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TOWARDS A NOTION OF TESTABILITY

CZESLAW STEPNIAK!

(Received April 25, 1991)

Summary. The problem of testability has been undertaken many times in the context of
linear hypotheses. Almost all these considerations restricted to some algebraical conditions
without reaching the nature of the problem. Therefore, a general and commonly acceptable
notion of testability is still wanted.

Our notion is based on a simple and natural decision theoretic requirement and is charac-
terized in terms of the families of distributions corresponding to the null and the alternative
hypothesis. Its consequences in the case of linear hypotheses are discussed. Among other
it is shown that some suggestions in statistical literature are unjustified.

Keywords: general statistical hypothesis, linear hypothesis, strict unbiasedness, testabil-
ity

1. INTRODUCTION

Most of well known statistical notions, such as unbiasedness or admissibility, orig-
inated from the estimation theory. Afterwards they were implanted in testing sta-
tistical hypotheses. According to the prevailing opinion, the notion of estimability
should also have its counterpart in testing.

Intuitively, one can consider a statistical hypothesis to be testable if there exists
a reasonable test, that is a test satisfying some essential condition. In order to reach
the essential condition let us make a thorough study of the way leading to the parallel
condition in the case of estimation.

Suppose we are interested in estimation (with quadratic loss) for the parameter
o? by using n independent observations with a normal distribution A4 (p, 02), where
u and o2 are unknown. For a change we will also consider the same problem under
the assumption p = 0. It is well known t. at 3" (z; — #)%/(n— 1) and 3" z?/n are the
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minimal variance unbiased estimators in the first and the second case, respectively.
Referring the first estimator to the second case we note that it is still unbiased but
its variance is no longer minimal. Resuming, if we identify the essential condition
in the estimation problem with unbiasedness then any estimator being reasonable
in the initial model is also reasonable in its submodel. However, if we identify the
essential condition with unbiasedness plus minimal variance then the property is not
preserved. The principle that any statistical rule satisfying the essential condition
in the initial model does satisfy the condition also in any submodel of the model
becomes the basic prerequisite in the notion of estimability. The same principle
leads us towards the notion of testability.

2. GENERAL BACKGROUND

Consider a statistical decision problem (&, 2, &), where & = (2, &, Py;0¢0) is
a statistical experiment, 2 is the set of statistical rules, while Z = %2(0/d) is the
risk function of a rule de2. We will also consider induced problems of the form
(6),9,%,) arising by restriction of the parameter set © to a subset ©, and by
limiting the domain of the risk function %(-/d) to the set ©,.

Let C be a condition referring to statistical rules in 2 and involving, directly or
indirectly, a corresponding statistical decision problem. The condition will be consid-
ered both in the initial problem (&, 2, #) and in the induced problems (&}, 2, %;).
Any induced problem can be also identified with a subset ©, of the parameter set
o.

Definition 1. The condition C is said to be hereditary in the family of statistical
decision problems induced by (&, 2, %) if any decision rule de 2 satisfying C' in the
initial problem satisfies also the condition in any nontrivial subproblem (&7, 2, %)

induced by (&, 2, Z).

Remark 1. We realize that the term “nontrivial” used in the definition needs
specification. It would be difficult to settle this in general but it is easy to do it in each
particular case. For instance, in the estimation problem, all nontrivial subproblems
are determined by those subsets ©, which contain at least two elements. Similarly,
in the problem of testing a hypothesis H: 0cOy against K: §eOg, all nontrivial
subproblems correspond to such subsets ©, of © that both intersections Oy N 6,
and O N O, are nonempty.

Example 1. Condition of unbiasedness in estimation of a parameter § with
quadratic risk. Recall that an estimator de Z is unbiased if the expectation Egd(X) =
6 for all 8. The condition is hereditary.
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Example 2. Condition of unbiasedness in testing a hypothesis H: 0éOg

against K : c©k. Recall that a randomized test ¢ is unbiased if sup Epp(X) <
0cOgy

inf E¢p(X). The condition is hereditary.
6@k

Example 3. Condition of admissibility in a statistical decision problem
(€,2,#). Recall that a rule de2 is admissible if there is no d'¢? such that
Z(0/d') < Z(0/d) for all 8 with the strict inequality for some 6. In general,
this condition is not hereditary (cf. Stgpniak, 1987, for an illustration of the fact in
linear estimation).

