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Summary. The paper contains the proof of global existence of weak solutions of the vis--
cous compressible barotropic gas for the initial-boundary value problem in a finite channel.
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1. INTRODUCTION

This paper is another contribution to the problem of solvability of a viscous com-
pressible liquid closely related to the papers by J. Netas, A. Novotny, M. Silhavy (1],
J. Netas, A. Novotny, M. Silhavy [2], S. Matusi-Negasova [3].

The global existence of a strong solution for k-polar liquids with £ > 3 is proved
here under general initialization data in the time space cylinder Q; = I x Q (where
I =(0,t),t>0and Q CRY (N =2, 3)is a bounded domain with a sufficiently
smooth boundary Q). Further, we consider nonzero boundary conditions on g and
v. Also, a brief comment on the uniqueness of solution is included.
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2. FORMULATION OF THE PROBLEM

For a polytropic gas it is true that p € C'([0,00 ]) depends only upon g. The
function p(g) satisfies the following assumptions:
a) the expression P(p ) = gf:; B%)- do exists Yo > 0,
b) 04£(0) ~ P(0) = p(0),o > 0.
Remark 1.1. The function p(¢) = ko*, k > 0, o > 0 satisfies a), b). The
isothermic case p(g) = kg is not included.

We consider V = W*2(Q,RN) n Wy*(Q,RN) and the bounded V-coercitive bi-

linear form

0™ v; O™ v;

k
(21) ((vyw)) = / Z Afisia imiria. i Oz; O0z;, ...0x;, . Oz, 0zj, . .. Ox; dz,
Q m=1 m

where Aivimingmy m=1, ..k, 4, 3,4, i =1, ..., N are constants; for m = 1
o vy , Ovy
we have here merely the combinations e;;(v), eij(w) (eij(v) = 3 (%;- + a_;",'))
Let us assume that A77; ; . . = are invariant under permutations of subscripts
%, Jy 8,y -+ tmy J1, - - - IJm- Evidently, we assume that Yv € V
(22) ((v,0)) > eallvlliyrza,mmys 1 > 0.

This follows, e.g. from the conditions

Ov; Ov;
(2:3) Agji,jlﬂl"gz_{ 2 e, (v)eij, (v), a2 > 0,
11 J1
k k
(24) Z Affiy imiveim It il 2 @2 Z J:,...imJ},...j_m
m=2 m=2

for all real vectors (J,-"‘“_,-m)fv’,-“_',im(m =2,...k).
Let us take into account that the problem

(25) (v, w) = / fowidz, e LYQRY) Vwe Vv
e)

has a solution belonging to W2k:2(Q RM) such that [lvllwak.20,rn) < o3| fllL2(q,rN),
as > 0.
Let us consider the standard symetric stress tensor

(2.6) Tij = —pbij + 7ij.
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The continuity equation has the form

Jo

(2.7) >

+ a%i(gvi) =0.
The equation of motion combined with (2.7) yield
(28) 2 (0) + p(ovivs + P8 — 75 () = 0.
zj
External forces will be neglected. In our situation

62m 2

. .3‘.!:,',"6:173'1 .o .61:]‘,"

0 v _ i m+1 gm
(2.9) 5;;(7‘.].(1;))_";(—1) Al imivim G

In addition to the initial conditions
(210) Q(O) = Qo, ’U(O) = %o,

we consider the conditions on the finite channel as in [3]

’ (211) v=7v% on r\t'np U Cout,
where

(2.11) vor <0 on Liyp,

(2.117) vor >0  on Loy,

(2.12) v=0 on 9 — (Tinp UTou),
(2‘13) e=p00 on [ip,

and the unstable boundary conditions

Zk: 6m+’ (2

—1)5+! moo
oy s:l( 1) 64 A”“"""'“""'"E):cil ...617,""612]'1 ...6121',
(214) 6m—s—1 .
X ﬁ——"%'———llj’*_‘ dS =0
Jogz r - O0Tj,

Yz € C°(Q,RY) n W, %(Q,RY).

m—k

Let us assume that vg is a function such that there exists its extension to the entire
Q: =2 x(0,t). Let

v 54

dz; 7

(2.14")
holds.
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First apriori estimates will be treated.

