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MULTIPOLAR VISCOELASTIC MATERIALS AND THE SYMMETRY 

O F T H E COEFFICIENTS OF VISCOSITY 

MIROSLAV ŠILHAVÝ 

(Received March 3, 1992) 

Summary. The integral constitutive equations of a multipolar viscoelastic material are 
analyzed from the thermodynamic point of view. They are shown to be approximated by 
those of the differential-type viscous materials when the processes are slow. As a conse­
quence of the thermodynamic compatibility of the viscoelastic model, the coefficients of 
viscosity of the approximate viscous model are shown to have an Onsager-type symme­
try. This symmetry was employed earlier in the proof of the existence of solutions for the 
corresponding equations. 
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1 . INTRODUCTION 

A multipolar viscoelastic material is characterized by a functional dependence of 

the multipolar stress tensors on the histories of the deformation gradients up to 

a fixed order. The thermodynamics of such materials was analyzed by Buchacek 

[3] under the assumption tha t the stresses depend on the histories of the deforma­

tion gradients through continuous and continuously differentiable functional on the 

Hilbert space of histories. Here I consider a much more specific type of dependence 

via single-integral laws recently introduced by Gurtin and Hrusa [8], see eq. (3.1) in 

Set. 3. 

The reason why I consider this class of materials is that for slow processes the 

integral functionals can be approximated, using the Coleman and Noll idea of re­

tardation [4], by the differential-type viscous constitutive equations of multipolar 
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materials. These were treated by Bleustein and Green [2] (dipolar fluids) and by 

Necas and Silhavy [12] (general multipolar fluids). In a series of papers, Necas, 

Novotny, Silhavy [9, 10], Necas and Ruzicka [11], Novotny [13], Bellout, Bloom and 

Gupta [1] and others showed that these materials have many nice mathematical 

properties. In the existence theory a crucial role is played by a certain symmetry of 

the coefficients of viscosity and my goal is to show that this symmetry follows from 

the thermodynamic properties of the original "integral" model. The method of proof 

is similar to the one employed in Silhavy [14] where it was shown that the Onsager 

symmetry relations can be derived for Navier-Stokes viscous materials with Fourier's 

heat conduction. 

2 . PROCESSES IN MULTIPOLAR MATERIALS 

I refer to Green and Rivlin [5, 6] to the systematic exposition of the thermome-

chanics of multipolar materials. In this paper, isothermal version of the theory will 

be considered and a reference description will be used. Let ficR3 denote the region 

occupied by the body in the reference configuration; the material points are identified 

with their positions X = (XA) € Q (A = 1,2,3) in this configuration. For simplicity 

the reference density is set equal to 1. 

Let P ^ 1 be an integer. A process of a multipolar body of polarity 2p~l is a 

collection (x, 0, <r*, b) of 3 + P functions (k = 0, . . . , P - 1) of X £ Q and t e R 

whose interpretation and tensorial nature is as follows: 

(1) the vector-valued function \ — (x%) (i — 1,2,3) is the motion of the body; 

(2) the scalar-valued function tp is the specific free energy; 

(3) the vector-valued function 6 is the specific external body force; 

(4) for every k = 0, . . . , P — 1, the tensor-valued function ak = (crfA_,_AkA) 

(i = 1,2, 3, Ai, . . . , Ak, A = 1, 2, 3) of order k + 2 is the multipolar referential stress 

tensor; it is assumed that <rfA AkA is symmetric with respect to the permutation 

of the indices A\, . . . , Ak- The symmetry is motivated by the fact that ah enters the 

basic equations only through its scalar product with the k-th referential gradient of 

velocity which has the same type of symmetry. 

For a given motion x ar-d k ^ 0 an integer we introduce the k-th deformation 

gradient Fk to be tensor of order k + 2 given by 

(2-1) Fk = Vk+l
X = (Xi,A1 ...Ak+i) 

where V denotes the gradient with respect to X and the comma followed by an 

index A (or indices) denotes the partial differentiation with respect to XA (or the 
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corresponding higher-order partial differentiation). Fk is symmetric in its referential 

indices, i.e., in A\, ..., Ak+\. 

The basic equations are the equation of balance of linear momentum 

(2.2) X = Diver0+ 6, 

and the reduced form of the equation of balance of angular momentum 

(2.3) (<r° + Div <rl)FT = F(<r° + Div<r1)T, 

where Div denotes the referential divergence and the superscript T the transposition. 

