
Applications of Mathematics

Inder Jeet Taneja; Luis Pardo; D. Morales
(R, S)-information radius of type t and comparison of experiments

Applications of Mathematics, Vol. 36 (1991), No. 6, 440–455

Persistent URL: http://dml.cz/dmlcz/104481

Terms of use:
© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104481
http://dml.cz


36 (1991) APPLICATЮNS O F MATHEMATICS N o . 6, 4 4 0 - 4 5 5 

(R, S)-INFORMATION RADIUS OF TYPE t 

AND COMPARISON OF EXPERIMENTS 
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(Received February 14, 1990) 

Summary: Various information, divergence and distance measures have been used by rese

archers to compare experiments using classical approaches such as those of Blackwell, Bayesian 

etc. Blackwell's [1] idea of comparing two statistical experiments is based on the existence 

of stochastic transformations. Using this idea of Blackwell, as well as the classical bayesian 

approach, we have compared statistical experiments by considering unified scalar parametric 

generalizations of Jensen difference divergence measure. 

Keywords: Divergence measures; Information radius; Statistical experiment; Sufficiency of 

experiments; Shannon's entropy. 

AMS subject classification: 62B10, 94A15. 

1. I N T R O D U C T I O N 

Several measures have been introduced in literature on Information Theory and 
Statistics as measures of information. The most commonly used is Shannon's (1948) 
entropy. It gives the amount of uncertainty concerning the outcome of an experiment. 
Kullback and Leibler (1.951) introduced a measure associated with two distributions 
of an experiment. It expresses the amount of information supplied by the data 
for discriminating among the distributions. As symmetric measure, Jeffreys-Kullback-
Leibler's J-divergence is commonly used. Also, the measure arising due to concavity 
of Shannon's entropy known as information radius (Sibson [21]) is getting importance 
towards applications. Burbea and Rao [3, 4] called information radius of Jensen 
difference divergence measure and also presented its one real parametric generaliza
tion. Some properties and applications of the Jensen difference divergence measure 
and its generalization can be seen in [2] — [5], [16], [17], [19] and [27]. Recently, 
Taneja [26] introduced different ways how to generalize the Jensen difference di
vergence measure involving two real parameters, while two scalar parametric gener
alizations of J-divergence can be seen in Taneja [22, 25, 26]. 

*) On leave from Universidade Federal de Santa Catarina, Departamento de Matématica, 

88.049 - Florianópolis, SC, BRAZIL . 
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Blackwell [1] gave an idea of comparing two statistical experiments that is based 
on the existence of a stochastic transformation. Using this idea many authors, [9], 
[10], [11], [12], [18], [23], [24] and [25], compared experiments (sometimes 
called sufficiency of experiments) using different information divergence and distance 
measures. This idea is very similar to majorization of probability distributions, 
originally introduced by Schur (ref. Marshall and Olkin [13]). The same is successfully 
carried out for Markov mappings using differential geometric approaches [6], [7] and 
[29]. 

In this paper, our aim is to compare experiments using generalized Jensen difference 
divergence measures adopting Blackwell's [ l ] approach. Some study using the classi
cal bayesian approach for comparing experiments is also made. Before doing so, 
we present in the following section the generalized Jensen difference divergence 
measures. 

2. JENSEN DIFFERENCE MEASURES AND THEIR GENERALIZATIONS 

Let $x = {X, /}%, Pe; 6 e O} denote a statistical experiment in which a random 
variable or random vector X defined on some sample space % is to be observed 
and the distribution P6 of X depends on the parameter 0 whose values are unknown 
and lie in some parameter space 0. We shall assume that there exists a generalized 
probability density function f(xj9) for the distribution Pd with respect to a cr-finite 
measure \i. Let S denote the class of all prior distributions £ e S, and letf(x) denote 
the corresponding marginal generalized probability density function (gpdf) given by 

/(x) = Je/(x/0)d£. 

Similarly, if we have two prior distributions ^ . ^ e S , the corresponding gpdf's are 

/,(*) = Sef(*l°)*Zi> * = 1,2. 
The Shannon (1948) entropy for the marginal gpdf f is given by 

H(f)= - J , / (x )Ln / (x )dA . . 