3. NOTION OF TESTABILITY

Let X be the observation vector in a statistical experiment & = (2, &, Py, 0¢0).
Consider the problem of testing a hypothesis H: §e© g, where Oy is a nontrivial
subset of ©, against an alternative K : 0cOg, where Ok = 6\Oy. The problem
can be treated as a statistical decision problem (&, 2, %), where 2 is the set of
all randomized tests ¢, i.e. measurable functions from the space (%, 2/) into the
interval [0, 1], and

ao [ () dPy(x) if €0y

Z(0/p) = {al fx[l — o(z)] dPs(z) if €0k,

where ag and a; are given positive scalars.

As we have mentioned in Section 1, our problem of testability reduces to some
essential condition C on ¢. We have already postulated that such a condition should
be hereditary. In particular, any test ¢ satisfying the condition C should also satisfy
C for any pair of simple hypotheses H : 8 = 6 against K : § = 0;, where §oc¢© and
0,60k . Let us consider the particular case with a greater care.

In this case any test ¢ may be characterized by two numbers Ej,¢(X) and
Eg,¢(X) corresponding to the expected probability of rejection of the hypothesis
H under the condition that H is true of false, respectively. It is clear that any
reasonable test should satisfy the condition

Eg,9(X) < Ep,0(X).

(By the Fundamental Neyman-Pearson Lemma such a test exists if and only if Py, #
P01 )
The consideration leads us to the following definition.

251



Definition 2. A hypothesis H : § € O issaid to be {estable under an alternative
K : 0 € Ok if there exists a test ¢ such that

(©) Esp(X) < Egrp(X) forany 6 €Oy and 0 € Ok.

Remark 2. The same conclusion is drawn in Stgpniak (1980) in another way.

Remark 3. Any test ¢ satisfying the condition (C) is said to be strictly unbi-
ased (ibid.).

It was shown by Stepniak (1980, Th. 1) that a necessary condition for testability
of the hypothesis H: § € Oy against K: 0 € Ok is that the convex hulls of the
distributions Py with § € Oy and the distributions Py with 8’ € Ok are disjoint.
This is also a sufficient condition for testability under some additional assumption,
for instance if the set © is finite.

Let us end the section by two examples.

Example 4. Testability in the Behrens-Fisher problem. Let X;, ..., X,, and
Y1, ..., Y (m,n > 2) be independent random variables with two normal distributions
A (p,0?) and A (n, 72), where 1, 7, 0% and 72 are unknown. Consider a hypothesis
H:n=pagainst K: n# p.

Let us define Z; = Y; — X;,i=1, ..., k, where k = min(m,n). Let ¢ = p(2) be
the usual ¢-test for the hypothesis Ho: E(Z;) =0, ¢ =1, ..., k. We note that the
test is strictly unbiased in the initial problem. Therefore the hypothesis considered
in the Behrens-Fisher problem is testable.

Example5. Testing non-centrality of x? distribution. Suppose a random vari-
able X has a x? distribution with n degrees of freedom and the non-centrality pa-
rameter A, where the positive integer n and A > 0 are unknown. Let us consider a
hypothesis H: A = 0. It is known that the density function f(x) of the x2 distribu-
tion with n degree of freedom and the non-centrality parameter A can be presented
in the form

f(z) =Y pe(A) fak4r (2)

k=0

-2
where pr(A) = W and f, is the density function of the central x? distribu-
tion with p degrees of freedom (cf. Lehmann, 1959, Sec. VII, Problem 1). Therefore
the non-central x? is a mixture of central x2’s. Hence the hypothesis H is not

testable.
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4. TESTABILITY OF LINEAR HYPOTHESES

In this section the usual matrix notation will be used. Among other, if M is a
matrix, then M’, (M), R(M) and Py will denote the transpose, the rank, the range
(column space) of M and the orthogonal projector on R(M), respectively.