For isothermal processes the second law of thermodynamics takes the form of the 

dissipation inequality 

j ,P-\ V 

(2.4) (V + r*2) ^ Div ( YJ **•V* v ) + v ' b> 
^ fc=o ' 

where v = \ -s t n e velocity, and the product <rk • Vkv is a referential vector with 
components 

(2-5) ( ^ V ^ ) ^ ^ , . ^ ^ , , ^ . . ^ . 

A combination of (2.2) with (2.4) provides the reduced dissipation inequality 

p~\ 

(2.6) j> ^ £ ( < r * + Div<r*+1) • V*+1t;, 

Jk=o 

where we set <rm = 0 for m ^ P; in indices, 

P-i 

(2.7) * ^ Tt(
fftAl...Ak+i+<rktl...Ak+lA,A)vi,A1...Al,+l-

k=0 

In view of the symmetry of V*4*lv in its referential indices, we see that only the 

symmetric part of ak + Div<r*+i is relevant to the dissipation inequality (2.6), (2.7). 

Noting that Div <T*+1 = (°'iAi...Ak+lA,A) i s symmetric in Au ..., Afc+i, we introduce 

the tensor Pk = (tfAl...Ak+1) by " 

(2.8) /3*=Symcr* + Div<7*+1, 
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where Sym denotes the symmetrization with respect to the referential indices. The 

dissipation inequality then takes the form 

p-\ 

(2.9) +4: ~Z <*" • pk 

Jb=0 

where we have also used that 

(2.10) V*+1t; = F*. 

For a future use, we divide the stresses ak into the regular and singular parts ak,R, 

ak}S, respectively. By definition, we set ak'R = 0 for k ^ P. Then we define ap~l>R 

by 

(2.11) ap~] = / 5 p " 1 

and for k = N — 2, N — 2, . . . , 0 recursively by 

(2.12) ak>R = pk -D\vak+l>R. 

Hence ak,R is symmetric in its referential indices for every k. The singular part is 

defined by 

(2.13) ak = ak>R + ak>s. 

As a consequence, 

(2.14) Symtr*'5 + Div <r*+15 = 0, 

Jb = 0 , 1 , . . . . 

We shall see that the regular part of the stress is completely determined by the 

free-energy functional for the material, while the singular part is completely arbitrary 

(subject to (2.14)). The following proposition shows that the singular part does not 

contribute to the balance of linear momentum; it can contribute only to the boundary 

conditions. 

Propos i t ion 2 .1 . In every process compatible with the balance equations, 

(2.15) Diver0,5 = 0. 

P r o o f . Follows from (2.14), using the considerations described in [12], eqs. 

(5.28), (5.29), (5.42), (5.43). D 
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3. SINGLE-INTEGRAL LAWS 

Consider a scalar-, vector,- or tensor-valued quantity fj. which is determined by 

the history of the notion. We say that p, is given by a single-integral law of grade L 

(L ^ 0 an integer) if the value fi(X, t) of /i at X £ Q, t £ R is given by 

(3.1) »(X,t) = M(f(X,t),...,FL-\X,t)) 

t°° 
+ / m(F°(X, t),..., FL~\X, t), F°(x, t-s),..., 

JO 

FL~l(X,t-s),s)ds 

where the functions M and m are subject to the requirements to be stated below (cf. 

[8]). To simplify the notation, when dealing with the expressions like (3.1), we shall 

wr i t e r for fi(X,t), F°, .. . , FL~l for F°(K,*), • -, FL~l(X,t), and H°, ..., HL~l 

for F°(X,t - s), . . . , FL~x(X,t - s), (s > 0), respectively. The typical argument of 

m is thus ( F ° , . . . , FL~l, H°,..., HL~l, s) and the corresponding derivatives of m 

will be denoted by 

. dm dm dm dm , 
( > dF°' ' " ' dF 1 3 1 ' dip' ' " ' dHL-1J m ' 

respectively. We shall assume that the functions M, m are infinitely differentiate 

on their domains (in the case of m we take the open interval (0, -j-co) as the domain 

of s) and that the following condition holds: let w stand for any partial derivative 

of m (of arbitrary order, including order 0), then we require that for every compact 

set C of 2L-tuples ( F ° , . . . , HL~X) there exists an integrable function / on (0, -f oo) 

such that 

(3.3) (l+s)\w(F°,...,HL-\s)\^f(s) 

for every B > 0 and every ( F ° , . . . , HL~l) £ C. Finally we impose a normalization 

condition on m which requires that "m vanishes on the diagonal", i.e., that 

(3.4) m ( F ° , . . . , FL~\F°,..., FL~\s) = 0 

for every ( F ° , . . . , FL~l) and every s > 0. 

