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A PETROV-GALERKIN APPROXIMATION 
OF CONVECTION-DIFFUSION AND REACTION-DIFFUSION 

PROBLEMS 

JOSEF DALIK 

(Received October 26, 1988) 

Summary. A general construction of test functions in the Petrov-Galerkin method is described. 
Using this construction, algorithms for an approximate solution of the Dirichlet problem for 
the differential equation — eu" + pu' + qu~ f are presented and analyzed theoretically. The 
positive number e is supposed to be much less than the discretization step and the values of |p|, q. 
An algorithm for the corresponding two-dimensional problem is also suggested and results of 
numerical tests are introduced. 
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INTRODUCTION 

Let a normed function space J#*, a continuous bilinear form a: #e x «5f -> R, 
a continuous linear formf: #e -> R and a problem 

(1) find ue^f: a(u,v)=f(v) VveJtf 

be given. Let us choose subspaces i^ (with a basis $i9 ..., $n), if (with a basis 
Wu ..., Wk) in <#? such that n < k9 and a bilinear form i : f x f - > l ? . Let a linear 
operator ££: if -+ if* transform the given form a into the chosen form A in the 
following manner: 

a(u9 &v) = A(u, v) Vu, v e i r . 

We call the problem 

(2) find i**eTT: a(u
h,Sev) = f(Sev) VveiT 

a (Petrov-Galerkin) <e-discretization of (1)1) and the function uh an £e-discrete 
solution of (I)1). If we denote uh = ut<Pt +• ... + un<Pn then (2) can be written in 

*) Or of the corresponding classically formulated problem. 
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the form 
n 

(3) find ul9..., un: £ Uja($p .SP*,) - f(Se^() for i = V ..., n . 
j = i 

The matrix of the system (3) will be called and S£-matrix of (I)1). In this situation 
the elements of i^ and S£{V) are referred to as shape functions and test functions 
respectively. 

Let us consider the problem 

(4) — eu" + pw' + qu = / on (a, b) , u(a) = 0 = u(b) , 

where £ is a positive real number, peC1(a,h), qeV° (a,b),0 S q ~ 0.5/?' on 
(a, fe) and / e /i2(a, b). Using the Lax-Milgram theorem, one can see that (4) has 
exactly one week solution u in H0{a, h) and the supposition q e /l°°(a, b) implies 
u G H2(a, b). But if e ^ [p| or e <̂  q then there usually exist some small subsntervais 
in (a, b), called boundary or internal layers, in which values of u change extremely 
quickly. This fact together with the use of the discretization step greater than E are 
the reasons why the classical finite difference method and the Galerkin method, 
both having an optimal order of convergence, offer approximate solutions de­
based by oscillations on the entire interval. In order to remove these oscillations, 
one can simply use a suitably decentralized approximation of u in the finite 
difference method or substitute a suitable major value for e in the Galerkin 
method. Unfortunately, both these modifications reduce the order of convergence. 
For example, the Galerkin approximation by linear splines reduces the order of 
convergence from two to one in the l2-norm and from one to zero in the H'-norm. 
Several numerical methods giving nonoscillating approximate solutions of various 
special cases of (4) have been published. For some of them higher orders of 
convergence than those of the modifications have been proved. See for example 
[2], [8], [17] and surveys in [3], [10]. There also exist algorithms producing 
nonoscillating approximate solutions of the two-dimensional convection-diffusion 
problem with good convergence properties. See [5], [9 — 16], [18]. 

The aim of this paper is to show that the Petrov-Galerkin iaf-discretization with 
a suitable bilinear form A can be successfully applied to the problem (4) and also 
to its two-dimensional analogue. The analyzed algorithms search for a solution 
in the space of linear splines on an equidistant net on (a, h) in the following cases 1, 2. 

1. q == 0. If p ^ 1 on (a, b) then it is proved that the l2-norm of the error is 
of order 1.5 and its lH1-norm is of order 1. If one admits a first-order zero of p at 
one of the given nodes then the order of error decreases by 0.5 in both norms. 

2. p = 0, 0 < q0 :g q on (a, b) and q is uniformly continuous. The i2-, H'-norm 
of the error is of order 2 ,1 , respectively. 

These error estimates are e-uniform in the sense that they contain only constants 
independent of s. This property is shared also by the so-called local error estimates, 
which are of the same order as the estimates of the corresponding global errors. 
All approximate solutions obtained are shown not to oscillate. 
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1. PRELIMINARIES 

In R", the symbol o will be reserved for the null-vector, PQ for a vector determined 
by an ordered pair P, Q of points and \PQ\ for its Euclidean norm. Notation for func­
tion spaces on an open interval (a, b) in R and in a bounded open subset Q in R2 

with a polygonal boundary F are used in the sense of [6]. Also the symbols ( , ) 
for the scalar product both in L2(a, b) and L2(Q), \\ | , | [[̂  for the norms in L2(a, b), 
Lco(a, b), respectively, and | | l 5 | |2 for the seminorms in Hl(a, b), H2(a, b), re­
spectively, are taken from [6]. By || [j^ the max-norm in Rn is denoted, too. The 
symbol g\D stands for a restriction of a real function g from (a, b) to an interval 
D £ (a, b). If g G H1(a, b) and E is a positive piecewise constant function on (a, b) 
then we put \g\E,i = (Eg', g')1/2. Any generic constant in this text depends neither 
on s nor on the step length. 

The following problem is a weak formulation of (4). 

(5) Find u e Hl
0(a, b): <x(u, v) = (/, v) Vv e /H0(a, b). Here 

oc(u, v) = \b
a(8u'v' + pu'v + quv) dx . 