Using the concavity of Shannon's entropy, we can write 

H(/i) + H(f2) < Hffx + / 2 > 

2 ~ V 2 
The difference 

(D A(lU^a(tL±hym±m 

И 
Л(x) Ln/ t (x) + f2(x) Ln/ 2(x) 

2 

fM+íM\ Ln (ÍM+IM\ I 01 
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is known as the information radius (Sibson [21]) or Jensen difference divergence 
measure (Burbea and Rao [3, 4]). For simplicity, we shall call xR(Zi I £2) t n e 

^-DIVERGENCE. 
Kullback and Leibler [11] were the first to introduce a measure of information 

between two probability distributions given by 

(2) x l t ø _ | i a ) - f / i t ø l л ^ d i i . 
Jx /a(x) 

Expression (2) is known in literature as a function of discrimination or relative 
information or directed divergence between the distributions. 

By simple calculation, we can write 

(3) M « ía) - \ [,D («i I "4^-) + xD ((2 I -i-t--)' 

Taneja [25] considered two ways how to generalize R-divergence, i.e., the Jensen 
difference divergence measure given by Eq. (l). In the first way, two parametric 
generalizations of (2) are considered and are substituted in (3). This generalization 
is as follows: 

iJIft. 1 ._) , r * 1, 5 * 1 , r > 0 
i R t o | £ 2 ) , r = 1, 5 * 1 
xKitiUz), r * l , s = l , r > 0 
_*({_ 1 .2) , r = 1, 5 = 1 

(4) ^ t o B «.) - -X 

where 

(5) 
, Ш » ) + A ( » ) V V . f l w - " w-iw-iM^m *) 

•tf/Ч^^Г"*--}-
+ 

Г * 1 , 5 * 1 , Г > 0 , 

(6) x*ï(či II ía) - — - {exp (5 - 1) XR (/_ I ^ ^ ) ) 

+ e x p ( 5 - l ) x R ( / 2 | | / l ± ^ ) ) - 2 І , 

2 

5 * 1 , 

+ 

(7) ІДř(i_ || &) - щ ^ JLn ( j Л(x)' (Ыâ±ШŢГ

dџ 

+ Ln /aW 

2(r 

,l/i(x)+/a(x)V" г 

+ 

-)"*)}. r * 1, r > 0. 
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When r = s in Eqs. (4) or (5), we have 

7 i ( * ) + / 2 ( * ) V 

Ш+/Jk) 

d/i— l v , s + l , s > 0 . 

The second alternative way to generalize the measure (1) (Taneja [26]) is based 
on Eq. (8) and is given by 

(2Us, 

(9) 

where 

(10) 

X ^ r ( L | | j 2 ) = 
Яřfêi Ю » r * i. s * i . r > 0 

ÌÄÎ({, II &) , r = 1, s + 1 
ÌШl ÌU2), Г ф l , 5 = 1, Г > 0 

xR(tt || í 2) , r = 1 , 5 = 1 

^•'"-гhШ 
^ЛR+ЛW 

d/i 

І J C ( € i I « a ) - ~ - 1 L i i [ [ ( 

7 i ( * ) + / 2 ( * ) V r 

(ä - l ) / ( r - l ) 
- U , r + 1 , s + 1 , r > 0 , 

ji(*)г + Ш r 

d/iV , r + 1 , r > 0 , 

(H) 

(12) ! * ; ( { . J £2) = (s - I ) " 1 {exp ((s - 1) , * ( / . I j2) - 1} , s + 1 . 

The following properties of xK(Zi | £2) and £*",(£, | £2) hold (Taneja [26]): 

(i) x^r(£i || €2) ^ 0 (t = 1, 2) for all r > 0 and any s; 

{lì)xmíU2)ЪlnЫQ, sŁr. 
We have equality sign in (ii) when r = s. 

We call the measures x^r(£i | £2) (* = 1> ^), the (r, s)-information radius of type t. 

3. T H E U N I F I E D (r, s)-JENSEN D I F F E R E N C E D I V E R G E N C E M E A S U R E S 
AS A C R I T E R I O N F O R T H E COMPARISON O F E X P E R I M E N T S 

Consider two arbitrary experiments Sx = {X, /?#•, Pe; 9 e 0} and &Y

 = {Y, P&, 
QQ\ 9 e 0} with the same parameter space 0. Let 3 denote the class of all prior 
distributions on the space 0. We shall assume that there exist gpdf's f(x\9) and 
g(y\9) for the distributions Pe and Qe with respect to some cr-finite measures \x and v, 
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respectively. Given two prior distributions £l5 £2 e 3 , let fi(x) denote the marginal 
gpdf 

Sef(xlO)dZi, ' = 1 and 2 
and let £Vr(£i || £2) (* = 1> 2) denote the (r, s)-Jensen difference divergence measure 
of information contained in Sx for discriminating between fx(x) and f2(x). In this 
context, we say that experiment Sx is preferred to experiment SY, denoted by Sx = SY, 
if and only if 

*Vr(Zi II Z2) ^ yVs
r(ii A ^ f o r a l l ^ , £2 6 3 . 