We shall consider only motions which are C°° and bounded on every interval 

(—oo,t) (t £ R arbitrary) in the sense that for every t £ R and X £ Q there exists 

a neighbourhood Qo of X, fio C 0 such that every space-time derivative of \ ls 
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bounded on fio x ( -oo, i ) . This in combination with the decay conditions on m 

implies that the integral in (3.1) converges and gives a C°° function of X and t. 

Propos i t ion 3 .1 . If JI is given by a single integral law of grade L, then the 

referential gradient V/i is given by a single-integral law of grade L + 1, 

i»oo 

(3.5) V,/ = M ( F 0 , . . . , F L ) + / m ( F ° , . . . , F L , / / ° , . . . , / / L , 5 ) d 5 
Jo 

where M and m are given by the chain rules 

(3.6) M(F°,.. .,FL) = £ | ^ F"*1 

=одрк' 
L-l дm nlrJ., дm 

(3.7) m(F0,...,FL,H°,...,HL,s)=Z{^k+1 + W>Hk+1)-
&=0 

This is obvious. 

4. CONSTITUTIVE EQUATIONS AND THERMODYNAMIC CONSEQUENCES 

We now assume that the free energy and the multipolar stresses are given by the 

single-integral laws of grade L: 

* 0 0 

(4.1) 1> = P(F°,...,FL~1)+ p(F°,...,FL-1,H°,...,HL-1,s)ds, 
JO 

/»oo 

(4.2) <rk = Sk(F°,...,FL~1)+ / sk(F°)...1F
L-\H°)...1H

L-\s)ds, 
Jo 

fc = 0, 1, ..., P — 1, with given constitutive functions 

(4.3) P, p, Sk, sk. 

For monopolar materials (P = L = 1) the constitutive equations of the above form 

are typical for models of viscoelastic type with relaxation. For multipolar materials 

constitutive equations qualitatively similar to (4.1), (4.2), but more general, were 

studied by Buchacek [3]. 

We note that as a consequence of eqs. (4.1), (4.2) and of Proposition 3.1 also 

the regular and singular parts of the stress and the quantity f3k is given by single-

integral laws, generally of grade higher than L, since the differentiation is involved 
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in the definitions of these quantities. In case of j3k only one divergence is involved 

and thus the grade of the single-integral law for /?* is L + 1, and we shall write 

(4.4) (3k = H*(F°,..., FL) + / 6* (F ° , . . . , FL, H°,..., HL, s) ds 
Jo 

The grade of the single-integral laws for o~k'R, ak'S is generally L + P — k — l , a s i s 

easily checked by counting the numbers of differentiations in the recursive definitions 

( 2 . H ) - ( 2 A 3 ) . Below we shall obtain a more detailed information about the grades 

of the single-integral laws for /3k and f3k'R, but the grade of crk'S will be seen to be 

arbitrary. Wi th this in view we denote by N the lowest number such that /3m = 0 

identically in all processes for m ^ N and /3N~l not identically 0. This is also 

the lowest order such tha t the regular stresses of order m + 2 vanish identically for 

m >̂ N and the stress aN~l'R is not identically 0. We shall also denote by Q the 

lowest possible number m such that the constitutive functions P, p for the free energy 

are independent of Fm, Fm+1, . . . , and at least one of P, p depends of on Fm_1. 

(The number Q is not related to the dependence of P, p on H°, . . . , HL~l.) 

The material specified by the constitutive functions (4.3) is said to be compatible 

with thermodynamics if the dissipation inequality (2.9) holds for every motion \ and 

every tp, ak given by the constitutive equations (4.1), (4.2). 

P r o p o s i t i o n 4 . 1 . The material (4.3) is compatible with thermodynamics if and 

only if the following three assertions hold: 

(1) The numbers N, Q defined above satisfy N = Q, Bk depends only on F°, 

..., FN~\ andbk depends only on F°, . . ., F^'1, H°, . . , HL"\ s; 

(2) the equations 

(4 5) Bk = ™- bk = -!*-
1 ' dFk' dFk 

fold for k = 0, . . ., N — 1 throughout the domains of the functions involved; 

(3) everywhere on the domain of p, 

(4.6) pf < 0. 