1.1. Definition. Let n be a positive integer, m = n + 1 and let a = x0 < x t ,< ... 
. . . < xm = b, a = x* < x* < ... < x*m = b be equidistant nodes with step 
length h, h*, respectively. Further, let us put x_j = a — h, x_ t = a — h*, 
*L+1 = 6 + *̂> *«+i = h + h. 

1.2. Definition. For each interval D = (xk, xt) c (a, b) let us define the extension 
De of D by Dc == (xk_uxl+l)n(a, b). 

1.3. Definition. Let us define scalar-valued functions 

, t - \x — X;\ - for x e (a, b) n (xf_ j , xi+l), 

0 for x e (a, b) — ( x ^ j , x i + 1) , 

i = 0, 

*• 1 

Ш = 
1 — |x — x*| •— for x e (a, b) n (x*_ 1 ? x*+ 1) , 

h 

0 for x e (a, b) - (x*_ t, x*+ 1) , 

j = 0, ..., 2m, vector-valued functions 

i = 1, ..., n, and linear spaces 

Vh(a,b) = span {<?„...,<?„} , V**(a, b) = span {^1? ..., ij/2n+l} . 
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If L: Vh (a, b) -+ Vh*(a, b) is a linear operator then an L-discretization of (5) is 
the problem 

(6) find uh e Vh(a, b): a(uh, Lv) = (/, Lv) Vv e Vh(a, b) . 

1.4. Notation. For every function v e Vh(a, b) we put 
n 

v = Z *W- a n d yo = 0 = vm . 
i = l 

1.5. Lemma. J / v is an arbitrary function from Vh(a, b) then the following asser­
tions (a), (b), (c) are true. 

(a) M?" ; £ ( • . . - « _ - _ ) ' • 
h i - 1 

(b) H a - J l W - i + « ' . - i « ' « + -.a). 
3 i= i 

W ;Ma + ; M a = _>a-
6 n i= i 

Proof. The equations (a), (b) can be verified by a direct computation; (c) follows 
immediately by (a), (b). 

1.6. Definition. Let Q be a constant such that 0 ^ Q ^ q — 0.5p' on (a, b) 
and let F be a positive piecewise constant function on (a, b). We define a norm 

H = (Mli + eNIT2 

in Hl(a, b). 

1.7. Proposition. Let us suppose that a linear operator L: Vh(a, b) ~> Vh*(a, b), 
real numbers k, I with the property 1 _g k ^ / and parameters s, h satisfy the follow­
ing conditions. 

(cl) There exist positive constants Cu C2 such that max {s, Cih'} ^ E S C2h
k 

on (a, b), 

(c2) [v]2 £ Ca(v,Lv), 

(c3) mgc»- v 3 w ( 
(c4) | | L v - v | | SCh^lf2[v] 

for all ve Vh(a, b). Then the following assertions (al), (a2) hold for the solutionu 
of (5), the L-discrete solution uh of (5) and the interpolation u of u in Vh(a, b). 

(al) [ u - fl] S Chmin(l+fe/2'2}|uf2. 

(a2) [uh - af <, Cx(h™ + UPIU h2-'2 + 11,1. h*~«2) \u\2 [uh - a] + 

+ ^ (1^11 , + \\ql^)h2\u\2\\u
h-- fl||. 
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Proof. Let us put n = u — u and 9 = uh — u. 

(i) h\rj\t + \\r\l ^ Ch2\u\2 is true by [15], Theorem 3.2.1. 
(ii) a(0, L0) = a(u, L0) is a consequence of the equation a(u — uh, LO) = 0. 

This one follows by (5) and (6). 
Proof of (al). The condition (cl) and statement (i) imply \r(\2

 = Chk\n\l + 
+ efj^n2 ^ Chmin{2+fc'4}[u|2. 

Proof of (a2). 

1° |s(^',(L0)')| = C/i1+*-' /2 |u |2[0] by (i), (cl), (c3). 

2° \(pn\ LO - 0)| _; C\\p\\^ h2-l'2\u\2 [0] by virtue of (i), (c4). 

3° | (p ' iy ,0) |^C| |^ l t t / i 2 [ i i [ 2 | |0 | |by( i ) . 

4° \(pn, 0')| = Cllpf, h2~l/2\u\2 [0] follows by (i), (cl). 

5° \(qrj, LO - 0)[ = C^q^ h3~l/2\u\2 [0] is a consequence of (i), (c4). 

6° \(qn, 0)| = C\\ql„ h2\u\2 [|0|| follows immediately by (i). 
The conditions (cl) —(c4) and facts (ii), 1° — 6° give (a2). 

Linear operators L will be always constructed so that 

supp Lv _; supp v Vv e Vh(a, b) . 

This condition is fulfilled if and only if Lean be defined as in 

1.8. Lemma. Let a linear operator L:Vh(a, b) -» Vh*(a, b) be given by 

Upi = <pi + xTWi, 

where xt = [x f l , xi2, xi3]
T is a real vector for i = 1, ..., n. Then 

(a) |Lv|2 = - £ [v2_1(2x2_1>3 - 2x ,_ l f 3 x ,^ , 2 + x2_1>2 + x,_1>2 + 0.5) + 
h i = I 

+ ^i-1y,(4x,_13x,1 — 2x /_1 3x / 2 — 2x,_ l f2x,1 — x , _ 1 2 — x,2 — 1) + 

+ v?(2x2! - 2xaX;2 + x2
2 + x,2 + 0.5)] 

and 
h m 

(b) ||Lv - v||2 =~ Y [v2_x(x2_lj2 + 2x2_1>3 + x,_1>3x,_1>2) + 
6 i = I 

+ v^1vi(xi^iaxn + 4x,_1?3x,1 + x,_ l j3x,2) + 

+ v2(x2
2 + 2x2! + x,2x a)] 

for an arbitrary function v e Vh(a, b). 
Proof. Both statements can be proved by a direct computation. 