We say that experiments Sx and <f y are indifferent, denoted by Sx ~ Sy, if and only 
t t 

ifSx = SYandSY = Sx. 
Based on the definition given above, we will prove interesting properties for t = 1 

and 2. 

Theorem 1. 

(a) Let Sx be any experiment and SN the null experiment (i.e., the distribution 
t 

is independent of 9 a.e. ju), then Sx ^ SN. 

(b) Given the compound experiment (Sx, SY) where Sx and SY are the correspond-
t 

ing marginal experiments, then (Sx, SY) §; Sx (or SY), with indifference iff f(y\x, 9) 
is independent of 9 (f(x\y, 9) is independent of 9) for almost every (x, y). 

(c) Let Sx
%) be the resulting experiment after observing Sx n-times, then 

Sf = S^~l). 

(d) Let Sx = {X, X, f(x\9)\ 9 e 0} be an experiment and {E(}ieN a measurable 
partition of 9£. Let us consider another experimen SY = {Y,<W, Qe; 9 e O} with 
the o-algebra generated by {Et}ieN and with Qe(Et) = ^E.f(x\9)d^(x) Vi e IV. 

t 

Then Sx = SY, with indifference iff f(x\9) is independent of 9 for almost every x. 

(e) For every statistic T = T(S^) based on the experiment Sx\ it is verified 
t 

that S^x = ST, with indifference iff T is a sufficient statistic. 

Proof. First we consider t = 1. 

(a) Let Sx be the null experiment, then f(x\9) = f(x) and 

/*(*) = Sof(x)d£k=f(x) fc = l , 2 . . 

+(j/^("M^)'"^"'"<"""-2}--
444 
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As £«;({.-J fc) = 0, we have 

kK(Zi I «2) ^ NK(^ I (2) for every tu£2eB 

(b) On the basis of 

A(x,y) = j0f{x,yl6)d& fc = l,2 
and 

/*(*)*- í * ( / ( * . ľ ) d v k= 1,2 

we can write 

(U) / ; w (/M±Awy-' . 

-"f/,(»,,)a,]Tf f.("-y)+M'-y)i,J-'. 
-J® J LJ^ 2 

Applying Holder's inequality on the right hand side of (13) we get 

m(m± my _ 
= f /.(*, y) ["/-(»»y)+I-(*» y n 1 ' ' d-, 0 < r < 1 

g f / [ ( X , J > ) [ / I ( X ' J ; ) + / 2 ( ; C > J ; ) " 1 1 

J ^ L 2 
dv , r > 1 

Hence 

(14) / í W (áW±/ 2 Wy- d ^ 

' fl(x,y)(fl(X'У)+fÁX'У)^~Г 

<& \ -̂  

< Г < 1 

dv, d/i, r > 1. 

As sign ((s — l)/(r — 1)) = sign (s — 1) for r > 1 and sign ((s — l)/(r — 1)) # 
7- sign (s — 1) for 0 < r < 1, where sign (x) = 1 if x > 0 and sign (x) = — 1 if 
x < 0, from (14) we have 

<-> ^{j/.'«(^^)l^f'"<"""* 
s^{LJ«-)fi^^)'"'^fu'<'""' 
r 4= l,s + l , r > 0 . 
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Similarly we can obtain 

(16) fM±Ш\x~r

 Aџ\
(r~xЖs-" < 

/i(^ .У)+/a(», .v)V- ,

л . . л . . ì f r- 1 ) Л > - 1 ) 

•) ' dv dttl 
5 "" 1 U 9C J <& V *. 

r 4= 1 , s 4= 1 , r > 0 . 

Adding (15) and (16) subtracting 2(s — 1 ) _ 1 (s 4= 1) and then dividing by 2, we get 

XK(^ 1 Q = Y}R%^ I fc), r * 1, 5 * 1 , r > 0 . 