The assertion of this proposition is a direct specialization of the results of Gurtin 

and Hrusa [8] on the consequences of the abstract dissipation inequality. 

Hence, if the material is compatible with thermodynamics, then the regular stress 

o~k R is given by a single-integral law of the form 

(4.7) <rh>r =Sk>R(F0,...,F2N~k~2) 
/•CO 

+ / sk'R(F°,..., F2N~k-2, H0,..., HN+L~k-2, s) ds 
jo 
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where the constitutive functions Sk,R, sk,R are completely determined by the consti­

tutive functions P, p via Proposition 4.1, Proposition 3.1 and the definitions (2.11), 

(2.12) of the regular stresses. In contrast to this, the constitutive functions for the 

singular stresses are completely arbitrary, subject only to the condition that (2.14) 

hold identically in all processes. Also note that Proposition 4.1 does not specify 

the number of the tensors Hk on which p may depend; this number may generally 

exceed N. 

Proposition 4.2. If the material is compatible with thermodynamics then the 

following three assertions hold: 

(1) Everywhere on the domain of p, we have 

(4.8) p ^ 0; 

(2) the equations 

(4.9) - ^ - = 0 (k = 0,...,N-l), 

(410) M^ = ° (^ = 0,...,L-\), 

<4-n> a ^ = ~ e ^ (k,m = o,...,N-i), 
(412) d^il^ = 0 (k = 0,...,N-l,m = N,...,L-l) 

hold whenever the argument 

(4.13) (F°,...,FN-\H°,...,HL-\s) 

is of the diagonal form 

(4.14) F° = H°, ..., FN~] = HN-1 

with HN, ..., HL~l arbitrary; 

(3) the inequality 

( 4 1 5 ) X>* w^H-Mm^Q 

jb,m=0 

holds for every diagonal argument and every collection M°, .. . , MN~l of tensor of 

orders 2, . . . , N + 1, respectively. 
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Also these results are specializations of the results of Gurtin and Hrusa [8]. I 

only note that (4.8) is obtained by integrating (4.6). Combining (4.8) with the 

normalization condition that p vanish whenever the argument (4.13) is diagonal 

((4.14)), we see that for every s the function (F ° , . . . , F""1, tf°,..., HL~l) i—• 

p ( F ° , . . . , FN_1, tf°,..., HL~l, s) has the minimum at every argument satisfying 

(4.14). Eqs. (4.9), (4.10) express the vanishing of the first partial derivatives at 

the minimum. Eqs. (4.11), (4.12) then follow by differentiating (4.9), (4.10) with 

respect to the obvious arguments. Finally, (4.15) is the positive-definite character of 

the second differential at the minimum. 

5 . RETARDATION THEOREM 

For a given motion \ an<^ a € (0,1] we define a-related motion \a by setting 

(5-1) Xa(X,t) = X(Xtat)t 

for all X and t. The deformation gradient F* corresponding to \a then satisfies 

(5.2) Fk
a(t) = F"(at), 

for all k = 0, 1, . . . and all t. For the general single-integral law (3.1) the evolution 

/ i a of the quantity fi corresponding to \a -S given by 

tia(t) = M(F°(t),...,FL-\t)) 

J
/»oo 

' m(F0(t),...,FL-1(t),F°(t-s),...,Ft'(t-s),S)ds, 
0 

where the argument X has been suppressed. 

The A:-th kinetic coefficient Kk (k = 0, . •., L — 1) for the single-integral law (3.1) 

of grade L is defined to be the function Kk of F°, .. . , FL~l given by 

(5.4) Kk(F\...,FL-') = - p ^(F\...,FL-\F\...,FL-\s)sds. 

The following proposition, the retardation theorem (cf. [4]), shows that for slow 

motions x«, ot —• 0, the integral law (3.1) can be approximated by a differential-type 

law involving the kinetic coefficients. I refer to [14] for the proof of the retardation 

theorem within the context of the single-integral laws. 
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Proposition 5.1. lf\ is an arbitrary motion, then 

»a(t) = M(F°a(t),...,FZ-\t)) 
L - l 

+ £ Kk (F°(t),..., F£-\t))F*(t) + o(a, t), 
Jk=0 

where 

(5.6) ^^Uo 
a 

for a —• 0 and every t £ R. 

