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Summary. A four parameter trivariate Poisson distribution is considered. Recurrences for the 
probabilities and the partial derivatives of the probabilities with respect to the parameters are 
derived. Solutions of the maximum likelihood equations are obtaired and the determinant 
of their asymptotic covariance matrix is given. Applications of the maximum likelihood estimation 
technique to simulated data sets are also examined. 
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0. INTRODUCTЮN 

The correlated bivaтiate Poisson distribution was introduced by Campbell [ l ] 
as a limiting case of the bivaríate binomial distribution. Аn alternative derivation 
was given by Holgate [2] using sums of independent Poisson random variables. 

Мultivariate generalizations of the Poisson distribution as limiting forms of 
multivariate binomial distributions were considered in [5], [7] and [15]. In addition, 
Mahamunulu [9] pointed out that a k-varíate Poisson distгibution with 2k — 1 
nonnegative parameters can be constructed by considering appropriate sums over k 
overlapping subsets of a set of 2k — 1 independent Poisson random variables. The 
corresponding seven parameter trivariate Poisson model was discussed in [4], [8] 
and[9]. 

Johnson and Kotz [3], Ch. 11 § 4, observed that a random vector (Xu X2,..., Xk) 
has a k-variate Poisson distribution with k + 1 parameters, when 

(i) xt = X; + г, І = i,...д 

where X'ь i = 1, ..., k and Tare independent Poisson random variables with para-
meters a'i = a{ — d, i = 1, ..., k and d, respectively. This multivariate Poisson 
model was also considerer by Šidáк in [12], [13] and [14] who derived various 
probability inequalities. 
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In this paper we consider a four parameter trivariate Poisson distribution with 
the structure (1). Various properties of the distribution are derived including re
currences for the probabilities and the partial derivatives of the probabilities with 
respect to the parameters. Parameter estimation by the method of maximum likeli
hood is discussed and the information matrix is derived. Finally, applications of the 
maximum likelihood estimation technique to trivariate Poisson simulated data are 
also given. 

1. THE FOUR PARAMETER TRIVARIATE POISSON DISTRIBUTION 

The random vector (X, Y, Z) has a trivariate Poisson distribution with parameters 
a, b, c, d, if 

X = X' + T 

(2) Y = r + T 
Z = Z' + T 

where X', Y', Z' and T are independent Poisson variables with parameters a — d, 
b — d, c — d and d respectively. The probability generating function (p.g.f.) of the 
trivariate Poisson with the structure (2) is 

(3) Gx>YfZ(u, v, w) = E(uVw z) = E(ux') E(vY') E(wz') E{(uvw)r} 

= exp {(a - d) (u - 1) + (b - d) (v - 1) + (c - d) (w - 1) + 

+ d(uvw — 1)} , 

a, b, c > 0, 0 < d ^ min (a, b, c). 
The marginal distributions are Poisson with 

E(K) = a , E(Y) = b , E(Z) = c 
and 

Gov (X, Y) = Gov (X, Z) = Gov (Y, Z) = d . 

1.1 Probabilities and Recurrence Relationships 

Expressions for the probabilities PXty,z = P(K = x, Y = y, Z = z) can be obtained 
using the corresponding p.g.f. For the four parameter trivariate Poisson we have 

00 00 00 

GX,Y,Z(U,V,W) = £ £ £ p
w « w 

JC = 0 y = 0 z = 0 

= exp {(a - d) (u - 1) + (b - d) (v - 1) + (c - d) (w - 1) + 

+ d(uvw — 1)} = exp {— 4̂} exp {(a — d) u} exp {(b — d)v) 

. exp {(c — d) w} exp (duvw) 

(a - d)x (b - d)y (c - d)z dl 00 00 00 00 

= exP{-A)E п x 
x = o y=o z = o i=ó x! j ! z! i! 
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where A = a + b + c ~ 2d. By identifying the coefficients of uxvywz in the above 
expansion we obtain 

P __ e " A m'myy'Z) (g - ^ ) * ~ * (__ ~ ^) y~ 1 ' ( c - d ) 2 " 1 ' d1 

ff0 (x - o« (y - 0' (z - 0' « * 
Recurrence relationships for the probabilities which facilitate the use of computer 

programming are easily derived by differentiating the p.g.f. once with respect to 
a generating variable and then equating coefficients. Illustrations of the method are 
given in [6] and [10]. For the trivariate Poisson we find 