The L-discrete solution of a problem does not oscillate whenever its L-matrix A 
is monotone (i.e. A"1 does exist and is non-negative). For an explanation consult [19], 
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1.9. Lemma. (Bramble, Hubbard [4]) A real square matrix M = (mtj) of order n 
is monotone whenever the following assertions (a), (b), (c) are true. 

(a) i 4= j => mtj <; 0 . 

(b) There is a non-empty set I £ {1, ..., n} such that 

n n 

Y, mij > Oo iel and £ m^ = 0 <=> i £ I. 
j=\ i = i 

(c) For every i e {1, ..., n) one can find indices j e I and fc1? ..., ks in such a way 
that each of the numbers mikl9 mfclfe2, ..., mksj is non-zero. 

1.10. Lemma. (Raviart [19]) If Mx = b is a system with a monotone matrix 
M = (m(j) of order n then 

n 

£ ml7 = a* > 0 f°r i=h-.,n => ||x||w 5̂  a * 1 ! ^ . 
I=i 

2. THE CASE q = 0 

Let us consider the problem (4) provided with restrictions q = 0 and p = 1 on 
(a, b). A weak formulation of this problem is 

(7) find u e !Hj(a, b): ax(u, v) = (/, v) Vv e H\{a, b). Here 

a t(u, v) = j*(£uV + pu'v) dx . 

2.L Definition. Let us put 

Eu = max{£, J ^ ^ p ^ ^ i dx} , 

Ei(x) = Ej,- for x e <xi_i, xi) , i = 1, ..., m and 

A^u, v) = j£(EiuV + pu'v) dx Vu, v e Hx{a9 b) . 

2.2. Remark. Obviously, the following assertions (a) —(c) hold for i = 1, ..., m. 

(a) A^cp^^iPi) S 0 , 

(b) A1((pi_1 + <Pi + cpi+l9 cpi) = 0 , 

(c) s ^ £i+ 1 P<Pt dx => i41(^|+1, (pt) = 0 . 

2.3. Definition. Let us define a linear operator Lx: V^(a, b) -> Vfc*(«, b) by 

I-i^i = <Pi + [ai> 0, — ai+1] IP, for i = 1, . . . , n , where 

a* = ( £ i i ~ e)/(P> ^2i~i) ^ i = 1, ..., m . 
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2.4. Lemma. We have ax(u, Lxv) = Ax(u, v) Vu, v e Vh(a, b). 

Proof. Since ocj and At are bilinear, it is sufficient to prove 

(f) at(<pj, Lxcpi) = At(q>j, <pi) for i, j = 1, ..., n: 

^(Vi-uLiVi) = ^i(<Pi-u<l>i) + <*&i(<Pi-i,*l'2i-i) = 

= aj faf - ! ,^) - (E1£ - s ) 7 = ^((Pi-uVi) + |a(^i - e)<?>;-1<?>;dx = 
h 

= .^1(9i-i, <?;)• 

If j = i, i + 1 then (i) can be proved analogously and for the other values of j it 
holds obviously. 

2.5. Lemma. There exists a constant K such that 

\at\ = K for i = 1, , . . , m 

holds for all positive &, h. 

Proof. Let us put pt = p(xf) for i = 1,..., m and denote by c, Cconstants satisfy­
ing 0 ^ c ^ ~pf S C on (a, b). Then 

Pi + c(xi - x) S p(x) = Pi + C(xi ~ x) 

on(x£_ l9 xty. Hence 

Eu-e<EuS £ _ , [Pt + C(xt - x)] <pt.x dx = Pih\2 + Ch2j3 
and 

Pihj2 + ch2\4 = Pihj2 + c(x( - x, ^2£_x) g (p, ^ 2 , - i ) -

These two inequalities give \at\ g (6pt + 4Ch)\(6pi + 3ch). This together with 
Pi ^ 1 yields \a\ ^ K for K = 1 + | C . 
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2.6. Remark. If p = 1 on (a, b) and e < A/2 then Fu = A/2 and a. = 1 - 2/A. 
The graph of Lx(pt can be seen in Fig. 1. Thus, up to the right-hand side, the classical 
upwind scheme is obtained by using the test functions Lx<pt in this case. 

2.7. Theorem. The Lx-matrix of problem (7) is monotone. 

Proof. If M = (ntij) stands for the L^matrix of (7) then M is tridiagonal and 

™M- i = A1(<pi„u<pi) for i = 2, . . . , / i , 

mh. = i lx^ i , 9i) f o r * = 1, . . . , n , 

^i,i+i = ^i(<Pi+i,<Pi) for i = 1, ...,n - 1 

according to 2.4. Now using p' <s 0 and 2.2(a), (b), (c), one can easily verify 1.9(a), 

00, (c). 

2.8. Definition. Let Q be a constant such that 0 g Q ^ — 0.5p' on (a, fe). We put 

Wi = (HI,.. + Q\H2Y12 

for arbitrary (c, d) £ (a, b) and v e H^c, d). 

2.9. Theorem. Suppose that e < h, u is an exact solution of the problem (7) and 
uh is an Lx-discrete solution of (7). Then 

[u - u% g Ch3/2|u[2 . 

