

0‘2((/’.'—1, l/’Zi—l) 2 (h/4) m;,

y2 = 0(P; = @iy — Prvys Y1) Z defh + (h[6) (m; + myyy),
ass = 0(Qiv s Vaint) 2 (h/4) Miv1,

a;y = 052((Pi — QPi-1s ‘/fzi—l) = (h/12) (Mi — m;) and

az3z = “2(% = Div1» ‘f’/2i+1) = (h/12) (Mi+l - M l)'

It remains to find upper estimates of a;, = a,(¢;- 1, ¥,;) and @35 = ay(@iy 1, ¥25).
Taking into account

It

ayy

3 /
*i+—1mi§‘112§—f+’£Ml‘s
h 24 h 24

we investigate the following cases 1°—3°.

< 0. Then |a,| < % _h m; and we obtain

h h ..
<X M. - m.
as,] < 6max (M, M,,} ™ by (ii).

h £ h

22— % 4+ %, 2 0. In this case lag2| £ ==+ =M,.
h 24 h o 24
h
3°——-i+imi<0<—i+£Mi. Then |a,,| < —(M; — m;).
ho 24 h 24 2%

It follows by these estimates that

ayy — |ay,| = min {éhZ (Tm; — 4 max {M,, M, }),

e h h h
£ 4L (6m,— M), = (Tm, — M)\ = = (Tm, — 4 max (M, M, ,}).
. 24( ) 24( )} 24( { 1))

Analogously,

h :
a33 — las| 2 2_4(7mi+1 — 4 max {M;, M;.,}) and

h
az, — Iaul - "123' = 4% + 6[3(’";' + M) — M, — M
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is true. Using the last three inequalities and (i), one arrives at

min (a; — Y |a;)) = C;h for C, = 9o

12i<3 j*i 24

At the same time, there is an upper estimate C,h of the absolute values of all the
right-hand sides in (14) according to (ii) and the definition of E,. Hence

led. <€ for c=%2.
c,

3.6. Remark. (a) If g(x) =1 on (a, b) and ¢ < h?[6 then E,; = h?[6 = E, ,,,
and ¢; = (h* — 6)[(h* + 12)[ -1, 2, —1]". See Fig. 3.

(b) Whenever ¢ < h 5 qp;-,¢;dx for i = 1,...,n, the L,-matrix of (12) is
diagonal by 3.2 and it can be derived from the stiffness matrix appearing in the
Galerkin method by lumping. See for example [1].

3.7. Theorem. The L,-matrix of problem (12) is monotone and

. = c Ve
9o

for the L,-discrete solution u" of (12).

Proof. The statement immediately follows by 3.2(a), (b) ,1.9 and 1.10.
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3.8. Definition. Let us put

[]> = (olz... + qollo]*)"
for arbitrary (c, d) < (a, b) and ve H'(c, d).

3.9. Theorem. Let u be an exact solution of the problem (12) and u" an L,-discrete
solution of (12). There exist positive constants C and h, such that
[u - uh]z é Chz[ulz
holds for all he (0, hy) and ¢ < h®.

Proof. Let us denote by # an interpolate of u in V,(a, b).

(i) Obviously there exist positive constants C;, C, such that max {¢, C{h*} <
< E, £ C,h* on(a, b).

(i1) [v]3 < ay(v, L) Vo e Vy(a, b) is a consequence of [v]; < A,(v,v) and 3.4.

(iii) |L,o|, < (C[h)[v], Vve V(a, b): By means of 1.8(a) and the constant C
from 3.5 the following estimate can be obtained:

vaﬁﬂgmax 1, C? nv.z.
ol < } 3

i=1 %

Hence |L,v|; < C(Jv|f + (1/h%) |[o]|*) with respect to 1.5(c). This and (i) imply (iii).
(iv) [[Lyv — v]| £ C[v], Vv e Vy(a, b): Using 1.8(b) and the constant C from 3.5,
the following estimate can be derived:

|Lv — v|* < 3h max {1,C?*} Y v},
=1

This inequality and 1.5(c) imply |[L,v — v]|*> £ C(h?|v|{ + [[v[|*) and one gets (iv)
by (i).

Assertions (i) —(iv) and Proposition 1.7 imply [u — &}, £ Ch*[u|, and [u" — @], <
< Ch?|u|,; the statement follows immediately.

Now, we illustrate the need for a local error estimate.