Lemma 2.1. Let v, vy be sufficiently smooth then

(2.15) /gda: /god:c—// goviv; dS dt

O0lanp

(2.16) %/g]w]2 dz — %/ghul2 dz

Q Qo

vy Oav vy
+ 9—5t—w, + ov; Bz; Fo-wi+ oz, ao-owjw; | de dt
Q:

t t
+// v?ViP(go)dtdS+// viviP(0)dS dt

O0lnp 0l out

oy ?
——/axiP(g)da:dt+/axip(g)dxdt
Q: Q:

t

+/P(g) dx —/P(go)dz+/((v,w)) dt = 0.
Q o

0

Proof. (2.15) see M-N [3]. (2.16) With the aid of [3] we obtain the first five
terms; the last term follows from (2.1) and (2.9); to the term fQ. %(p(g)(ﬁij) de dt

we apply the Green theorem and add the continuity equation (2.7) multiplied by ‘fj—P
O

Lemma 2.2. Let us assume go > 0, g9 € C'(Q:), vo € L*(I, WF2(Q)), +° €
CH(Qr), 0 € L®(I, L} (R)), w € LX(I, W52(Q,RN)) then .

(2.17) n/ Selul + n/ P(o) + / () < [ elul+ [ Pleo) +C.

o Qo

Proof. We start from (2.16). The terms fQ g w, de dt, [, ews g‘-vo dz dt

are estimated similarly as in 3], i.e. by cxf||w||L2([ wk.2(q))- The term fQ ow;j 3, w;
is estimated with the aid of the term f[o eolw|? with the use of the Gronwall

lemma. To the term [, ((v,w))dt we apply (2.2). Now Jo. P(Q) is estimated
again with the aid of the Gronwall lemma (we exploit the term fn P(g)). For the

term fQ‘ %‘p(g) we make use of the fact that we have %f > 0 and at the same time
p(@) > 0; hence it follows that it is bounded. a
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Now we present the weak formulation of the problem (2.9):

(2.18) / gt—(gvi)z,- dz + ((v,2)) = / (91};%% +P(9)§%) dz
Q

Q

ae. inl,VzeV.

3. THE GALERKIN METHOD

We select an orthonormal base {2"}}25 in L2(Q,RY) which solves

(3.1) ((v,2")) = /\,/viz,-'dz VZEV (M <A <Az<..).
Q

The regularity of the elliptic problem (3.1) implies that 2" € L (2, R") holds. De-
note by P, the orthogonal projector from L?(Q,RY) into L2 (R, R"Y) = span(w’, w?,
w™).
Let v = 3 7 ¢, (t)2" + v°. We are looking for the solution (o",v"), ¢" €
CY(I,C*3(Q)); c= (cl, ..., ¢n) € CY(I,RN) satisfying

90" Sl =
8 n n n,n nazr az
/5— )zl dz + ((v™,27)) = /(g U'UJB +p(,g)az]>dz
Q Q
(3.3) - / Q" vv)viz[dS — /p(g")uiz{dS,
FCinpUlout o0 )
(3.4)
o0 = o0, o= eooninput, v=1° on Fing UL, cr(0)= [ w"(0)sfd.
Q
Such solutions exists, see [3].
Now, applying Lemmas 2.1, 2.2 we obtain similarly
t
1 n n
i/g"|w"|2d:c+/P(g")d:c+/((v ,wh))dt
Q4 Q
1
(3.5) 2/golw"|2d:z:+/P(go)d:c+const,

Qo

w™(0) = Z ¢ (0)z",

r=1
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where estimates of the following terms are included in the constant:

n OV) 6v° v Sl
Q:
t
viv; P(gf) dSdt, —/ P(g ) dz dt, /a—a;-p(g ) dz dt,
OTnp Qt Qt '
t
// viv; P(o") dS dt.
OFout

From (3.5) we obtain

(3.6) lle" [w" *llLoo(r, i)y S €1, €1 >0,
3.7 ”w"”Lz(ka,a(n’gN) <c, ca>0.
Evidently, (3.6) and (3.7) yield

(3.6") lle™ [v" || Lo (1, L(02)) < €1,
(3.7) 1o |2z, wr2(qrmy) < €1-

n
Now, similarly as in [3] we compute " for the given v™ = 3 c¢,zf + vo. Let
r=1

(3.8) z(r) = —v"(t —7,2z"(r)), 2z"(0)==z, z€Q.
¢" can be obtained by integration along the characteristics. These characteristics
pass through Q; and end either in Qg or T'j,p. Here it is possible to exploit the fact

that we know ¢" on Qo, Tinp. For 7 € I; where I; C I and I; = 0,%),f > 0,2 — z(r)
is a local difeomorphismus of {2 into , and for o, = In ¢" we have

do, Oop, o

(3.9) o Y= '(t—rx (7))
Then we have

d n _ 0w "
-(3.10) 7ot —me (1)) = 3z, =" (7).