The proposition thus associates with the "exact" constitutive equation (3.1) the 

approximate differential-type constitutive equation 

L - l 

(5.7) p = M ( F ° , . . . , F1'"1) + ] T # * ( F ° , . . . , FL-l)Fk, 

Jb=0 

which approximates (3.1) in slow processes. Alternatively, (5.7) can be written 

L - l 

(5.8) ft = M ( F ° , . . . , F1'"1) + ^ Kk(F\ ..., FL-1)V*+1v. 
ik=0 

The evolutions according to the approximate constitutive equations will be systemat­

ically distinguished by superimposed bars. The first two terms on the right-hand side 

of (5.5) is just the evolution according to the approximate law (5.7) corresponding 

to the retarded motion Xcn 

(5.9) fia = M(F0
a,...,F^) + YtK

k(F0
a,...,F^)Fk. 

* = o 

The rest of the paper is devoted to the study of the properties of the approximate 

constitutive equations. 

We know (cf. Proposition 3.1) that if \i is given by the single-integral law (3.1) of 

grade L, then V// is given by a single-integral law (3.5) of grade L + 1. 

Propos i t ion 5.2. The kinetic coefficients K°, . . . , KL of the single-integral law 

(3.5) are given by 

(5.10) Kk = VKk + Sym(Kk~l <g> 1), 
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k = 0, ..., L. Here Kk (k = 0, ..., L — 1 are tiie kinetic coefficients of (3.1) and we 

iiave set K"1 = 0, KL = 0 in (5A0); VK* is the formal gradient of K, defined to 

be the function of F°, ..., FL given by the chain rule 

L~l ftvk 

(5H) ™* = £f£rFm+1-
m=0 

The proof is a direct computation of K* using the definition (5.4) and the formula 

(3.7) for the function m. The details are omitted. 

Propos i t ion 5.3. If, for a given motion \ } the function fiQ is defined by (5.3) 

and the function fia by (5.9), then 

(5.12) V/i«(t) = V M * ) + <*">*)> 

wiiere 

(5.13) f * > l f * ) _ , 0 

a 

for a —> 0 and t G R. 

That is, the approximation corresponding to the single-integral law for the gradient 

is the gradient of the approximation of the original single-integral law. This follows 

from (5.10). 

6. T H E COEFFICIENTS OF VISCOSITY 

We now associate with the viscoelastic material of Set. 4 the approximate mate­

rial via the retardation theorem. As above, the values of the quantities given by 

the approximate constitutive equations will be denoted by the superimposed bars. 

Throughout the present and the subsequent sections it is assumed that the viscoelas­

tic material (4.3) is compatible with thermodynamics. 

We introduce the kinetic coefficients Kkm (m = 0, ..., L — 1) for the constitutive 

equations for the tensors /3k (k = 1, . . . , N — 1). We shall call them the coefficients 

of viscosity. According to the general definition, Kkm is given by 

(6.1) Kkm(F°,...,FL-l) = -J ^-(F°,...,FN-l,F°,...,FL-\s)sds. 
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Using the thermodynamical relation (4.5)2 this can be rewriten as 

(6.2) Kkm = -Jo°° dFfd
P

Hm(F°,...,FN-\F°,...,FL-\s)sds. 

If m ^ N, then (4.12) tells us that the integral vanishes and hence 

(6.3) Kkm = 0. 

On the other hand, ifm = 0, ..., N— 1, then the use of (4.11) gives finally 

(6.4) Kkm = -J™^^(F0,...,FN-\F°,...,FL-\s)sds. 

This implies, among other things, 

Proposition 6.1. The approximate constitutive equations for fik are 

A t - 1 

(6.5) 0k = Bk(F°,..., FN~l) + £ K*m(F°,..., FL~l)Fm 

m=0 

for k = 0, ..., N — 1 and 

(6.6) 0k = 0 

fork^ N. 