3.10. Example. If u is a solution of the problem
—eu" +u=1 on (0,1), u(0)=0=u(l),

then it has boundary layers in neighborhoods of 0 and 1. One can easily see that
|u], > ¢73/* and, at the same time,

—JEIne<t, <t <1+ J()Ine = |uy, ;) <1.

3.11. Theorem. Let u be an exact solution of the problem (12), u" an L,-discrete
solution of (12), and let a subinterval D = (x,, x,) in (a, b) have the property

O0<k = e h(¥ qou10edx and l<m = < h([* g dx.
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Then there exist positive constants C and h such that

[(u — u")p]; < Ch?Julp
is true for all h € (0, hy) and & < h>.

2

Proof. Let us denote D° = (c, d) and consider the problem
(15) find @eH'(c,d): B,(u,v) = (f,v) VveH'(c,d) and
i(c) = u(c), i(d)=u(d), where
Ba(it, v) = [ (e'v' + qitv) dx .
Let R,: Ve, d) > V,u(c, d) be a linear operator from 3.3 and &" an R,-discrete
solution of (15).

Similarly as in 2.11 one can see that & = u/p. and @"[, = u"/,. These facts and
3.9 give

[(w—u"p], = [(@ — @)/p), = [a — "], < Ch?|a|, < Ch?|up.|, .

3.12. Remark. (a) If one computes the L,-discrete solution u” of the problem
from Fig. 4 then one uses a bilinear form A4, with E, = 0.0016. In Fig. 4, besides u"
a Galerkin solution ug ¢ V,(0, 1) of the problem

—0.0016u" + u =1 + sin2zx on (0,1), u(0) =0 = u(1)

is shown. An essential difference in the exactness of u” and ug in the whole interval
can be observed.

YA
2

— 1076 4+ u= 14 sin2zx on (0,1),
u(0) = 0 == wu(1)

_——— — exact solution

— L2-discrete solution with step 0.1
— e — Galerkin solution with step 0.1
—0.00164” + u= 1+ sin2rx on (0, 1),
u(0) = 0 == u(l)

.......... Galerkin solution with step 0.1

-~

23>

="
y

Fig. 4
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(b) L,-discrete solutions of the problem from Fig. 5 with steps 0.1, 0.05 and 0.025
have been computed. The mutual differences of their values at each of the points

0.1,...,0.9 are less than 4 . 107°.

\
\

A
!
)
N
|
I
]
l

yl

{9

Fig. 5
- 2 for x= 0.5
—1075w" + (1 + 10x%) u= =05, yoy=0, w1 =1
+( 4= _10 for x>05 “©@ “(

L;-discrete solution with step 0.05
Galerkin solution with step 0.05

4. A MORE GENERAL ONE-DIMENSIONAL CASE

Let us consider the problem (4) satisfying 0 < Q < g — 0.5p’ on (a, b) for a con-
stant Q. A weak formulation of this problem is
find ueHMy(a, b): ay(u,v) = (f,v) VveHMy(a, b). Here

(16)
ay(u, v) = [o(eu'v’ + pu'v + quv)dx.



4.1. Definition. Let us define a linear operator L;:¥(a, b) - V,.(a, b) by
Lyp, = @, +d]¥, for i=1,..,n,
where the vectors d; satisfy
0‘3((/’,« Lyp;) £0,
“3(*’!”,‘; (/)i) 20 = a3((pja L3(Pi) =0
forj=1i—1,i + 1and

i + }%d,-zz + d?, is minimal .

4.2. Remark. In [7] an apriori error estimate is proved illustrating that the size
of the Hj- and L2-norms of the error of the Ls-discrete solution is of the same order
as stated in Theorem 2.9, 3.9.

4.3. Remark. In Fig. 7, one can see graphs of the test functions used in the com-
putation of ug from Fig. 6. The accuracy of Lj-discrete solutions ug, 46, 43, (b =
= 0.03125) from Fig. 6 is compared in Tab. 1. Approximate solutions of a problem
which is no special case of (16) are given in Fig. 8.

yll

ug L;-discrete solution with step 0.125
uy ¢ L4-discrete solution with step 0.0625
ug Galerkin solution with step 0.0625

Fig. 6
—107%4” + 10 cos (zx)u’ + (10x* - 0Du=x on (0,1, u®=2, ul)y=1
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Tab. 1.