Since the unified measure x^KZi [| £2) given in (4) is a continuous extension of 
xK(£i 1 £2) f° r l n e r e a^ parameters r and s, we can immediately conclude that 

(17) ţrГfa J t2) = rJt-Пíłi I Ь ) forall r > 0 a n d a n y s . 

As (17) holds for every { l s £2 e S, we get (<fx, <f r) ^* ^ . 
Finally, equality holds iff 

L(x,,) = Ki(x) M*-y)+M*>y) „ x v a , . , . = , , 2 , 

i.e. iff 

TтИ - ¥Ř - кw and *-w+*-w= 2 *x v 

j2(x, y) K2(x) 

a.e. 

So equality holds iff 

(18) ft(x9 j>) = h(x, y)Kt(x) = f(y/x)f(x) ji x v a.e., i = 1, 2 . 

Hence (<f Y, $y) ~ $Y iff (18) holds for every £l9 £2 e S; i.e. iff 

f0(x, y) = f{yjx)fe(x) [i x v a.e., \/6 e & . 

Dividing byf0(x) we obtain the condition we are looking for, i.e. 

f(yjx9 67) = f(yjx) \i x v a.e., V<3 e 6> . 

(c) An immediate consequence of property (b). 
(d) As 

Qk(Et) = J0 &(£,) d£fc = Ja J£ | /(x/0) d^ d£fc = J£ | /fc(x) dji for 

k = 1, 2 , 

we can write 

-Q.(E.) + e2(£{)"
11-r 

ßi(£,У 

£AWd,J[|Eí!w±AWd„]'"'. 
446 



Applying Holder's inequality, we get 

r > 1. 

Hence 

Q,(B,r\?,(Ei)+

2

Q'(Ei)T'i 

t^fi{xy(m±my'd,, 0 < r < 1 

^MXy(m±my'ilt, 

ieN L 2 J 

^ J / ^ r ( / l ( x )

2

+ / 2 ( x ) V " r 
d//, 0 < г < 1 

фw(áíгi±лмy-v r > 1 ; 

(») л{ie^)-г g i ( £ , ):Є ł ( Д i ) ľ" r ь 
5 — 1 (iєN (_ 2 J J 

1 - r ï ( s - l ) / ( r - l ) 

Similarly we can obtain 

U - r ^ ( s - l ) / ( r - l ) 

) 

(20) 7^{S f eW'[e 'W2g 2 W ] ' l 

Adding (19) and (20), subtracting 2 and then dividing by 2, we get 

Jr-Rfti || €2) ^ Y ^ i flfc) for every £_, {a 6 S . 

As the unified measure given in (4) is a continuous extension of xK(£i 1 £2) for the 
real parameters r and s, we can conclude that &x ^ 1 $Y-

Finally, equality holds iff 

f(x) = K (MjtlM Vxe.E. a.e. n VieN 
2 

and 

fi(x) = K2,i
fl^+f2^ VxeE, a.e. n VieiV 
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i.e. iff 

/ i ( * ) = / a ( x ) VxeF, a.e. p Vie 1V. 

So indifference holds iff 

I.Є. 

I.Є. 

fi(x)=f2(x) VxєiГ a.e. џ V ^ . ť a Є S , 

V £ є S Jв/(x/в)dÇ - Д x ) a.e. /*, 

/(x/0) = /(x) a.e. /i V0 e <9 . 

(e) Let (Jj and £2 be two arbitrary prior distributions and let us consider experiments 

$f = {Xn, Px,,f(xlt x2,..., x„); 0 6 0 } 

and 

ST = {F S if, / J„ g( r i , f2,..., ?„/0); 0 e 0} 

with 

(21) g(t\e) = g(t1,...,tj8) = 

= ix--mf(h1(t)9 ...9hm(t)9xm+l9 . . . ,xB /0)[J |dxm + 1 , ..., dx„ 

where 

and 

Since 

we have 

x x — " i ( t i 5 • • • - t2), x2 — h2[tl9 . . . , t2), . . . , x m — hm(t1, . . . , t2), 

xm+1 = xm+19..., xn = xn 

j = d(xl9 ...,xm) 

d(h,...,tn) ' 

gk(t)-=Ug(tlo)á^k = 
= j í f "- w /fc(" l( ř )> *••> "m(v» X m+1 •••> */.) [^ | d x m + 1 , •••> ^Xn > 

g í ( o ( g i ( t ) + g a ( 0) 1" r--

A( / í l(0'"-' / z m(0> ; C m+l>...>^)k|dx m + 1 , ...,dXB . 
U 3Sn~m J 

[f. /l(fel(Q> • • •> fem(Q> *m + !>•••> *n) + fl(hl(t)> • • •> ftm(Q, *m + !>•••> *n) 