Further, integration of (3.10) yields

(3.11) o"(t,z) = po(t — t, z"(f)) exp ( - / 5‘—2-}-1){'(7, z"(r))dr),

0
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where z = z(0), z"() = y.

Just one characteristic passes through the point [0,t]. We denote by ¢ the time
where we reach when we go along the characteristic from the point [0, ¢] to point ,
which lies in Qg or Tipp. ;

The Sobolev imbedding theorem (W*2(Q,RN)) cc C(Q,RYN)) for 2k > n to-
gether with (3.7’) and (3.11) implies

(3.12) " > €>0 almost everywhere in Qy,

(3.13) ‘ lle"llze(q@.) < k2, k2> 0.

Let 6"(t — 7,y) = o™(t — 7,2"(t,y)), &"(t — ,y) = ¢"(t — 7, 2" (¢, y)), Where z"(t,y)
is a solution of (3.8) such that z"(f,y) = y.

Let us put G = det "I;L From the continuity equation in the Lagrange coordinates
where o(t — 7, y)G(t — 7,y) = o(y) holds, we have

(3.14) 0<e1<G(t—19) < ks, k3 > 0.
For k > 3 we apply the Gronwall inequality and the imbedding C¥~2(2) C W*2(Q).

Hence we obtain, from (3.10),

< kg,
Le(Q1)

s=s1+...+sn, s< k-2 (k4>0)'

6’1-;
3.15 ——
(3.15) ” By v

By (3.14), for the inverse function y(t, ) we have

0%y

o L <k
B2y 028 | gy S

s=s8+4+...+s,, s<k-2.

(3.16) ‘

Now, it is necessary to take into account a certain “nonuniqueness” of p” in the
“corners” of Q;. If we follow the characteristic from [z, t], we reach either Qg or I'j,p.
We use idea of Theorem 3.2 from [3]. A surface S is generated which is described
by the trajectories of the equation #™ = v"(t,2"(t)),z € [inp. Here we assume
that Ti,p is closed. This surface divides the time-space cylinder into @; and Q3.
Similarly as in [3] it is possible to prove that " € W1 >®(Q,),o" € WH®(Qs),
and thus g, € W1*°(Q;) by [4]. The verification of the fact that S is a surface
can again be found in [3]. Consequently, we conclude that ¢" € W1(Q;) and
o" € C(Q:) N C(I,C%2)). Now we assume k = 3. Then

(3.17) [|lo” [|Loo(r,wr-29(02)) < <ks, ks>0,
0

(3.18) ”i ks, ks>0,
Ot lpacr,we-saa))
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where 1 < ¢ < 4+o0if N =2,1<¢<6if N=3. For k > 3 we have
(3.18") " EWL®(Q,) and " € C(Q:) NCY(I,CHRQ)).

We multiply (3.3) by ¢,, integrate over (0,¢) and sum over r (r =1, ..., n). Then
we obtain (we use test function 8—;”;"—)

/ [ SR de aut ("0, 0 0)

(3.19) = ((v"(0), w™(0))) // ’ d dt

39 ow?
// 3:: ot dz dt.

We modify (3.19) then we obtain

J[ ]

i

En dw dt + ((v° (1), w" (1)) + ((w" (t), w"(¢)))

= (((0),w"(0) - / (oGS + gt B

4o 2OV 0wl OwP ful
& bz, ot "”faz,- ot
n ,,aw owp 0¢" Ow}
+ 0" wj To; ot ( ) 9z )dxdt.

The terms on the right-hand side, with the exception of the first, are estimates by
k5||a—;’ti||Lz(Q,,g~), ks > 0. Applying the Young inequality, (3.17) and the Cauchy
inequality we obtain

<kr, k7>0,
L?(Q¢,RN)

(3.21) (10" (| oo rewr2 (2, )y < K7

(3.20)

Now it is possible to verify that the expression Fy = Pn(—Z(¢"v")+ 5‘3;(9"1},"1}?)+
p(0")) is bounded in L?(Q:, RM).

We have ((v*,w)) = [ Fn,w;dz; due the regularity of the elliptic system we
obtain )

(3.22) 1V | L2gr, wor2(q,mvy) < ks, ks > 0.
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Now, (3.21), (3,22) and (3.11) yield

o0

(3.23) o

Sky, kog>0
Leo(I,Wk=3,a(q))

and if go € C2k-3((Q), then also

(3.24) HQ—"— < ko
L2(I,W?2k=3.4(Q))
(3.25) i ”Qn”Lm(I’WZk-—Z,q(Q)) S kg (fOI’ k= 3),

where 1 Sgg6if N=3,1<g<+0if N=2.