X Uie — Ug Uzy — Uy
0.125 —0.000472 —0.000153
0.250 —0.001798 —0.000533
0.375 —0.009081 —0.0027
0.500 —0.042566 —0.0433035
0.625 —0.006124 —0.0013585
0.750 —0.0022208 —0.0005918
0.875 —0.0012405 —0.0003525
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Fig. 8
—107%4" — 10 cos (zx)u’ + (10x2 + 0.Du=x on (0,1), wO =2, u()=1
ug Ls-discrete solution with step 0.125

u;¢ Ls-discrete solution with step 0.0625
ug Galerkin solution with step 0.0625

5. A TWO-DIMENSIONAL PROBLEM

Let us apply the basic ideas of the method used in Sections 2 and 3 to the problem
(17) —edu+p.gradu +qu=f on Q, ulp=0.

Here ¢ is a positive real number, p(q) is a sufficiently smooth vector (scalar) valued
function on Q and f € L*(Q). The functions p, q are supposed to satisfy either div p <
£0,g=00nQorp =0,0<gy, =< qgonl
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Only a brief description of this application is presented. A theoretical analysis is not
complete yet.

A weak formulation of (17) is
(18) find ueHMy(Q): a(u,v) =(f,v) YveH)(Q), where
a(u,v) = [p[cgradu . grad v + (p . grad u + qu)v] dx.

5.1. Definition. Let t be an arbitrary triangulation of Q. We denote by 7, the set
of triangles, by A", the set of nodes of t and by .#, the set of P e A", satisfying P ¢ I.
Let us construct a new triangulation =* by dividing each triangle from

. into
four equal parts in a way illustrated in Fig. 9.

Fig. 9

For each vertex Pe A", (P e A"_.) define a real function @p(¢,) continuous on Q,
inear on each triangle from 7, (from 7 ..) and such that

s1for Q=P
N0 for Qe N, — {PI

1 for Q=P
) =< :
(wP(Q N0 for Qe N . — [P}

(PP(Q) =

Let us denote V, = span {@p; P€.# } and V,. = span {Yp; P F.}.

5.2. Definition. For arbitrary u, ve H'(Q) we put

b(u,v) = ¥, ba(u.v).

TeT «
where

br(u, v) = ap(u, v) + or(u, v),

ar(u.v) = (r[egradu.grad v + (p.grad u + qu)v]dx,

5T(u,v)=J. [T dudv T@@+T<aua”+a—“@>]dx

Ox 0x dy 0y Ox 0y 0dy ox
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and the constants T, T,, T, satisfy the system of equations
5T((pP’ (PQ) = ry = min {0’ “ar(q’p’ 4’0)’ _aT((pQ7 (0;:)}
(19) 51(@q. @) = r2 = min {0, —ar(pq, @), —ar(P, 9o)}

Sr(@r, 9p) = r3 = min {0, —ar(p, @p), —ar(¢e, Pr)}
for each Te.#_ with nodes P, Q, R.

Lemma 5.3 can be proved by a direct computation and Lemma 5.4 is true obviously.

5.3. Lemma. Let t be a triangulation of Q. The determinant of the matrix of
system (19) equals —0.125 for each Te T

5.4. Lemma. The following assertions (a), (b) hold for an arbitrary triangulation
T of Q.

(a) b(gp,9q) =0 VP, Qe N, P+ Q.
(b) Y b(ep. o) = Y al@p. 0q) VPES,.

QeA'; QeA':

5.5. Lemma. If t is a triangulation of Q then the eigenvalues of the matrix

T, T,
[T T] are non-negative for each Te I

Proof. Let P, Q, R be the vertices and s the area of an arbitrary triangle Te 7 ,.
Denote a = |PQ|, b = [PR|, a = (1/a) PQ = [a;,a,]", b = (1/b) PR = [by, b,]"

and M = b1 bz:l If we put

Tx ’Ts . T Zx Zs
(20) [T, T]—M |:Z Z]M and

Siuwo) = [ [2, 2490 4 2,800 g (00, OuO0) gy
da Oa ob ob 0adb  0b da

then 85(u, v) = 5,(u, v) for all u, ve C'(T). Thus instead of (19), one can solve the
system of equations

37(¢p> o) = 11 s [-v 0 —ab][z]] [r
01(®q, @) = r,, in detail 7 (ab)? 0 0 ab||Z,| =|r,
5T(¢R, <PP) =T3 0 —a®> —ab||Z, r;
Clearly, Z,= —(ry + ry)a’ls, Z,= —(r; + r3)b’[s and Z = r,abls. This
together with
(i) r;,<0 for i=1,2,3yields

(i) det [g ; ] > 0. This result and (20) imply

:I > 0. At the same time, we have
s Y

T. T
(1ii) det[T T
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(iv) T,+T,20: T, +T,=2,+Z,+2ab2,2Z.+2,—2/(22,)20
by virtue of (20), (ii), (i).
The statement follows by (iii) and (iv).