The interchangeability of the second partial derivatives in (6.4) implies a symmetry 
of the coefficients of viscosity. To state the result conveniently, we introduce, for each 
F°, ..., F L ~ \ the bilinear form (.,.) as follows: 

N-l 

(6.7) (V, W) = ] T Vk • K*m • Wm 

*t,m=0 

where V, W are N-tuples V = (V°, . . . , VN~l)y W = (W°,..., WN~l) with entries 
Vk, VV* (Jb = 0, ..., N — 1) the tensors of order k + 2, symmetric in the last k + 1 
indices. In indices, 

(6.8) (V,W)= £ I^..^+1^,..Bm+,^,.^+1^,.B„+1. 
*,m=0 
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The symmetry resulting from the interchangeability of the partial derivatives in (6.4) 

says that 

( 6 9 ) KjBl..Bm+1,iAi...Ak+1 - KiAl..Ak+1JBl.Bm+1-

Propos i t ion 6.2. Let F°, . . . , FL~l be given. Then the bilinear form {.,.) is 

symmetric and positive-semidefinite, i.e., 

(6.10) (V,W) = {W,V) 

and 

(6.11) (V,V)>0 

for each V, W. 

P r o o f . The symmetry is proved above. The positive-semidefiniteness follows 

from (6.4) and Proposition 4.2(3). D 

Note that the positive-semidefiniteness of (. , .) can be obtained by a direct appli­

cation of the dissipation inequality to the approximate constitutive equations [12]. 

However, the symmetry cannot be obtained in this way. The symmetry plays crucial 

role in the existence theory [9, 10]. 

P ropos i t ion 6.3. For every k = 0, . . . , N — 1, 

(1) the approximate constitutive equations for the regular part of the stress have 

the form 

(6.12) <rk>R = **.*•*+ * W f 

where ckRE, called the equilibrium part of the regular stress, depends only on F°, 

..., F2N~k~2, and ~k>RV, called the viscous part of the regular stress, depends 

linearly on F°, . . . , F2N~k~2 with the coefficients depending on F°, . . . , FL+N~k~2; 

(2) for each motion, 

(6.13) (tkR>E + Div **+iA* = Bk(F°,..., FN~l), 
Iv-i 

(6.14) -k>RV + Div &k+l >RV = J2 Kkm(F°,..., FL-l)Fm. 
m=0 

In particular, we can deduce from (1) that <rk>R>v depends linearly on Vv, . . . , 

V2N~k~lv. This is an analogue of the results by Necas and Silhavy [12, §5]. 
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P r o o f . The definition (2.12) of ak,R implies that the single-integral laws for 
ak,R, ak+1,R and/?fc satisfy 

(6.15) ak,R + Vivak+1,R = pk. 

Using the interchangeability of the passage to the approximation via the retardation 

theorem with taking the gradients, as stated in Proposition 5.3, the approximate 

constitutive equation for ak,R + Divak+l,R is seen to be 

(6.16) ak,R + Divak+1,R, 

where ak,R and ak+1,R are given by the approximations to the single-integral laws 

for ak,R and ak+1,R
y respectively. On the other hand (6.15) implies that (6.16) must 

be equal to the approximate constitutive equation (6.5) for fik. This gives 

Iv-i 
(6.17) ak,R + Div ak+l,R = Bk(F°,..., F*"1) + £ Kfcm(F°,..., FL-l)Fm, 

m=0 

k = 0, . . . , N - 1. We have aN,R = 0 by definition and hence aN,R = 0. (6.17) for 

k = N — 1 gives 

Iv-i 
(6.18) aN~l,R = BN{F\ . . . , F""1) + ] T Kfcm(F°,... 5 FL~l)Fm, 

m=0 

Hence aN~1,R is of the form claimed in Assertion (1). Proceeding inductively, we 

obtain, omitting the obvious details, Assertion (1). 

Having proved (1), we insert (6.12) into (6.17) to obtain 

(6.19) ak,RE + Div**+ 1 '* '* + ak,RV + Divak+l,R>v 

Iv-i 
= £fc(F°, %J., F"-1) + J2 Kkm{F\ ..., FL~x)Fm, 

m=0 

This equation must hold for every motion.Since the time derivatives Fm can be 

chosen independently of the values of Fm, the equation splits into the parts linear 

in Fm and into the absolute term, which are (6.14) and (6.13) respectively. D 

Analogous reasoning gives 

Proposition 6.4. The approximate constitutive equations for the singular 

stresses have the following properties: 
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(1) ak,s is the form 

(6.20) d*'s = 0*'s>B+ &*'**, 

where ak,s,E, called the equilibrium part of the singular stress, depends on F°, ..., 
j?L+p-k-2^ an<j ^k,s,v ^ c a/]e cf ihe viscous part of the singular stress, depends linearly 
on F°, ..., FL+p-k~2 with the coefficients depending on F°, ..., F£+-°-*-2

; 