2 
1 1 - T 

| j | d x m + 1 , . . . , åx„\ . 
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Applying Holder inequality, we have 

f8i(t) + g2(t)Y-' 
9\(t) > 

*í ( 
J grn-m \ 

fl(Һl(t), ..',Һm(t)>Xm+l> •> Xn) +f2(Һi(t),...,Һm(t), X м + 1 * „ ) Y Г 

$f n - m \ 2* 

•\j\(fi(h1(t),...,hm(t),xm+1,...,x„))dxm+1,...,dx„ if 0 < r < l , 

fí(h1(t),..., hm(t),xm+1,...,xn) + f2(hx(t), ..., hm(t), xm+1, ..., xn)V-r s í ( 
J ЗC"-™ \ .\j\(f1(h1(t),...,hm(t),xm+1,...,xn))dxm+1,...,dxn if r > 1. 

Integrating over ZTm and applying the transformation (21), we have 

~rf4\{9i(t) + g2(t)Y~r 

L^r**) ' 
ffx(xu...,x„) + f 2 (x 1 ; . . . ,x„y r 

^ C f[(xu...,xn)( 

if 0 < r < 1 

tk f /;(»., • •., *„) (/•<*" • •" x-] + f&*. ^ ) V " r 

dx l5 ...,dx„ 

dx l5 ..., dx„ 

if r > 1 . 

Hence 

(22) 
s - 1 

< 

,/gi(t) + ga(oy 

/ í (Xi, . . . ,X„) X 
s - 1 LJ ar» 

/ l ( X i , • . . , X„) + j2(Xj, . . . , X„)\ 

( s - l ) / ( r - l ) 

< 

dxl5 ..., dx„ 
1 J 

Similarly we can obtain 

m ^[|^,.)(^^y-'df"'"-"s 
S I fi(xi, ..., x„) X 

S - l|_Jar« 
ffi(xu..., x„) +f2(xi,..., xn)y~r 

( s - l ) / ( r - l ) 

dXi, ..., dx j 
( s - l ) l ( r - l ) 
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Adding (22) and (23), subtracting 2(s — 1) * (s =1= 1) and then dividing by 2, we get 

«->#(«! II ii) ^ TK(ZI II £2) for every .Jlt £2 e S . 

Finally, equality holds iff 

f(hx(t),..., hjt), xm+!,..., x,) = G,(f) . 

(fi(hi(t), • • •, hm(t), x m + 1 , . . . , x„) + f2(hl(t),..., h„(t), xm+1, ..., x„)> 

A 2 
a.e. û for i = 1, 2 , 

i.e. iff 

Gi(0 + G i ( 0 = 2 a n d 

fr(ht(t)9...9 hm(t\xm+u ...,xn) = Gt(Q ^ G ( v a e 

/2(*l(0 **(0» * -+! *i.) G2(0 ' 
i.e. iff 

(24) / ;(*!, ..., xn) = Gi(t) K(xu ..., xn) a.e. // for i = 1, 2 . 

So indifference holds iff 

fi(xu..;Xn) = fef(xu...,xHIO)dZ = G ^ O K ^ i , , . . , x„) a.e. // 

V £ e £ . 

This last condition is equivalent to 

fe(xu ..., x„/0) = Gfl(0 K(xu ..., xB) a.e. \x Vet e <9 , 

which is the factorization formula given by Halmos-Savage's theorem to establish 
the sufficiency of a statistic. 

Proof for t = 2 is similar. 

4. DIVERGENCE MEASURES AND SUFFICIENCY OF EXPERIMENTS 

Blackwell's [ l ] definition of comparing two experiments states that experiment 
Sx is sufficient for experiment SY. denoted Sx ^ $Y, if there exists a stochastic 
transformation of X to a random variable Z(X) such that for each 9 e 0 the random 
variables Z(X) and Y have identical distributions. By SY = {Y9

 <&9 Qe; 9 e 0} we 
denote a second statistical experiment for which there exists a gpdf g(y\9) for the 
distribution Q with respect to a cr-finite measure v. According to this definition, 
if $x = $Y> then there exists a nonnegative function h satisfying (cf. DeGroot [8], 
p. 434). 