(4) (x + 1) P,+ 1,y,_ - (a - d) P w + dP,,,-_,,_._ , 

(5) (y + 1) Px,y+Uz ~(b-d) PXtytZ + dP-_ _,,,,._ , 

(6) (z + 1) Px$y,z+1 =(c~ d) Px,y > 2 + dPx„Uy_1>Uz, 

with 
Po.o.o = G{0, 0, 0) = exp {-(„ + 6 + c - 2„)} 

2. MAXIMUM LIKELIHOOD ESTIMATION 

2.1. Recurrence Relations for the Partial Derivatives of the Probabilities 

To evaluate the maximum likelihood equations and the terms of the information 
matrix (the inverse of the asymptotic covariance matrix for the maximum likelihood 
estimators) we need the partial derivatives of the probabilities with respect to the 
parameters. Differentiating the p.g.f. (3) once with respect to a parameter and then 
equating coefficients of uxvywz, we find that 

(7) 
дP 
u t x,У,z p p 

~ x— l,y,z гx,y,z 
õa 

(8) 
д p ^ _ p p 

л 7 " гx,y-l,z гx,y,z 
00 

(9) 
ÕP 
1 / 1 x,y,z _ p p 

_ гx,y,z—l г x,y,z 
дc 

(10) Wx,y,z _ p p 
- , - Гx-l,y-l,z-í — r> 

òa 
In addition 

^Po,o,o _ ^Po,o,o _ ^Po,o,o 

дa õb дc 
and 

5Po,o,o _ 2 e x n f - ґ я + h 

— P — P 4- ?P 
x—l,y,z \x,y—l,z lx,y,z—l ~ -*' x,y,z 

= -exp {-(a + b + c - 2d)} 

ð_ 
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2.2 Maximum Likelihood Equations and Estimators 

The form for the maximum likelihood equations is 

1 fi? 
V x,y,z r\ 

x,y,z Px,yfZ dO 

where 0 represents a parameter. 

Using the recurrence relations (4) —(6) and (7) —(10) the four maximum likelihood 
equations become 

(11) R 1 = 0 , 
a — d a — d 

(12) ў d Я 1 - 0 (12) 
b — d b — d 

(13) 
ž d — 

P 1 _ Г) (13) 
c — d c — d 

(14) 
x ӯ ž (' d d d \-

I I i 1 i i i iř? (14) 
i I 1 1 1 1 1 Jxv 

a — d Ъ — d c — d \ a — d b — d c — d) 
where 

(15) U _ Px-l,y-l,z-l 
^xл^ ' 

x,y,z 

U _ Px-l,y-l,z-l 
^xл^ ' 

x,y,z 

R = ~ Z Rx,y,z > 
П x,y,z 

o, 

and n represents the sample size. 

Substituting (11), (12) and (13) into (14) we obtain 

(16) R = 1 . 

Substitution of (16) into (11), (12) and (13) yields, respectively 

(17) a = x , b = y , c = z . 

The required estimator for the parameter d is obtained from the solution of equation 
(16). In order to solve this equation we can either use a standard iterative procedure, 
such as the routine RZERO provided by the Cern Computer Program Library, or 
the method of scoring (see, for example, Rao [11], § 5g). 

The method of scoring is applied as follows: given an initial value d0 of the estimate 
of d, a better approximation is obtained by d0 + 3d, where 

(18) Sd = W£ ~ -3 
M 1 
[_dd \d = d0_\ 

E 
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For the trivariate Poisson distribution using the relations (4) —(6) and (7) —(10) 

(19) E j — I = [(ab + ac + be - 2ad - 2bd - 2cd + 3d2) 

+ (ad2 + bd2 + cd2 - abc - 2d3) (Q - 1)] x 

x l/[(a - d)(b - d) (c - d)] = Bi 

where, 

(20) Q = £ p ' - ' ; - ! ^- 1 . 
*»y»z P x , y , z 

The probability table is computed using the maximum likelihood estimates of a, b 
and c and an approximation d0 of the maximum likelihood estimate of d. Conse
quently by computing the values of the expressions (15), (20) and (19) the correction 
bd can also be evaluated from (18). 

In our studies we have used as d0 the moment estimate of d given by 

1 
(21) d0 = d = - £ (x - x) (y - y) (z - z) . 

2.3 Derivation of the Information Matrix 

The terms of the information matrix J] = (no^) with i9j = 1, 2, 3, 4 are 

*.*.* px,y,z \ da J 

1 r)P r5P 
rccr^ = n 2L< > 

X,;V,Z P^,y,2 ^ 0 ^ b 

etc. Making use of the relations (4) —(10) and (20) the terms of the information 
matrix are given by 

nalx = n(a - d)~2 {a - 2d + d2(Q - 1)} , 

na12 = n(a — d)_1 (b — d)"1 B2 , 

fK713 = n(a — d)"1 (c — d)"1 B2 , 

na14 = n(a — d)~l dBj , 

na22 = n(b - d)~2 {b - 2d + d2(g - 1)} , 

na23 = n(b — d)_1 (c — J ) " 1 B2 , 

na24. = n(b — d)~x dBx , 

nCr33 = n(c - d)~2 {c - 2d + d2(Q - 1)} , 

ncr34 = n(c — d)"1 dB1 , 
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ft<~44 = n(a ~ d)~2 (b — d)~2 (c — d)~2 

. {(ad2 + bd2 + cd2 - abc - 2d3) 

. (ah + ac + be — 2ad — 2bd — 2cd + 3d2) 

+ (abc - ad2 - bd2 - cd2 + 2d 3) 2 (Q - 1)} , 

where Bx is given by equation (19) and 

B2 = d2(Q - 1) - d . 