Proof . Let us denote by u an interpolate of u in Vh(a, b) and put rj = u — w, 
0 = u* - #. 

(i) Obviously there exist positive constants Cl5 C2 such that max {e, CtA} ^ 
g £ j ^ C2Aon(a, ft). 

0 0 M i = <xt(v,Lxv)Vve Vh(a, b) is a consequence of [v]i g At(v, v) and 2.4. 
(iii) fLjvjj -g CA-1/2[v]A VveV„(a, 6): By 1.8(a) it follows that \Lxv\{ = 

= (1/A)^(4fl2 + l)(i>* - ^i-i)2- This, 2.5 and 1.5(a) give [L^), S C\v\x. The last 
i = i 

inequality together with (i) implies (iii). 
(iv) \Lxv -v\£ Ch1/2[v]x Vve Vh(a, b): By 1.8(b) we get \Lxv ~ vf = 

m 

= (A/3) Yt aKvt ~ vi-iY- With respect to this equality and 2.5, 1.5(a) we obtain 
i = l 

lLxv - v\\ ^ Ch\v\x. Now, (iv) holds by (i). 
By virtue of (i) —(iv) and 1.7, the following assertions (v), (vi) are true. 
(v) [,].<; CA3/-[«|2, 
(vi)M?sc1*3 l- |«faM . + ca*-|«j2||-||. 
It follows by (i) and the Friedrichs inequality that ||0|| <; Ch~llz\&\v This and (vi) 

imply 
(vii) [0] . <; Ch™\u\2 

and the statement of the theorem is an immediate consequence of (v), (vii). 
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2A0. Remark. If the exact solution u of (7) has a boundary or internal layer then 
the norm \u\2 is proportional to e"1 '5 thanks to the behaviour of u within the layers; 
see [15], Theorems 2A, 2.3. Hence, Theorem 2.9 does not give any information con­
cerning exactness of ^-discrete solutions of such problems. The following local 
error estimate is much more valuable. 

2.H. Theorem. Suppose that s < h, u is an exact solution of the problem (7) and 
uh is an L^discrete solution of (7). Let a subinterval D = (a, xt) in (a, b) have 
the property 

I < m => s = J*| + 1 pcpi dx . 
Then 

[(« - « % ] . ^ Ch^\u\D.\2 . 

Proof. The function uh = u1<p1 + ... + uncpn is a solution of the equations 
n 

(8) I UJAI(<PP <Pi) = (f Li<Pi) f o r i = U • • •, n 
j = i 

by 2.4. The case / = m being trivial, we suppose that / < m and 

(i) eSSx\+1P<Pidx. 

If we put c = xl+1 then De = (a, c). Let us consider the problem 

(9) find u e H\a, c): fit(u9 v) = (f, v) Vv e H%(a, c) and 

u(a) = 0 , u(c) = u(c), 

where /^(u, v) = \c
a (m'v' + pu'v) dx . 

(ii) u = ujDe is true obviously. 
Let q>i = <Pi\D, for i = 0, . . . , / + 1, let Rt: Vh(a, c) -* Vh*(a, c) be the linear 

operator from 2.3 and uh = u1(p1 + .. . + ul+1(pl+1 an Kj-discrete solution of (9). 
(iii) Ui = ut for i = 1, ..., /: Clearly, uf+1 = u(c) and w-, ..., uz satisfy 

(10) X u/i(^-, K!^) = (/, Rt<pt) for i = 1, ..., / . 
1 = i 

Using 2.4, one can easily see that Rt(Pi = !•!<?>J/D« anc* Pi(<Pj> Ri<Pt) = Ai(<Pj><Pi) 
for j = 1, ..., / + 1, i = 1, ..., /. Hence (10) can be written in the form 

z + i 

(ii) x ujM<Pp <Pi) = (/>Li<?.) fo r l = l> • • • >' • 
1=i 

We have -4i(<p-+i, </>j) = 0 according to (i) and 2.2(c). Thus, one can easily see that 
the values ul9 ...,ut (ux, ..., uz) do not depend onul+1, ...,un (on ux+ l s respectively). 
This and the fact that equations (10) are exactly the first / equations from (8) imply 
OH). 

Now 

[(« - « % ] r - ' ' [ ( S - 5%>]t á [« - u%9T Ch^\u\n. 
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2.12. Remark. If one computes an L^discrete solution uh from Fig. 2 then one 
uses a bilinear form At with Ex = 0.05. In Fig. 2, besides uh a Galerkin solution 
uG e Vh(0, 1) of the problem 

j 

-0.05u" + u' = x on (0, 1), ii(0) = 0 = u(l) 

is shown. The reader can observe an essential difference in the exactness of uh and uG 

in the whole interval. 

1 X 

Fig. 2 

-O.Olu" + u' = x on (0,1), i/(0)= 0=i/(l) 

— exact solution 
L!-discrete solution with step 0.1 

— — • — • Galerkin solution with step 0.1 

-0.05a" + if' = x on (0, 1) , u(0) = 0 = u(1) 

Galerkin solution with step 0.1 

2A3. Remark. Theorems 2.9 and 2.11 can be reformulated for the case p = — 1 
on (a, b) in an obvious way. If we admit that p has a first-order zero at one of the 
nodes x0,..., xm then Theorems 2.9, 2.11 remain valid with the following modifica­
tion: h1*5 has to be substituted by h. 
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3. THE CASE p = 0 

Let us consider the problem (4) provided with restrictions p = 0, 0 < q0 ^ q and 
q is uniformly continuous on (a, b). A weak formulation of this problem is 

(12) find w e H0(a, b): a2(w, v) = (f, v) Vv e Hl
0(a, b) . Here 

a2(w, v) = ^(eu'v' + gwv) dx . 