(25) g(y\9) = ^h(y\x)f(x\9)dfx 

and 

U h(y\x) dv = I . 
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If we have two prior distributions £x, £2 e S, after integrating over S and changing 
the order of integration in (25) we get 

(26) gi{yje) = \xh(y\x)fi(x)dtx, 1 = 1,2. 

Let I be any measure of information contained in an experiment. If Sx ^ SY 

implies Ix ^ IF? then we say that Sx is at least as informative as $Y in terms of 
measure I. This approach was successfully carried out by Lindley [13] and Sakaguchi 
[18] for Shannon's entropy. Goel and DeGroot [10] applied it to Kullback-Leibler's 
[11] discrimination function. Ferentinos and Papaioannou [9] aplied it to the 
a-order generalization of Kullback and Leibler's discrimination function and some 
generalizations of Fisher's measure of information. Taneja [25] extended it to 
different generalizations of J-divergence measure having two scalar parameters. 
Recently, the authors [14, 15, 28] extended it to A-measures of hypoentropy and <fi-
measures of Jensen difference, where Bayesian and Lehmann's approaches are also 
adopted. Now, we will compare the experiments for the generalized divergence 
measures given in (4) and (9). 

Theorems If Sx ^ gY, then xr
s
r(^ \\ £2) ^ \r%x || £2) for every f, £2 e ~, 

for all r > 0 and any s. 

Proof. Since Sx ^ SY, there exists a function h satisfying (25) and (26), and 
we can write 

g\(y) 
gг(y) + g2(y)Y-' (27) 

Applying Holder's inequality on the right hand side of (27) we get 

gri{y)(g1(y) + g2(y)\1"> 

' h(ylx)Mx) dџ\ Г f h(ylx) fi{x) ± h { x ) dџ 
x J LJ x 2 

Hence 

(28) 

i jWylx)Ux)yU(yl*)f'(')+

2

m 

i \lh(jix)Ux)y[Hyl*)f'ix)+
2

M"í 

ijm(í^^) 
j/ÁX)(m±my-' 

dџ, 0 < г < 1 

dџ , r > ì 

dv > 

dџ , 0 < r < 1 

< dџ , r > 1 . 
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As sign((s - l)/(r - 1)) = sign (s - 1) for r > 1 and sign ((s - l)/(r - 1)) + 
4= sign(s — 1) for 0 < r < 1, where sign (x) = 1 if x > 0 and sign (x) = — 1, 
from (28) we have 

/i(*)+/»wy-r,..T-i)ri) 

^N^*] 
r =)= 1, s 4= 1 , r > 0 

Similarly we can obtain 

- D 

< (зo, MЫ^^Г-Г''' 
й — 

s 
r 4= 1, s 4= 1 , r > 0 . 

Adding (29) and (30), subtracting 2(s — l ) - 1 (s 4= 1) and then dividing by 2, we get 

Jllft. || £a) ^ Jn;({. || {2), r * 1, i * l , r > 0 . 

Since the unified measure x^K^i || £2) given in (4) is a continuous extension of 
xKr^i || £2) for the real parameters r and s, we can immediately conclude that 

W « i II «a) = M « i II £2) for all r > 0 

and any s whenever Sx >, SY. • 

Theorem 3. / / Sx ^ Sr, then 2
xr%^ || fc) ^ J T ^ « ; . || £a) /or eperj ^ , ^ 2 e 3 , 

/or all r > 0 and any s. 

Proof. Since Sx >. SY, there exists a function h satisfying (25) and (26), and we 
can write 

/3 1) giOO + 9ri(y) (9x{y) + 92(y)Y~r _ 

= 2 [L %/x)/lW d/lJ [j/W / l (x)^ /2(x)d/t]1" f 

+ i [ £ A(.v/*)/aM d/J [£% /x) / l ( x )+ / 2 ( x ) d j j " 

+ 
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Applying Holder's inequality on the right hand side of (31), integrating over <W, 
and using the fact that j ^ h(y\x) dv = 1, we get 

9r(y) + gáOO Í9Áy) + g2(y)V~r
 dv 

/ í(*)+/2 ř W//iW+/a(*)V" 

> 

.> г л (*) + jк*) /J 

< 

r 2 

Г Ш±îM(íM±i 
2 V 2 

âџ , 0 < r < 1 

d/ť, r > 1 . 

