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ANALYSIS OF VARIANCE AS REGRESSION MODEL 
WITH A REPARAMETRÍZATION RESTRICTION 

KAREL ZVÁRA 

(Received October 10, 1991) 

Summary. Let us consider the Iinear model covering the one-way classification as a 
speciál čase. In the páper the reiationship between testing of some Iinear hypothesis and 
estimating of parameters in the Iinear model by common software packages is examined. 
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1. MODEL 

Let us consider a classical Iinear model 

(1) Vij = /i + on + z'ťi 3 + e t i , 

where e8J- ^ N(Q> a2) for j = 1 , . . . , n,-, i = 1 , . . . , k, are independent random vari-
ables, ZÍJ are known reál vectors satisfying 

(2) EZS« = o, 

a = (c*i, . . . , a*)' and |3 = (/?i, . . . , /?p)' are unknown parameters. Let us denote 

fc 

i=i 

The relation (1) can be rewritten in a matrix form as 

(3) y=1/ i + X<x+Z0 + e, 
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where 1 = (1 ,1 , . . . , 1)', Z = ( z n , . . . , z i n i , . . . ,zknic)' and 

/1 O . . . 0 \ 

\ 0 O . . . 1 / 

The assumption (2) can be written as 

(4) 1'Z = 0'. 

Besides of it holds 

(5) XI = 1. 

Let us assume that 

(6) h(X,Z) = k + p, 

therefore the matrix (X, Z) has linearly independent columns. 
In čase p = 0 the relation (3) gives a common model of analysis of variance. 

Moreover, a Wisharťs example cited in Rao (1973), p. 291, can be rewritten in the 
form (3), too. In this example growth rates of 30 pigs in dependence on initial 
weights, pen, sex and type of food are examined. Let efFect a, corresponds to í-th 
pen. The other effects are included in the vector p. The requirement (4) is not 
restrictive. Instead of vectors z,j we can consider vectors ztJ- — ž and the parameter 
/i we can replace by JÁQ = /i — ž'|3. 

Elements of vector <x are estimable if it is fulfilled the known reparametrization 
condition 

(7) n'<x=0, 

where the vector of weights n = (m, ...,njfe); satisfies 

(8) 1'X = n'. 

For computation of estimates of parameters ^, a, 3 as well as for computation 
of the residual sum of squares we can use a common program for multiple linear 
regression, when we add a pseudo observation determined by the condition (7) to 
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the ušed observations (e.g. Gentleman (1974), Zvára (1989)). Together with the 
primary observations the pseudo observation create the schéma 

( U o! <pn')'{o))' 
where <p ^ 0 is any reál constant. The systém of normál equations can be written as 

/Z 'Z , 0, Z'X \ / b \ / Z ' y \ 
(9) 0' n, n' m = 1'y . 

\X 'Z , n, X + V2nn' / \ a / \ X ' y / 

According to ScheíFé theorem (Scheffé (1959)), that makes base for described method 
of parameters m, a, b computation, the matrix of the systém normál equations (9) 
is regular. 

Using the routine way of computation, we usually receive besides the mentioned 
estimates their standard errors and also č-statistics. In the páper we will show one 
possible interpretation of these č-statistics. 

2. VARIANCE MATRIX 

Let us compute the variance matrix cr2G of the estimate a. For that reason we need 
to find out the right lower submatrix of the inverse matrix of systém (9). According 
to the well known formula (e.g. Rao (1973), p. 33) 

where 
E^D-BV^B, F^A^B, 

we will receive 

G-=XW»n'-<X'Z,n)(^< J)"(™) 
= X'X - X'Z(Z'Z)-1Z'X + (v?2 - -) nn' 

= C-1 + (^2-i)nn') 

denoting 

c^^x-x^zr^x)"1. 
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Let us notice, that (using (5), (4) and (8) subsequently) 

C-11=X ,X1-X ,Z(Z'Z)-1Í'X1 

= X'1 - Y!l(L'T)-ll'l 

therefore 

(11) C n = 1 . 

Now we use another known formula (e.g. Rao (1973), p. 33) 

(A + uv') * = A l - - 7T-7-, 
v ; 1 + v ' A - V 

that is valid for a regular matrix A and vectors u, v satisfying v'A_1u ^ — 1. Then 
using (11) we will get 

(12) G = C - (i + (<p2 - i ) n'Cn) " ' (y2 - ± ) Cnn'C 

= C-ilť + -i-1ť. 
n n2(p* 

Besides of the estimate ar of the effect ar a standard regression program computes 
standard error of this estimate 

(13) sJCrr - Í + - Í - J 
V n nz<pd 

and J-statistics 

(14) tr = 

where the symbol s2 means the residual variance 
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3 . SlGNIFICANCE OF Qr 

Considering (5) the linear model (3) we can express using parameters 

6 = a + /il 

and P in the following form 

y = X6 + Z0 + e. 

Under the assumption (6) we háve the full rank model, therefore both vectors of 
parameters 6 and g are estimable. For the estimate d of the parameter 6 it holds 
(e.g. considering (9)) 

var d = (72(x'x - x'i{TiylTxyl 

= * 2 C . 

The requirement ar = 0 for a given r (r — 1 , . . . , Jb) is not a testable linear hypoth
esis in the model (3). However, the situation is difFerent for the linear hypothesis 

1 k 

(15) # : í r ~ - £ M , = 0 , 
k 

L 
• = 1 

that can be expressed after a small adjustment also as 

k H:ar 5Zntaf. = 0. 
•s i 

With the condition (7) it si the samé as the hypothesis 

ar = 0 . 

The linear hypothesis (15) we can write as 

(16) h;6 = 0, 

where 

h=( l - in1 ' ) j r , 

j r = ( o , . . . , i , . . . , o ) ' . 
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We can compute (using (11)) 

varh'd = <r2h'Ch 

-^( i - iw)c( i - i . i - ) t 
= A(<L- -\*X- iCr.ť+ i-ln'Cn1'U 

V n n ri2 / 

= «r2j;(C-il1')jr 

= < r>(C r r- i ) . 

Therefore the test statistic for testing hypothesis (15) equals the ratio 

We can see that for a sufficiently large value of the expression n2^?2, the statistics 
(14) a (17) in fact coincide. The hypothesis (15), that the r-th class in one-way 
analysis of variance with covariances "does not difFer from the mean," we can test 
by a program for the linear regression using the statistics (14). 

Let us go back to the Wisharťs example. We ask whether growth rates in the 
pen III are significantly difFerent from average growth rate. For (p = 0.01, <p = 1 
and <p = 100 we get according to (14) ť3 = -0.26, t3 = -2.39 and t3 = -2.40, 
respectively. The last value can be considered as exact, therefore the growth rates in 
pen III can be considered as statistically significantly difFerent from average growth 
rate, even if the separate influence of the pen factor on the growth rate on the samé 
level is not significant (F4 | i9 = 2.35 < F4fi9(0.95) = 2.90). 
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