3.1. Definition. Let us put 

E2i = max {s, h $*\_i qcp^^idx] , 

F2(x) = F2j f° r * e (jXi~i, xt) , i = 1,. . . , m and 

A2(u, v) = jb
a (E2u'v' + quv) dx Vw, v e H l(a, b). 

3.2. Remark. Obviously, the following assertions (a) —(c) hold for i = 1, ..., n . 

(a) -42(<?>i-i, <Pi) - A2(<Bt-,<pi_1) = 0 . 

(b) A2(<pi^.1 + </\ + <pi+1, r?\) = (q, <pt) ^ q0h > 0 . 

(c) s _; fcfj;-1 ^ - i ^ d x - * ^ . ! , ^ ) = o = i42(^9.-- i)-

3.3. Definition. Let us define a linear operator L2: Vh(a, b) -> V^*(a, b) by 

L2(Pi = (pt + cJWi for f = 1, ..., n , 

where c£ = o in the case E2i = s = E2i+1 and c- is a solution of the equations 

(13) <x2{<Pp Li<Pi) = ^i(<Pj^ <Pi) for j = i - 1 , i, i + 1 

in the case £2 f > e or F2?I+ x > e . 

3.4. Lemma. We have a2(w, L2v) = A2(w, v) Vw, v e P^(a, b). 

3.5. Lemma. There exist positive constants C and h0 such that 

flc^^C /or i = l , . . . ,n 

is true for all positive e and all h e (0, h0). 

Proof. Using the uniform continuity of q, we define h0 as a positive number 
satisfying 

(i) [x - y\ < 2h0 => \q(x) - q(y)\ < ~q0 for all x, ye (a, b). 
Let i be a fixed index, ct = [c l9 c2, c3]T , m^ the minimum and My the maximum 
of q on <Xy_1? Xj} forj = i, i + 1. 

Obviously, it is sufficient to consider the case E2i > s or E2i+i > s. Then 

(ii) e < (h2j6) max {Mh Mi+1] . 
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By a simple modification of (13) we get 

(14) 
all «12 0 1 
a2í a 2 2 fl23 

0 a 3 2 űззj 

Г ^ l 
c2 

Lcз_ 

1 

" h\ 

-E2І + s 
2E2i + 2E2J+l - 4 г 

- ^ 2 . 1 + 1 + fi 

where 

«ii = «2(^i- i^2i- i ) = (*/4)m,, 

a 2 2 = a2(<p£ - <I9i„1 - <pi+1, *//2i) _> 4e/A + (A/6) (m, + m i + 1 ) , 

033 = a2(cpi+1, iA2«+i) = (ft/4) m,+ 1 , 

02i ~ a2(<pf - <p^l9 ilf2t-i) S (hf 12) (Mt - m(.) and 

023 = a2(<r\- - cpi+1, i//2i+1) g (A/12)(M i+1 - m i + 1 ) . 

It remains to find upper estimates of a12 = a2(<p1_1, i/f2i) and a32 = a2(<pi+1, t/t2i). 
Taking into account 

£ ft ^ ^ e ft , ^ 
1 m < a < _| _vf 

A 24 ~~ ~ A 24 

we investigate the following cases 1° — 3°. 
1° L. — M < 0 . Then |a12 | < m.- and we obtain 

A 24 ' ! ~ A 24 

A A 
|a1 2 | _g - max {Mi9 M i + 1 } - — mf by (ii). 

6 24 

2° - - + — mi > 0 . In this case |a12 | < - - + — Mt-. 
A 24 ' ' ~ A 24 

3 ° - i + A m . < 0 < - - + —Mt. Then |a12f < — (M, - m,) . 
A 24 A 24 ' ' ' " 24 

It follows by these estimates that 

0ii ~~ I012I = m m \— (7mi — 4 max {Mi5 M i + 1 }) , 

- + — (6m: - M:) , — (7mf - M ^ l = — (7m, - 4 max {Mi9 M i + 1 }) . 
A 24V ; 24V J 24v l J 

Analogously, 

ÖЗЗ - K2I è — (7m ł + 1 - 4 m a x { M i ; M i + 1 } ) and 

<*22 - K i | - |Û2З| è 4 - + — [Зlm, + m í + 1) - MІ - M i + 1 ] 
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is true. Using the last three inequalities and (i), one arrives at 

min (au - X |flw|) ^ Cxh for C, = i s . 
l_i i_;3 j * i 2 4 

At the same time, there is an upper estimate C2h of the absolute values of all the 
right-hand sides in (14) according to (ii) and the definition of E2. Hence 

I c , L š C for C 
ci 

3.6. Remark, (a) If q(x) = 1 on (a, b) and e < h2/6 then E2i = h2/6 = £2..+ i 
and es = (h2 - 6)/(h2 + 12) [ - 1 , 2, - l ] r . See Fig. 3. 

Fig. 3 

(b) Whenever e __ h J*!_j qcp^^idx for i = 1, . . . , n, the L2-matrix of (12) is 
diagonal by 3.2 and it can be derived from the stiffness matrix appearing in the 
Galerkin method by lumping. See for example [1]. 

3.7. Theorem. The L2-matrix of problem (12) is monotone and 

uÄĽ ѓ c ш-
o 

for the L2-di$crete solution uh of (12). 