As sign ((s - l)/(r - l)) = sign (s - 1) for r > 1 and sign ((s - l)/(r - 1)) # 
4= sign (s — l)forO < r < 1, we have 

s - 1 

< 

V (y) + g2(-v)jg1(y) + g2(^y- r
d Г*] 

(s- l )/(г- l ) 
< 

2 V 

/í(x)+ilW//iW+AWY-T /((*) + jҚjç) /Л(x) + щ ү -f

 d T 

r 4= 1 , s + 1 , r > 0 . 

Thus, x^Kii I £2) ̂  Y^r(£i II £2), r 4= 1, s # 1, r > 0. Again using the fact that 
the unified measure f ̂ (£1 fl £2) given in (9) is a continuous extension of !-Rr(£i | £2) 
for the real parameters r and s, we can immediately conclude that 

irfctltiZirftJh) forall r > 0 

and any s whenever $x = <*V 

Referee's remarks 

There are two composite forms to write the measures x^K^i \\ £2) a nd x^XZ |j £2)-
First form. We can write 

and 

where 

ÌЯft. I č2) = І[ФS(Д^ Ц €a)1/fr-1>) + Ф.(/*(fi I f2)1/(r-X))] 

^il^^Ф^IUa) 1 ^- 1 ' ) , 

ФS(У) = (s " l ) " 1 Ь . " 1 ~ 1] , - * - , 

•and/^i J| £2)>f*(£i |J ^2)and/(^ [| £2)are the/-divergences of £,., £2 in the notation 
ofVajda[30] with 

f(x) = L^f(J?L_\9 / , ( * ) - * ' , x>0, 
2 \1 + xj 

/*(*) = x / Q and /(*)"-i[/(x)+/*(*)]• 
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The function fr(x) = xr is convex in x for r > 1 and is concave in x for 0 < r < 1. 
Second form. We can write 

kmi II €.) - i [^r(€ i i o) + *.(«-(«2 ii zm 
and 

where 
#(€, II ťa) = ^ ( ł ! Л ( í , II5) + л & 1 í))],), 

2 D* 
X 

and 

with 

Ws(y) = (s-l)-l[^-^-i], s* ' l , 

- _ j_+ ^ 
C 2 ' 

Rr(£ || -) = (r - I)"» loge [ J , p(x)r ^(x)1 " ' d/i] , r * 1 , r > 0 

L(£ || i,) = exp {Rr(£ | ,)} , r * 1 , r > 0 . 
Some of the results given in theorems 1, 2 and 3 can be simplified by using the 

approach off-divergences given in Vajda [30], chapter 9. 
\ 

Author's remarks 

The approach suggested by the referee is economical but works with the convexity 
off-divergence measures. With the approach presented the proofs are direct. One 
of the drawbacks in using the composition relation is in proving the convexity of the 
measures xV\ and X^U because by this approach, we get the convexity of these 
measures in the pair (£1? £2) f° r either 0 < r __ 2 f_ 5 (first form) of 0 < r __ 1 __ s 
(second form), while by the direct approach we arrive at 0 < r _J 5 (ref. Taneja [26]). 
This last condition is much better than those obtained by composition. 

Acknowledgements. One of the author (I. J. TANEJA) is thankful to the "Universi-
dad Complutense de Madrid, Departamento de Estadistica e I.O." for providing facili
ties and financial support. This work was partially supported by the Direccion General 
de Investigacion Cientifica y Tecnica (DGCYT) under the contract P589 — 0019. 

References 

[1] Blackwell, D. (1951): Comparison of experiments. Proc. 2nd Berkeley Symp. Berkeley: 
University of California Press, 93—102. 

[2l Burbea J. (1984): The Bose-Einstein Entropy of degree oc and its Jensen Difference. Utilitas 
Math. 25, 2 2 5 - 2 4 0 . 

[3] Burbea, J. and Rao, C. R. (1982): Entropy Differential Metric, Distance and Divergence 
Measures in Probability Spaces: A Unified Approach. J. Multi. Analy. 12, 5 7 5 - 5 9 6 . 

[4] Burbea, J. and Rao, C. R. (1982): On the Convexity of some Divergence Measures based 
on Entropy Functions. IEEE Trans, on Inform. Theory IT-28, 489—495. 

[5l Capocelli, R. M. and Taneja, I. J. (1984): Generalized Divergence Measures and Error 
Bounds. Proc. IEEE Internat. Conf. on Systems, man and Cybernetics, Oct. 9—12, Halifax, 
Canada, pp. 43 — 47. 