Let us consider a linear normal model Y — 4 (AB, 0%1I), where Y is an observable
random vector in R™, while A is the design matrix of size n x p such that r(A4) < p.
Roy & Roy (1959) noted that some hypotheses of the form H: C8 = 0 against
K:CpB # 0 do not possess a reasonable test in such a model. A more complete
interpretation of the fact was given by Seely (1977). His argument throws a lot of
light on the nature of the problem and, in consequence, shows that some suggestions
in statistical literature are unjustified.

It appears that the sets {A3: CB = 0} and {AB: CB # 0} of possible means of
the random vector Y under H and K, respectively, are not disjoint, unless R(C’) C
R(A"). Conversely, if R(C") C R(A’) then the hypothesis H is testable in the sense
of Definition 2 because the usual F-test is strictly unbiased.

The difficulty concerning the disjointness can be overcome by considering a testable
hypothesis which is implied by H (cf. Stgpniak, 1984). Any such implication is of
the form Hy : Cof8 = 0, where Cp is an arbitrary matrix with p columns such that
R(CY) € R(A') N R(C'). In particular, if AC’ = 0 then any testable hypothesis
implied by H is trivial (i.e. 08 = 0); otherwise one can construct a non-trivial
testable hypothesis Hy. In fact we are interested in a mazimal testable hypothesis
implied by H (for definition see Stepniak, 1984). Such a hypothesis can be presented
in the form

(1) H*Z[I"—PA(]p_pc,)]AﬂZO.

Moreover, the uniformly most powerful invariant test for H* has the rejection region
defined by

I[Pa = Pacr,—po)lYll
I(In = Pa)Y||

(2) > C(a),

where || - || is the usual norm in R" and C(«) is a given constant dependent on the
significance level a.

It is worth noting that the formulae (1) and (2) simplify essentially when testing
a hypothesis of the form

(3) H:ph =0,
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where (3(1) is a subvector of 3. To be more precise let us consider a partitioned
model Y — A (A;81) + A283),0%1,,). In this case the formulae (1) and (2) for the
hypothesis (3) can be replaced by

(') H*: (I, — Pa,)AB =0
and
[I(Pa — Pa,)Yl
(2 220 > C(a),
) [T
respectively.

In 1986 Peixoto tried to extend the notion of testability to all hypotheses H having
a nontrivial testable implication (cf. his Definition 2.1). According to him any such
hypothesis is equivalent to the maximal testable hypothesis H* implied by H (cf.
his Definition 2.2). Really, the sets Py and Py., corresponding to the possible
distributions of the random vector Y under H and H* coincide but the difference is
just hidden in the sets corresponding to the alternative hypotheses.

The usual (logical) negation of C8 = 0is CB # 0. Let C* be the coefficient matrix
in the maximal testable hypothesis H* implied by H. Consider the sets O = {Af:
CB # 0} and Og* = {AB: C*B # 0}. Then Ok # Og=* unless R(C’') C R(A’). To

throw more light on the question let us consider the following example.

Example 6. Testing the hypothesis
H:B=0 and B, =0
in the linear normal model

(4) Y — #(AB,0*)),

1 01
A=1]0 1 0].
1 01

The hypothesis can be written in the form (3) with #(!) = (81, 82). Now we get

100
oo Vo)

where
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i 1 01
Py = 3 0 20
1 0 1
and, by (1),
Cc* =10,1,0].

Moreover, we have

Ok = {AB: By # 0 or B # 0},
Ox- = {AB: B # 0}.

In particular, the vector v = (1,0, 1)’ does not belong to ©k. and belongs to Ok .
Moreover, the uniformly most powerful invariant test for the maximal testable hy-
pothesis H* implied by H has the rejection region defined by

Y2

(4) (Yl _ Y3)2

> Ci(a).

It is worth noting that the distribution of the test function (4) does not depend on
the parameters 8, and Ss.
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