Proof. The statement immediately follows by 3.2(a), (b) ,1.9 and 1.10. 
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3.8. Definition. Let us put 

M - " (H-,.1 + ^o[J^l|2)1/2 

for arbitrary (c, d) _ (a, b) and v e Hl(c, d). 

3.9. Theorem. Let u be an exact solution of the problem (12) and uh an L2-discrete 
solution of (12). There exist positive constants C and h0 such that 

[u - u% S Ch2\u\2 

holds for all he (0, h0) and s < h2. 

Proof. Let us denote by u an interpolate of u in Vh(a, b). 
(i) Obviously there exist positive constants C1? C2 such that max {s, Cth

2} g 
g F2 £ C2h

2 on (a, b). 
(ii) [v]2 g a2(v, L2v) Vv e VA(a, b) is a consequence of [v]2 ^ -42(v, v) and 3.4. 
(iii) |L2v |i S (C/h) W2 Vve J^(a, b): By means of 1.8(a) and the constant C 

from 3.5 the following estimate can be obtained: 

AQ n 

|L 2 ^5^max{l ,C 2 }y>f . 
h i=i 

Hence \L2v\l g C(|v|2 + (I//22) |Jv|2) with respect to 1.5(c). This and (i) imply (iii). 
(iv) |L 2v - v|| ^ C[v]2 Vve Vh(a, b): Using 1.8(b) and the constant C from 3.5, 

the following estimate can be derived: 

\\L2v - v||2 S З h m a x { l , C 2 } ^ v f . 2 

î = l 

This inequality and 1.5(c) imply ||L2v — v||2 ^ C(/?2|v|i + j|v||2) and one gets (iv) 
by (i). 

Assertions(i) — (iv)and Proposition 1.7imply [u — U\2 g Ch2\u\2 and [uh — u\2S 
g C/i2fu|2; the statement follows immediately. 

Now, we illustrate the need for a local error estimate. 

3.10. Example. If u is a solution of the problem 

~su" + u = 1 on (0, 1) , w(0) = 0 = II(1) , 

then it has boundary layers in neighborhoods of 0 and 1. One can easily see that 
|w|2 > £~3/4 and, at the same time, 

- 7(e) In s < tx < t2 < 1 + V(e) In e => fw/(ri,f2)|2 < * • 

3.11. Theorem. Let u be an exact solution of the problem (12), uh an L2-discrete 
solution Of (12), and let a subinterval D = (xk, xt) in (a, b) have the property 

0 < k => s S h ^l_1 q<Pk-i(Pk^x and I < m => s :g h J*J*1 q<Pi<Pi+i dx . 
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Then there exist positive constants C andh0 such that 

[(« ~ O / J 2 S Ch2\u\De\2 

is true for all h e (0, h0) and s < h2. 

Proof. Let us denote De = (c, d) and consider the problem 

(1.5) find u e Hl(c, d): p2(u, v) = (f, v) Vv e Hx(c, d) and 

u(c) = u(c) , u(d) = u(d) , where 

fi2(u, v) = jf (m'vr + qitv) dx . 

Let R2: Vh(c, d) —> P^*(c, J) be a linear operator from 3.3 and uh an i\2~discrete 
solution of (15). 

Similarly as in 2.11 one can see that u = u/De and uft/D = uft/D. These facts and 
3.9 give 

[(" - uh)lDЪ = [(« - öл)/ÐІ2 á [» - »'Ъ á C/í2 C/í2«/n-

3.12. Remark, (a) If one computes the L2-discrete solution uft of the problem 
from Fig. 4 then one uses a bilinear form A2 with E2 = 0.0016. In Fig. 4, besides uh 

a Galerkin solution uG e Vh(0, 1) of the problem 

-0.0016V' + u = 1 + sin 2nx on (0, 1) , u(0) = 0 = u(l) 

is shown. An essential difference in the exactness of uft and uG in the whole interval 
can be observed. 

10 V + u — 1 + sin 2nx on (0,1) , 
u(0)= 0 = u(l) 

exact solution 
L2-discrete solution with step 0.1 

• — • Galerkin solution with step 0.1 

0.0016u" + u = 1 + sin 2nx on (0, 1) , 

W(0) = 0 = u(l) 

Galerkin solution with step 0.1 

Fig. 4 
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(b) L2-discrete solutions of the problem from Fig. 5 with steps 0.1, 0.05 and 0.025 

have been computed. The mutual differences of their values at each of the points 

0.1,..., 0.9 are less than 4 . 10" 6 . 

•10~V + (1 + 10д:2)u 

Fig. 5 

2 for x^ 0.5 , 
— 10 for x > 0.5 

u(0) = 0 , u(1) = 1 

L2 -discrete solution with step 0.05 
Galerkin solution with step 0.05 

4. A MORE GENERAL ONE-DIMENSIONAL CASE 

Let us consider the problem (4) satisfying 0 < Q g q — 0.5p' on (a, b) for a con­
stant Q. A weak formulation of this problem is 

(16) find u e H0(a, b): a3(u, v) = (/, v) Vv e Hx

Q(a, b) . Here 

a3(w, v) = Jo (vu'v' + pu'v + quv) dx . 
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4.1. Definition. Let us define a linear operator L3:Vh(a, b) -» Vh*(a, b) by 

L3<p. = /p. + d/'y, for i = 1, . . . , n , 

where the vectors d̂  satisfy 

a3(<?,.5 L3<P;) = 0 , 

^(<Pp <Pt) ^ 0 => a3(<py, L3<p,) - 0 

forj = i — 1, i + 1 and 

dn + - df2 + d?3 is minimal. 
h 

4.2. Remark. In [7] an apriori error estimate is proved illustrating that the size 
of the HQ- and I2-norms of the error of the L3-discrete solution is of the same order 
as stated in Theorem 2.9., 3.9. 