(2) for each motion, 

(6.21) Symtf*'5'15 + Div^* + 1 ' 5 ' F = 0 

(6.22) Symtf*'5'1' -f Div<x*+1'5'V = 0 

(6.23) 5Z D i v ( ^ * , 5 , E ' v * v ) = 0 
fc=0 
P-i 

(6.23) £ Div(<r*»5'v • Vkv) = 0 
Jb=0 

We conclude this section with noting that for various boundary conditions the form 
(.,.) is related to the weak form of the equation of balance of linear momentum (2.2). 
For instance, if one considers a fixed configuration of the body and two velocity fields 
v, w such that their gradients up to order N — 1 vanish on the boundary of fi, then 
the regular viscous stresses ak,R,v(v) and <rk,R,v(w) corresponding to v, w satisfy 

(6.25) / w Div č°'R'V{v) d V = - í {Dv, Dw) d V = [v Div ď°'fl^(u>) dV, 
Jíi jn Jíi 

where Dv = (Vv,..., VNv), Dw = (Vw,..., VNw). Hence the first term in (6.25), 
which is obtained upon multiplying the equation of balance of linear momentum 
with the virtual velocity field w and integrating, can eventually be transformed into 
the symmetric form (.,.). The same applies to the boundary conditions considered 
in [9, 10]. (6.25) is obtained by repeated use of Green's formula, the boundary 
conditions, and (6A4). 
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7. T H E PRODUCTION OF ENTROPY 

Propos i t ion 7.1. The approximate constitutive equation for the energy is 

(7.1) j , = P(F°,...,FN-1) 

That is, the kinetic coefficients for the single-integral law for the free energy vanish. 

P r o o f . According to the general formula (5.4), the kinetic coefficients K\ for 

ip are given by 

(7.2) K^-J°°^1-(F
0,...,FN-\F0,...,FL-1,s)sds, 

k = 0, . . . , N — 1 and the derivative in the integrand vanishes in view of (4.10). 

In the text proposition we set 

( 7 > 3) * k > * = c?k>R>E + <rk>s>E
i 

(7.4) cfk>v =<rkR>v + t?k>$>v. 

D 

Propos i t ion 7.2. Let \ be any motion and denote Dv = (Vv,..., VNv). Then 

the following relations hold: 

N-l P-\ 

(7.5) ^ = J^ D i v ^ * ' * ^ • Vkv) = J2 Div(<f^E • V*v), 
fc=0 fc=0 

N-l P-l 

(7.6) (Dv, Dv) = J2 D i v ( ^ RV ' v * v ) = Yl D i v(^ , V / ' VM> 
fc=0 Jb=0 

N-l P-l 

(7.7) ip + (Dv, Dv) = ] T Div(<f *'* • V*t/) = J T Div(<r* • V*i>). 
* = 0 * = 0 

Eq. (7.5) is the generalized Gibbs equation for multipolar materials, (7.6) gives 

the connection of the form (,) with the power of viscous stresses, and (7.7) identifies 

(Dv,Dv) with the production of entropy. In the terminology of the linear thermo­

dynamics of irreversible processes, the viscous part of the stress is given by a linear 

expression in the non-equilibrium parameters Dv. The symmetry of the form (,) is 

then the Onsager symmetry of the kinetic coefficients, a famous postulate of irre­

versible thermodynamics. Within the present scheme this is a consequence of the 

thermodynamic compatibility of the viscoelastic model. 
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P r o o f . (7.5) is obtained by combining (4.5), with (6.13) and (6.21). (7.6) 

follows from (6.14), (6.22) and the definition of ( . , . ) . Finally, (7.7) is the sum of 

(7.5) and (7.6). • 
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S o u h r n 

MULTIPOLÁRNÍ VISKOLEASTICKÉ MATERIÁLY A SYMETRIE 

KOEFICIENTŮ VISKOZITY 

MIROSLAV ŠILHAVÝ 

V článku jsou z termodynamického hlediska analyzovány integrální konstitutivní rovnice 
multipolárních viskoelastických materiálů. Je ukázáno, že je lze aproximovat konstitutivními 
rovnicemi diferenciálního viskózního materiálu při pomalých dějích. Jako důsledek thermo-
dynamických vlastností viskoelastického modelu je dokázáno, že koeficienty viskozit mají 
onsangerovskou symetrii. Tato symetrie byla dříve uplatněna při důkazu existence řešení 
příslušných rovnic. 
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