)

4. PASSAGE TO THE LIMIT

Lemma 4.1. Let {(¢",v")}}2] be a sequence of solutions of (3.2)~(3.4). Then
there exists a subsequence (denoted {(e™,v™)}}% again) such that

(i) " — e strongly in L* (Qt) e>€e>0ae inQy

(i) fo Jap(e") 52 dedt — 3 p(e) 52 Yy € L2(I,V);

(iii) Dig™ — D'g *-weakly in L*(I, L‘I)), i=1,..., k-2, D' .. derivative with
respect to the space variables 1 < ¢ < 400 if N = 2, 1<¢<6ifN =3,

(iv) 2&- — 92 weakly in L*(Q:);

(v) D'v™ — Div weakly in L*(Q¢+,RN); i =0, ..., 2k;

(vi) v™ — v strongly in L?(I, W2k=12(Q R™)) N LP (I, Wk-1.2(Q,RN))

(vii) &= — 2% weakly in L2(Q:, RV);

(viii) o™v"™ — gv strongly in Lz(Qt,RN)

(ix) fo Jq 0" v;’v;‘gf— — fo Ja gv,v] d:c dt Yo € L¥(1,V).

Proof. (i) The first assertion follows from the Lions lemma (see [1]) for By =
WL2(Q), B = LY(Q), By = L*(R), po = 4, p1 = 2.

The second assertion is a consenquence of (3.12), see [7]. (ii) " — ¢ a.e. in Q
" follows from (i), p(g") is bounded in L®(Q;) then p(¢™) — p(g) strongly in LP(Q),
Vp,1<p< 4oo.

(vi) follows from the Lions lemma with By = W?2 B = W2-12 p, = p; = 2
or By = Wh?% B =wk-12 B, = L2,1<po<+oo,p1—2,po—p.

(iii), (iv), (vii) are consenquences of (3.17), (3.18), (3.22), (3.20).

(viii)

[ @ = o) dadt <l caolo” = vllacaumm
0Q

+le" = ellzs@@ollvliLaqy)
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(ix) follows from (vi), (viii).

Now we pass to the limit in (3.2) and (3.3). We verify that (2.7) is satisfied in the
sense of distributions also a.e. in Q;; further, we verify that (2.18) holds and (2.8) is
satisfied a.e. in Q. a

Theorem 4.1. Let k > 3, oo € C*2(Q), 00 > 6 > 0in Q, vp € V, p €
C'([0,400]). Let a), b), (2.1), (2.3), (2.4) hold. Then there exists ¢ > 0 and a pair
(e,v) such that

(4.1) 0 € L®(I,W*=29Q)) N L®(Q:), o> ¢ ae. in Qy;
(4.2) % € L>®(I, Wk=314(Q)),

1<¢g<6ifN=3,1<qg<+00if N=2fork=23;fork >3, (3.18) holds;

(4.3) v e L®(I,V)n L3I, W?2(Q,RN));
(4.4) %% € L*(Q.,RY)

so that (2.7) is satisfied a.e. in @y, (2.10)—(2.14), (2.18) are satisfied, (2.8) is satisfied
a.e. in Q;.

Proof. It follows directly from (3.24), (3.25) and from Lemma 4.1. O

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied and let g9 €
C*-3(Q) (k = 3). Then

(4.5) 0 € L®(I, W¥=29(Q)) N L=(Qu);
(4.6) %:—’ € L (I, W?*=34(Q)),

1<¢g<6ifN=3and1<g<+o0if N=2.

5. UNIQUENESS

Theorem 5.1. Let the assumptions of Theorem 4.1 be satisfied. Then there
exists set of solutions satisfying (4.1)—(4.4) and there is at most one solution of the
problem (2.7), (2.10)—(2.14), (2.18).

Proof see‘[9]. O
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Souhrn

GLOBALNI RESEN{ VAZKEHO STLACITELNEHO BAROTROPNfHO
MULTIPOLARNIHO PLYNU NA KONECNEM KANALU S NENULOVYMI
VSTUPY A VYSTUPY

SARKA MATUS0-NECGASOVA

V prdci je dokidzdna globdlni existence slabého feseni vazkého barotropnfho plynu smi-
Sené ilohy na kone¢ném kanilu.
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