4.3. Remark. In Fig. 7, one can see graphs of the test functions used in the com­
putation of us from Fig. 6. The accuracy of L3-discrete solutions w8, w16, w32 (h = 
= 0.03125) from Fig. 6 is compared in Tab. 1. Approximate solutions of a problem 
which is no special case of (16) are given in Fig. 8. 

2 

Au y f A A A 
A / \ f\ ; ,^ r 

/ \ / \ / \ / G 

1-

u8 L3-discrete solution with step 0.125 
u16 L3-discrete solution with step 0.0625 

I f | uG Galerkin solution with step 0.0625 

\';Í6 

У = 0.5 
-4 * -

Fig. 6 

• 1 0 " V + 10 cos {nx)uf + {I0x2 + 0.1) u = x on (0, 1) , u(0) = 2 , u(l) = 1 
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ы /^A»ЛЧҺ 

Fig. 7 

Tab. 1. 

x "16 ~
 м
8 

uъг - м
16 

0.125 -0.000472 -0.000153 

0.250 -0.001798 -0.000533 

0.375 -0.009081 -0.0027 

0.500 -0.042566 -0.0433035 

0.625 -0.006124 -0.0013585 

0.750 -0.0022208 -0.0005918 

0.875 -0.0012405 -0.0003525 
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i\ 

A / 

/ / V ; 
A. / \ / \ \ / \ /' x i \ 

\! \ V v 

L__ 

\\ 

\0~бu" 

Fig. 8 

10 cos (Trx)u'+ (10x2-f 0.1) u= x on (0,1), u(0) = 2 , u(1) 

u8 L3-discrete solution with step 0.125 

u16 L3-discrete solution with step 0.0625 

uG Galerkin solution with step 0.0625 

5. A TWO-DIMENSIONAL PROBLEM 

Let us apply the basic ideas of the method used in Sections 2 and 3 to the problem 

(17) -eAu + p. grad u + qu = f on Q , u\r = 0 . 

Here e is a positive real number, p(q) is a sufficiently smooth vector (scalar) valued 

function on Q a n d / e L2(Q). The functions p, q are supposed to satisfy either div p S 

<; 0, q = 0 on Q or p = o, 0 < q0 g q on Q. 
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Only a brief description of this application is presented. A theoretical analysis is not 
complete yet. 

A weak formulation of (17) is 

(18) find u e Hl
0(Q): a(u, v) = (/, v) Vv e Hl(Q) , where 

a(w, v) = j ^ [e grad u . grad v + (p . grad u + qu) v] dx . 

5.L Definition. Let T be an arbitrary triangulation of Q. We denote by &"\ the set 
of triangles, by JTX the set of nodes of T and by <&x the set of P e JVX satisfying P £ F. 

Let us construct a new triangulation T* by dividing each triangle from 2TX into 
four equal parts in a way illustrated in Fig. 9. 

Fig. 9 

For each vertex P e Jr
t (P e Jfx*) define a real function <pP(il/P) continuous on Q, 

inear on each triangle from &~x (from &~x*) and such that 

/ 1 for Q = P 

* 0 for Q e ^TT - {P} 

1 for Q = P 

0 for Q G JTX* 

Let us denote VT = span{<pp; P e / T } and VT* = span{^ p ; P e / T * } . 

</>P(Q) = \ . 

•ЫQÌ 
"-. - { P } ' ) 

5.2. Definition. For arbitrary u, v e Hl(Q) we put 

b(u, v) = £ br(w, v) , 

where 
TєУ~x 

br(w, v) = ar(w, v) + ðт(u, v), 

aт(u v) = J*r [e grad u . grad v + (p . gгod w + qw) v\ dx , 

^HH du dv m <3w ť3v „, /dw dv dw dv 
+ Ty + TA + 

dx dx dy dy \dx dy dy dx 
dx 
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and the constants Tx, Ty, Ts satisfy the system of equations 

$T(<PP> <PQ) = ri = m i n {0> -<*T(<PP> <PQ)> -tfr(<?Q> <PP)} 

(19) O*r(<^Q, %) = ri = min {0, -a r(<pQ , <pR), -ar(<pR, <BQ)} 

^r(<PR? <PP) = r3 = min {0, -ar(<pR, <pp), -ar(<rV> <PR)} 

for each Te ^ T with nodes P, Q, R. 

Lemma 5.3 can be proved by a direct computation and Lemma 5.4 is true obviously. 

5.3. Lemma. Let T be a triangulation of Q. The determinant of the matrix of 
system (19) equals —0.125 for each TeSTx. 

5.4. Lemma. The following assertions (a), (b) hold for an arbitrary triangulation 

T of Q. 

(a) b((Pp,(pQ) = 0 VP, Qe^VT , P*Q. 

(b) £ K<?P> <PQ) = E *(%» <PQ) VPe^r-
Qe^rT Qe.fT 

5.5. Lemma. If T is a triangulation of Q then the eigenvalues of the matrix 

', тl are non-negative for each TefTx. 