2.4 Derivation of the Covariance Matrix of the Maximum Likelihood Estimators 

Let V = (n~lvt^) for i,j = 1, 2, 3, 4 denote the covariance matrix of the maximum 
likelihood estimators. However, the covariance matrix of the maximum likelihood 
estimators (x, y, z) of (a, b, c) can be easily obtained. Hence the form of V is 

a d d v1 

d b d v2 

d d c v? 

Vлл v 41 ^42 ^43 ^44 Vл 

To obtain the remaining terms of V we use the relation 

or 
Z aikvkj = Һj > 

where I — (itj) is the identity matrix. The required terms of Vare 

014 = ^24 = v34r = d , 

and 

where 

and 

^44 — CljCl > 

C! = d2(ab + ac + bc - 2ad - 2bd - 2cd + Зd2) (ß - 1) 

+ (a - 2d) (b - 2d) (c - 2d) - d2(O + Ь + c) + 4d3 , 

C2 = (abc - ad2 - bd2 - cd2 + 2d3) (g - 1) 

— (ab + ac + be — 2ad — 2bd — 2cd + 3d2) . 

Finally, the determinant of Vis 

n~\a ~ d ) 2 ( b - d)2(c - d)2/C2. 

3. EXAMPLES 

To illustrate the application of the method of maximum likelihood we have 
decided to use simulated data. To generate trivariate Poisson samples we used the 
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"common elements" method suggested by Loukas and Kemp [8]. This method is 
based on the structure of the trivariate Poisson distribution and requires the generation 
of four independent univariate Poisson random variates distributed as: X' ~ Poisson 
(a — d), Y' ~ Poisson (b — d), Z' ~ Poisson (c — d) and T ~ Poisson (d). 

The trivariate Poisson variate is then constructed as 

(X, Y, Z) = (X' + T9Y' + T, Z' + T) . 

Two sets of simulated trivariate Poisson data, one of size 200 and the other of 
size 1000, together with the true parameter values and their maximum likelihood 
estimates are given in Tables 1 and 2 respectively. The selected parameter values 
were relatively small in order to avoid lengthy tabulations. The required estimates 
were derived by the method of scoring and by using the subroutine RZERO provided 
by the Cern Computer Program Library. 

Table 1. 

Trivariate Poisson (a = 0-5, b = 0-5, c = 0-5, d= 0-1) data 

X- = 0 

YJZ 0 1 2 3 4 

0 49 25 5 0 0 
1 24 14 1 0 0 
2 2 0 0 0 0 
3 0 1 0 0 0 
4 0 1 0 0 0 

x = = 1 

Y\Z 0 1 2 3 4 

0 23 14 1 2 0 
1 12 8 0 0 0 
2 1 1 1 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 

X= 2 

Y\Z 0 1 2 3 4 

0 4 1 0 0 0 . 
1 1 1 1 1 0 
2 2 0 2 0 0 
3 0 1 1 0 0 
4 o 0 0 0 0 

The maximum likelihood estimates are: a = 0-465, b = 0-470, c = 0-500,(5 = 0-0575. 
The moment estimate of d calculated from equation (21) is d = 00807. This estimate 
was used as the starting value d0 in the method of scoring. 

Table 2. 

Trivariate Poisson (a = 0-1, b = 0-1, c = 0-1, d = 0-05) data 

Y/Z 
x= 0 
0 1 2 Y\Z 

x= 1 
0 1 2 Y\Z 

X= 2 

0 1 2 

0 
1 
2 

832 41 1 
39 2 0 

2 0 0 

0 
1 
2 

37 2 0 
1 36 1 
0 2 0 

0 
1 
2 

2 0 0 
0 2 0 
0 0 0 

The maximum likelihood estimates are: a = 0-087,5 = 0-089, t = 0-089,3 = 0-0409. 
The moment estimate of d used as starting value in the method of scoring is d0 = 
= d = 0-0352. 

Acknowledgements, We are grateful to the referee for his remarks on section 1 and 
to Mrs C Mullen for help in the calculation of the information matrix. 
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