Hence the eigenvalues of the tensor I:T" e T, ] of the so-called artificial diffu-

T, T,+e¢
. 0 o .
sion are greater than those of the tensor [f) "’:I of diffusion. Another way how to in-

crease the diffusion coefficients in the bilinear form a in order to arrive at a bilinear
form satisfying Lemma 5.4 is presented in [19]. Now, we construct a linear op-
erator L: V, — V. such that

a(u, L) = b(u,v) Vu,veV,,
supp Lo < suppv VveV,.

5.6. Definition. Let us put
N(P)={QeN,;Qesuppgp}, N .{(P)={ReN.;Resuppyp}

for an arbitrary node P € £..

In Fig. 10, the sets supp ¢, and supp ¥y are sketched. Obviously, A" (K) =
={A,B,C,D,E, K} and #",(K)={F, G, H,IJ K}. :

Fig. 10

5.7. Definition. Let us define a linear operator L.: ¥, — V.. such that

Lgp = Z xr,k'/’n
ReA - o(P)
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and the coefficients x,  satisfy the system of equations

(21) a((PQ9 L:‘Pp) = b(¢Q’ ¢P) VQ € ‘/V‘I(P)
for any node Pe 7.

Regarding the analysis of the one-dimensional cases, the systems (21) are solved
by a weighted least squares method, making coefficients xp 5 assmall as possible.

Hence in general, (21) need not be satisfied exactly.
In 5.8 and 5.9, the following notation will be used:

Q=1(0,1) x (0,1),

g is a linear spline on the boundary I' of , related to the standard equidistant
net with step 0.05 such that

olx v)—<1 for y=0v(x=1Ay=02)
o 0 for y=025v (x=0Ay=0.05)

7 = the uniform triangulation shown in Fig. 11.

Fig. 11

5.8. Example. An approximate solution of the problem
(22) —107%4u — 0.8% + 0.6@ =0 on Q,

0x dy
u=g on I
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has been computed in the space V,. From its graph in Fig. 11, one can see that the
inner layer along the segment AB (A = (1,0.2) and B = (0,0.95)) is preserved.
This result is comparable with a solution of the same problem, published in [5].
Since the coefficients in (22) are constant and 7 is a uniform triangulation, the shape
of all the test functions L., P € £, is the same. See Fig. 12. Likewise, the artificial
diffusion on triangles is of two types only. It is shown in Fig. 13.

~
5

Fig. 12

A /
Y

0.021 /)g/

0.02 % /7

Fig. 13

5.9. Example. Two approximate solutions of the problem
(23) —~107%u+u=xy onQ, u=g on I

have been computed. One, u*, for the triangulation t and the other, u®", for the
triangulation 7, defined by 7; = 7. It is well-known that the exact solution u coincides
with the function u, = xy outside the boundary layers. Let us denote

[o]; = max {|p(P)|; Pe.s,}
for each continuous function v on Q and t = 7, 7,. We have

[u? = o], = 0.0007229 and [u* — u,], = 0.0001811 .
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Hence, the seminorm of error seems to be proportional to h?. The shape of test
functions L, ¢p, P € £, can be seen in Fig. 14.

Fig. 14
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Souhrn

PETROVOVA-GALERKINOVA APROXIMACE PROBLEMU TYPU
KONVEKCE-DIFUZE A REAKCE-DIFUZE

Joser DALIK

V piedlozeném &lanku je prezentovana nova obecnd konstrukce testovacich funkci jako
varianta Petrovovy-Galerkinovy metody. Je vyuZita pii tvorb& a teoretické analyze novych
algoritmi pro numerické feSeni Dirichletovy dlohy pro diferencialni rovnici —euw” + pu’ + qu=f
na intervalu (0, 1). Pozornost je soustfedéna na pripad, kdy kladné &islo ¢ je podstatn€ mensi
neZ hodnoty funkci |p| a g. Je navrZen rovn&Z algoritmus pro numerické feSeni odpovidajici
rovinné Glohy a jsou uvedeny vysledky numerickych experimentu.

Author’s address: Dr. Josef Dalik, katedra matematiky a deskriptivni geometrie stavebni
fakulty VUT, Barvicova 85, 662 37 Brno.
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