Proof. Let P, Q, R be the vertices and s the area of an arbitrary triangle Te£Tx. 
Denote a 

and M 

(20) 

, b = fPRf, a = (l/a) PQ = [a„ a2] r, b = (1/6) PR = [bu b2f 

Al' H-Ifweput 
\_b1 b2_ 

\T,^-MT[1:ZZÍ\M »d 

/du dv du SvY] 

\da^b d~bda)\ ' 
Z ^ Л 8*T(u,v)={\zx-

J T L da <3a (3b (3b 

then <5*(w, v) = <5r(u, v) for all w, v e C1^). Thus instead of (19), one can solve the 
system of equations 

$T(<PP> <PQ) = r i s 

5T(<PQ> <PR) = r2 , ^ detail 7 — ^ 

<5T(<rV <PP) = r3 

Clearly, Zx = - ( r x + r2)a2js, Zy = — (r 2 + r 3) b2/s and Z s = r2abjs. This 
together with 

(i) rf = 0 for i = 1, 2, 3 yields 

(ii) det Zx Zs _> 0. This result and (20) imply 

(iii) det 

0 
0 

ab zx 
rí 

ab Zy = Г2 

ab zs 
Jъ_ 

Z* ZУ. 

T T 
-Г, т, = 0 . At the same time, we have 
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(iv) Tx + Ty £ 0: Tx + T, = Zx + Z, -f 2aTb Zs ^ Zx + Z, - 2 V( z * z
y ) = ° 

by virtue of (20), (ii),(i). 
The statement follows by (iii) and (iv). 

Hence the eigenvalues of the tensor X_T ° *s I of the so-called artificial diffu-
\Tx + г Ts 1 
L Ts Ty + єj ' 

[o°J sion are greater than those of the tensor _ of diffusion. Another way how to in-

crease the diffusion coefficients in the bilinear form a in order to arrive at a bilinear 
form satisfying Lemma 5.4 is presented in [19]. Now, we construct a linear op­
erator LT: VT ~> VT* such that 

a(u, Ltv) = b(u, v) Vw, v e Vt, 

supp Ltv c supp v Vv G VT. 

5.6. Definition. Let us put 

jVt(P) = {Q e JTt\ Q e supp <pP} , ^ T * ( P ) = {Re JTX*\ R e supp \j/p} 

for an arbitrary node P G «^T. 

In Fig. 10, the sets supp cpK and supp \j/K are sketched. Obviously, ^VT(K) = 
= {A, B, C, D, E, K} and ^ T ,(K) = {F, G, H, I J , K}. 

5.7. Definition. Let us define a linear operator L t: J^ -> VT* such that 

Re^t»(P) 
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and the coefficients xPtR satisfy the system of equations 

(21) a(<pQ,Lt<pP) = b(<pQ,<pP) VQeJTx(P) 

for any node P 6 &"x. 

Regarding the analysis of the one-dimensional cases, the systems (21) are solved 
by a weighted least squares method, making coefficients xPtR as small as possible. 
Hence in general, (21) need not be satisfied exactly. 

In 5.8 and 5.9, the following notation will be used: 

Q = (0, 1) x (0,1) , 

g is a linear spline on the boundary F of Q, related to the standard equidistant 
net with step 0.05 such that 

, , / 1 for y = 0 v (x = 1 A y ^ 0.2) 
glx, y) = < . x 

V ; \ 0 for y = 0.25 v (x = 0 A y ^0.05) 

r = the uniform triangulation shown in Fig. 11. 

••u 

Fig. 11 

5.8. Example. An approximate solution of the problem 

(22) 

u = g on r 

• 1 0 - 6 . d « - 0 . 8 — + 0 . 6 — = 0 on 
õx õy 
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has been computed in the space VT. From its graph in Fig. 11, one can see that the 
inner layer along the segment AB (A = (1, 0.2) and B = (0, 0.95)) is preserved. 
This result is comparable with a solution of the same problem, published in [5]. 
Since the coefficients in (22) are constant and T is a uniform triangulation, the shape 
of all the test functions Lr<pp, P e / , , is the same. See Fig. 12. Likewise, the artificial 
diffusion on triangles is of two types only. It is shown in Fig. 13. 

*t 

Fig. 12 

У 

0.021 

0.0Z 
Fig. 13 

5.9. Example. Two approximate solutions of the problem 

(23) — 10"6Aw + u = xy on Q, u = g on F 

have been computed. One, uh, for the triangulation T and the other, u2h, for the 

triangulation T 0 defined by T* = t. It is well-known that the exact solution u coincides 

with the function u0 = xy outside the boundary layers. Let us denote 

H , = m a x { K P ) | ; P e / , } 

for each continuous function v on Q and t = T,X0. We have 

flu2* - «0flt0 = 0.0007229 and flu* - u0flt = 0.0001811 . 
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Hence, the seminorm of error seems to be proportional to h2. The shape of test 

functions Lxo<pp, P e J>Xo, can be seen in Fig. 14. 

Fig. 14 
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Souhrn 

PETROVOVA-GALERKÍNOVA APROXIMACE PROBLÉMŮ TYPU 
KONVEKCE-DIFÚZE A REAKCE-DIFÚZE 

JOSEF DALÍK 

V předloženém článku je prezentována nová obecná konstrukce testovacích funkcí jako 
varianta Petrovovy-Galerkinovy metody. Je využita pri tvorbě a teoretické analýze nových 
algoritmů pro numerické řešení Dirichletovy úlohy pro diferenciální rovnici — m" -f pu' -f- qu = f 
na intervalu (0, 1). Pozornost je soustředěna na případ, kdy kladné číslo s je podstatně menší 
než hodnoty funkcí \p\ a q. Je navržen rovněž algoritmus pro numerické řešení odpovídající 
rovinné úlohy a jsou uvedeny výsledky numerických experimentů. 

Authoťs address: Dr. Josef Dalik, katedra matematiky a deskriptivní geometrie stavební 
fakulty VUT, Barvičova 85, 662 37 Brno. 
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