[6] Campbell, L. L. (1986): An extended Cencov characterization of the Information Metric. 
Proc. Ann. Math. Soc , 98, 135-141 . 

454 



[7] Cencov, N. N. (1982): Statistical Decisions Rules and Optimal Inference. Trans, of Math. 
Monographs, 53, Am. Math. S o c , Providence, R. I.. 

[8] De Groot, M. H, (1970): Optimal Statistical Decisions. McGraw-Hill. New York. 
[9] Ferentinos, K. and Papaioannou, T. (1982): Information in experiments and sufficiency. 

J. Statist. Plann. Inference 6, 309—317. 
[10] Goel, P. K. and De Groot (1979): Comparison of experiments and information measures. 

Ann. Statist. 7, 1066-1077. 
[11] Kullback, S. and Leibler, A. (1951): On information and sufficiency. Ann. Math Stat. 27, 

986-1005. 
[12] Lindley, D. V. (1956): On a measure of information provided by an experiment. Ann. Math. 

Statis. 27, 986-1005. 
[13] Marshall, A. W. and Olkin, I. (1979): Inequalities: Theory of Majorization and its Applica

tions. Academic Press. New York. 
[14] Morales, D., Taneja, I. J. and Pardo, L.: Comparison of Experiments based on ^-Measures 

of Jensen Difference. Communicated. 
[15] Pardo, L., Morales, D. and Taneja, I. J.: A-measures of hypoentropy and comparison of 

experiments: Bayesian approach. To appear in Statistica. 
[16] Rao, C. R. (1982): Diversity and Dissimilarity Coefficients: A Unified Approach. J. Theoret. 

Pop. Biology, 21, 24—43. 
[17] Rao, C. R. and Nayak, T. K. (1985): Cross Entropy, Dissimilarity Measures and characteriza

tion of Quadratic Entropy. IEEE Trans, on Inform. Theory, IT-31(5), 589—593. 
[18] Sakaguchi, M. (1964): Information Theory and Decision Making. Unpublished Lecture 

Notes, Statist. Dept., George Washington Univ., Washington D C 
[19] Sanťanna, A. P. and Taneja, I. J.: Trigonometric Entropies, Jensen Difference Divergence 

Measures and Error Bounds. Infoimation Sciences 25, 145—156. 
[20] Shannon, C. E. (1948): A Mathematical Theory of Communications. Bell, Syst. Tech. J. 

27, 3 7 9 - 4 2 3 . 
[21] Sibson, R. (1969): Information Radius. Z. Wahrs. und verw. Geb. 14, 149-160. 
[22] Taneja, I. J.: 1(983): On characterization of J-divergence and its generalizations. J. Combin. 

Inform. System Sci. 8, 206-212. 
[23] Taneja, I. J. (1986): /l-measures of hypoentropy and their applications. Statistica, anno 

XLVI, n. 4, 4 6 5 - 4 7 8 . 
[24] Taneja, I. J. (1986): Unified Measure of Information applied to Markov Chains and Suffi

ciency, J. Comb. Inform. & Syst. Sci., 11, 9 9 - 1 0 9 . 
[25] Taneja, I. J. (1987): Statistical aspects of Divergence Measures. J. Statist. Plann. & Inferen., 

16, 137-145. 
[26] Taneja, I. J. (1989): On Generalized Information Measures and their Applications. Adv. 

Elect. Phys. 76, 327 — 413. Academic Press. 
[27] Taneja, I. J. (1990): Bounds on the Probability of Error in Terms of Generalized Information 

Radius. Information Sciences. 46. 
[28] Taneja, I. J., Morales, D. and Pardo, L. (1991): ^-measures of hypoentropy and comparison 

of experiments: Blackwell and Lehemann approach. Kybernetika, 27, 413 — 420. 
[29] Vajda, I. (1968): Bounds on the Minimal Error Probability and checking a finite or countable 

number of Hypothesis. Inform. Trans. Problems 4, 9—17. 
[30] Vajda, I. (1989): Theory of Statistical Inference and Information. Kluwer Academic Publi

shers, Dordrecht/Boston/London/. 

Authors' address: Prof. I. J. Taneja, Prof. L. Pardo, Prof. D. Morales, Departamento de 
Estadistica e I. O. Facultad de Matemáticas Universidad Complutense de Madrid, 28040 Madrid, 
Spain. 

455 


		webmaster@dml.cz
	2020-07-02T07:48:14+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




